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Abstract. In the current paper we study in more detail some properties of the 
absolutely continuous invariant measures constructed in the course of the proof of 
Jakobson's Theorem. In particular, we show that the density of the invariant 
measure is continuous at Misiurewicz points. From this we deduce that the 
Lyapunov exponent is also continuous at these points (our considerations apply 
just to the parameters constructed in the proof of Jakobson's Theorem). Other 
properties, like the positivity of the Lyapunov exponent, uniqueness of the abso- 
lutely continuous invariant measure and exactness of the corresponding dynamical 
system, are also proved. 
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I. Introduction 

In [11] one of the authors (M.R.) presented a new proof of the following result of 
Jakobson [8]: 

* This paper was written during the author's stay at the IAS while supported by NSF grant 
DMS-860 1978 
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Theorem 1. Let f ,(x) = 1 - -  o~x 2, 0 ~ o~ ~ 2, be a one parameter family of mappings of 
the unit interval. There is a positive measure set of those c~ that f~ has an absolutely 
continuous invariant measure (abbreviation: a.c.i.m.). 

In the course of the proof  a set A~o of parameters ~ was constructed such that 
for e s A ~  there is an a.c.i.m, for f , .  

When the present work was started, our main objective was to show the 
continuity of the metric entropy, as e ~ 2. This naturally lead to studying continu- 
ity of the invariant measures and spectrum of the Perron-Frobenius  operator for 
maps of class BV. In the present paper we also include a number of related results: 

1. A direct, simple proof that for e ~ A~ the Lyapunov exponent o f f ,  is positive; 
2. A proof that the density of the a.c.i.m, is an LP-function for p c  [-1, 2). 

Throughout  the paper we use the results of [11] quite extensively. Also, in the 
part  concerning BV class maps we refer the reader to [-9] for an account of basic 
facts about these maps. 

Let us recall that in [-11] A~ was constructed through a limiting process. First, 
for every nonnegative integer n we constructed a family of segments s~r The 
segments of ~r + 1 were constructed from the segments of d ,  by making deletions. 
The union of the segments of d ,  was denoted by A,. The set A oo is simply the 
intersection of all A,. Thus, for any ~ ~ A| a number of objects was constructed: 

1. A descending sequence of segments [ - 1, 1] = Io ~ 11 ~ I2 �9 �9 �9 ~ {0}; these 
segments depend on ~; 
2. A sequence of integers 1 = So < st < s2 < . . .  such that the mappings 
T~,k =f~l lk \ Ik+ 1, k = 0, 1, 2 . . . .  are uniformly expanding; the expansion con- 
stants ~ oo exponentially with k and uniformly in e; the numbers So, sl, �9 �9 �9 s, 
are the same for all c~ in the same segment J e d , .  

d e f  

The mapping T~ was defined as T~,k on the domain of T~,k (i.e. on M~,k = Ik\Ik+l. 
We proved that the mapping T~ belongs to class BV, and therefore has an a.c.i.m. 
(cf. [9]). In the sequel we will show that the invariant measure for T~ is unique 
among the absolutely continuous ones. Let us denote it b y  ~ .  Following the 
original work of Jakobson, we define the a.c.i.m, v~ forf~ via the following formula: 

oo s . -  1 

v~ = ~" ~ ( f~)*(~llk\Ik+t) .  (1) 
n = O  j = O  

This series defines an a.c.i.m, because the measure ~ has a bounded density and the 
series 

SkIIk\Ik+I ] (2) 
k = O  

converges (uniformly in ~). Up to a normalizing constant, this is the only a.c.i.m, for 
f~ (this fact will be evident in the sequel). 

In Sect. 5 we show that the density of ~ depends continuously on ~ in 
L~-topology for any p ~ [1, or), as ~ converges to the so-called Misiurewicz points. 
Subsequently, (in Sect. 6) we prove an analogous statement for the density of v~ for 
p ~ [1, 2). Our results are, of course, limited to the points in Aoo. 
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A parameter c~ is called a Misiurewicz point if the set {if(0)}~% i is at a positive 
distance from the critical point 0. It is not difficult to show that Misiurewicz points 
are dense in the set Ao~. They are also Lebesgue density points of the set A~. 

Furthermore, we will show that the metric entropy which in this case equals the 
Lyapunov exponent of the dynamical system (f, ,  v,) (e e Ao~) is continuous at 
Misiurewicz points. We also show that the dynamical system ( s  v,) is exact. From 
the results of Ledrappier [7] it follows that the natural extension of (f,,  v,) is 
Bernoulli. It shall be clear that the maps T, have a uniformly exponential mixing 
rate for all e E A~. An analogous statement for f~ was recently proven by L.-S. 
Young [12]. 

It is an open question whether for almost all e e A~ the Lyapunov exponent 
along the orbit of 1 is positive. Again, the answer is well known to be positive for 
Misiurewicz points. Also, recently Carleson and Benedicks have shown that this is 
the case for the set of parameters constructed in their version of the proof of 
Jakobson's theorem. It is also known that for all c~ e A~o: 

I(f~)'(1)l ~ const.A"' (3) 

for some A > 1, all nonnegative integers n and some positive 7- We expect that 
there is a nonempty set of measure 0 of these e E Aoo such that the Lyapunov 
exponent along the orbit of 1 is 0. 

Our technique relies upon the possibility to estimate the non-peripheral spec- 
trum of the Perron-Frobenius operator of piecewise expanding mappings of class 
BV. Such estimates are directly connected with estimates of the rate of mixing and 
continuity of the entropy, as it was explained in [10]. 

2. Mappings of Class BV 

The class of mappings considered in 1-9] will be called class BV. Thus, a mapping 
Tis of class BV if it maps I \ S  to I, where S is a closed set of measure 0; Tis assumed 
to be differentiable and the function. 

1 

g(x) = I T~x)l' 
0, 

for x ~ I \ S  

for x e S  

(4) 

satisfies Var(g) < oe and I[ g [I oo < 1. Let ~ be the measurable partition o f / i n t o  the 
components of I \ S .  By enlarging S we can achieve that T is monotonic on the 
components of I \ S ,  the iteration T": I \ S ,  ~ I, where S, = U T ~  T - i ( S ) ,  is well 
defined and the partitions 

make sense. The function 

n - 1  

4"= V r-~(O (5) 
j = O  

g. = (go T . -  ~ ) . . . (go T ) g  (6) 

plays the role of g for the iteration. As it was shown in [9], Var(g , )<  oo, 
JJg, H~o < I}gll~ < 1. So T" is also of class BV. 
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The Perron-Frobenius operator for a BV map T is an operator 
P: L 1 (m)~  L t (m) defined as usual by the following formula: 

P4)(x) = ~ 9(Y)4)(Y). (7) 
y~ T -  1 (x) 

P can also be considered as an operator on the space BV of functions of bounded 
variation with the norm: 

II 4)[IBv = max( II 4)ILL1, Var(4))). (8) 

It will also be useful to denote by BVo the space of those 4) e BV which have zero 
integral. The following fundamental theorem was proved in [9]: 

Theorem 2. There are constants A, B, ~: e (0, 1) such that for  any 4) E BV: 

Var(P"4)) __< As:" Var(4)) + B II 4)IIL~ (9) 

for  n = l,  2 . . . . .  

From [9] it follows that the constants A, B, s: can be obtained if a finite partition 
and an integer n are given, so that numbers 2~ and D~ (defined below) satisfy the 

following inequalities: 

clef 

2~ = Jig, lifo + maxVarag ,  < 1 , (10) 
A ~  

def 

O~ = max  VarA(g,)/]A[ < oo . (11) 
A ~  

The above formulas are important to us because we will find the partition 
independent of e such that both of the above constants are uniformly bounded for 

all e e A~. As a consequence, the constants A, B, ~c can also be chosen uniformly 
with respect to e. 

Theorem 3. There is p 6 (0, 1) and a constant C such that for  any segment A c I and 
N ~ Z + :  

Vara(g,) < C(p" + I AI),  (12) 

where C and p do not depend on ~. 

Proof. This proof is in principle the proof of the existence of the a.c.i.m, for T, 
which was hinted at in Remark 5.1 of [11]. Therefore, we will just sketch some of 
the steps, referring the reader to that paper. 

Let 7c be the partition o f / i n t o  segments of equal length d. Just for this proof, the 
meaning of ~r from [11] will be changed, to make the notation completely 
analogous to the proof of Theorem 5.1 from that paper. Thus, let sr denote the 
partition 4" restricted to A and let d ;  be the partition generated by the following 
inductive definition: 

~r = T - l ( d ' _ , )  v (4 v n) = ~"IA, (13) 

where ~ = ~ v n. 
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Let  us introduce two sequences: 

1 
7, = ~ sup , (14) 

J e d  n J I C I  

q," 
f t .=  ~ sup ~ IJI ,  (15) 

Jea/,~ J ~,'e'nJ I 

where ft, = T ~. We will derive est imates of (7. + , ,  q, + i) in terms of (Y,, ~.) in a way 
ana logous  to the p roof  of Theorem 5 in [11]. 

F o r  any J e d ' , ,  P ~ ~ and k �9 7/+ we set Jk(P) = T-  l ( j )  ~ Mk C~ P. We notice 
that  for any J �9 ~r + ~ we have 

1 
sup < sup I T[k)l - i  sup IC1-1. (16) 

s IC.+*I = J~(~) 

Let k, �9 7/+ be such that  (cf. formula  (5.10) of [11])  

supl Z~k)1:1 ~ Ao i (17) 
k>=kt 

Let us choose d small enough, so that  for every P e ~ one of the two cases holds: 
either 1) P c Ikl or  2) P intersects not  more  than  two of the sets M k. We obtain: 

1 1 
sup < 2Ao i sup , (18) 

k J w ' ) I ~ L + l l  = J~(P) ICI 

where J ( P ) =  tp~l (P)nJ .  We notice that  r P for at mos t  two P e r t ,  
namely  the ones that  satisfy *) P c~ 8f t . (J)  4= 0. Summing  up over  these P we obtain 

~ *  sup 1 < 4 A o i  sup 1 (19) 
k,P '/k(P)Ir = s I~LI" 

The other  Ps satisfy **) ~,,(Jk(P)) = P and allow the est imate 

1 1 1 ~"  
sup < ~ ~ o ~ -  i + sup I J(P)[ (20) 
j~(e) I~ ' [  = I~ . (J (P)) I  ,.(s(p)) J(e) (~h,~) 2 ' 

So, we obta in  

and, finally 

~ * *  sup 1 < 2Ao 1 IJI + sup IJI 

2Ao i 
7 .+i  < 4Ao17,  + 2Ao~q. + ~ IA[ .  

(21) 

(22) 

Next  we intend to est imate q,+ 1. We have: 

~h~'+, < 1 ~9" T" ~ '  
( r  = ~ - 7 ~ ~ 1 6 2  (~,)2 + ~ = <Axx(T(k))+Ao i (r �9 (23) 
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Therefore, we can write: 

q.+l  = < A=(T(k))lJk(P)l + Ao~rln. 
J , k ,P  

Because of the obvious inequality 

1 
IJk(e)l < sup IP n Mkl 

Jk(P) 

we obtain 

where 

qn+i < rvn + A o l r l n  , 

M. Rychlik and E. Sorets 

(24) 

(25) 

(26) 

r = sup max y, A=(Tr ~ Mkl �9 (27) 
n P ~  k 

Reasoning as in the proof of Theorem 5 of [11] we obtain the inequality: 

V , + l <  Pv, + e ( n =  1 , 2 , 3 , . . . ) ,  (28) 

where v, = (~,, r/, ) ~ IR z and e ~ 1R 2 is a fixed vector satisfying the inequality: 

Ilell < const. I h l .  (29) 

The matrix P is defined by the formula: 

I4A~ 1 2Aol l  
P = Ao 1 j ,  (30) 

where 

r= ~ d~x(r~k))lJk(P)[. (31) 
J , k ,P  

We need the spectral radius of P to be < 1. This can be achieved by decreasing d, if 
Ao > 4. Otherwise we use the same argument as in the proof of Theorem 5 in [11]. 

We also see from the definition and the estimates in [11] that vl is uniformly 
bounded in ~. �9 

As a corollary we obtain that if ( is a sufficiently fine partition into segments 
then the numbers 2~ and D~ are uniformly bounded for all ~ ~ A~o. 

3. Annihilating Segments 

The purpose of this section is to introduce a condition which guarantees that the 
Perron-Frobenius  operator of a BV map  restricted to BVo is a contraction. From 
the previous work on BV maps in [9] it is clear that this condition is equivalent to 
the weak mixing property for the resulting dynamical system, if the invariant 
measure is the unique a.c.i.m. However, we will need more concrete conditions 
which assure that the contraction is uniform for all maps T~, ~ ~ A~. 

Let T be any BV map. 



Absolutely Continuous Invariant Measures for the Quadratic Family 223 

Definition 1. Let  s > O. A segment Ko c I is called an s-annihilating segment if and 
for  sufficiently large l ~ Z + there are C > O, 6 > 0 such that for  any segment K of  
length > e there is B ~ ~t and a subsegment L ~ B such that: 

1. Tt(L) = Ko and L c B ~ K; 
2. [ L I >  6; 

3. SUpL gl < C 
infL gl 

In  the next section we will show that the existence of an s-annihilating segment 
for sufficiently small e implies that  the opera tor  P :  BVo ~ BVo is a contraction. 
Moreover ,  the contract ion constant  can be estimated in terms of the constants  that  
have already been introduced. 

In  this section we will concentrate  on the p roof  of the following result: 

Theorem 4. For every ~ > 0 and for sufficiently small a > 0 the map T = T2 (i.e. for 
= 2) the segment Ko = [ - a, a] is e-annihilating. 

2 
Proof. Step 1. We change the coordinates,  using the map  ~:x~--~-arcsin(x).  It  is 

n 
well known  that  the map h = q~ o fz  ~ cb- 1 is actually the map  h: x ~ 1 - 2Ix I. For  

= 2 the sequence of segments 1, becomes [ - 3-",  3-"] .  Let us consider the 

sequence I" = ~ -1 ( i , )  = - sin 3 -  , sin 3 - "  . Let U be the map defined 

d e f  

to be h" § 1, on M,~ = I'\I[,+ ~ (n = O, 1, 2 . . . .  ). I t  is not  diffficult to see that 

1. U[M', has slope _ 2"+1; 
2. [I ' l  ~ cons t .3-"  for large n; 
3. U = ~o T o ~  -1 

Step 2. Let ~ be the part i t ion into the components  of all the sets M~. We shall prove 
that  for sufficiently large n there is L c Ko, L ~ B e ~", such that  Ko = U"(L). 
Moreover ,  there is mo such that  for every m > mo there is a segment L c M~, and 
n ,-~ const.m such that U"(L) = K o. Indeed, there is a sequence of preimages Kt of 
Ko under  h monotonical ly  converging to - 1, all contained in M ;  (where U = h), 
of  length ~ Ko/2 ~ and distant f rom - 1 by ~ 1/2 ~. The image U(Mm) is a segment 
of length ,,~ 2" const. 3 - "  and its distance from - 1 is ~ (2/3) m. It is clear now that  
for sufficiently large 1 there is m such that  Uz+I(M ") = hlU(M~,) ~ Ko provided 
Ko = [ - a, a ]  is short enough. 

To prove the first of our  claims it is sufficient to choose 11 and 12 so that 11 + 1 
and 12 + 1 are relatively prime and the corresponding I ' j  c Ko (j = 1, 2). Every 
sufficiently large n admits a representation n = pl( l l  + 1 ) +  p2(12 + 1), where 
Pl,  P2 are positive integers. N o w  using the representation U" = (U ~1 + 1)pl o (UZ: + 1)p2 
we can easily find the desired segment L. 

Step 3. Suppose that  K is a segment of length > s. Let K '  = ~(K). There is el > 0 
independent  of K such that  [K'I > el. We inductively define a sequence of segments 
W, by requiring that  Wo c K' ,  I Wo] > el/4 and dist(Wo, 0) > 51/4. For  n > 0 we 
define W, to be the longest of the segments U(M~ c~ IV,_ 1) for k -- 0, 1 , . . . .  We 
claim that  for some n < const.log(1/el) the segment W, contains a componen t  of 
M ' ,  where m is sufficiently large and fixed. Indeed, if IV, does not  contain 
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a component  of M L, then IV, is either contained in I \ I ' + t  or in I~,. Let m be 
a number so that 

0 = max 
\ k = l  

is strictly less than 1. It is not difficult to prove by induction that for each n we have 
i W. + 11 _-> O- 11 ~1 .  Indeed, suppose that, on the contrary, for each k the length of 
U(M~c~ IV,) has length < O-11W, I . We can write the following sequence of 
inequalities: 

I M ~ c ~ W . I < ~ + ~ 0 - x l W ,  I ( k = 0 , 1  . . . .  ) .  (33) 

In the case when W, c I\Im+ 1 we sum up these inequalities for k = 0, i, . . . ,  m 
and get a contradicion I W.I < I W.I. In the case when IV, c Im we sum up these 
inequalities for k = m, m + 1 . . . .  and get the same contradiction. The inductive 
proof  has been completed. 

The inequality I W,+ll _-> 0-11w.I persists as long as W, does not contain 
a component  of M L. Therefore, n < const.log(1/e~) and this proves the claim. 

For sufficiently large m the argument in Step 2 yields a subsegment L' and an 
iteration number I such that UZ(L ') = Ko. Let L = ~(L'). It is easy to see that this 
segment has the desired properties. Bounded distortion (condition 3 of Definition 
1) follows from the fact that none of the segments W, can be too close to 0 and the 
fact that T<k) has bounded distortion (uniformly with respect to ~). �9 

Remark 1. 

1. It is clear from the construction and the properties of T<k) that Ko is an 
e-annihilating segment for all ~ e A~ c~ [2 - ~o, 2] for sufficiently small ~o. More- 
over, for fixed e and sufficiently large I the choice of the constants 6 and C can be 
uniform for all parameters from [2 - co, 2]. 
2. The density of v, is bounded away from 0 on [f~(1), 1] = [1 - ~, 1]. To see that, 
let K be an e-annihilating segment of T, and S c K be an arbitrary non-empty 
subinterval. From uniqueness of a.c.i.m, for T, it follows that 

~(S) = ~ m(Tj"  S) > m(T~l S) > 6C -1 m(S) > const.m(S) , 
. ~ _ o  = r e ( K )  = 

where const, is positive and independent of S. It follows that the density of ~, is 
bounded away from 0 on K. The f~ forward images of the annihilating segment 
cover [f,(1), 1] by the proof of the last theorem. 

3. The condition of exactness for f (or any piecewise monotonic mappings of an 
interval preserving an absolutely continuous invariant measure) is equivalent to 
the following: For every non-empty interval B 

lim v(f"(B))= 1. (34) 
tl--* oo 

It is clear that if A = [ - cr, o-] thenf"(A) covers the set [f(1), 1] (the support of v) 
in a finite number of steps ( i f f = f ,  and c~ E A~). Thus (34) is true for A. Now, the 
general statement follows from Theorem 4 and Definition 1. 
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Indeed, let B be an arbitrary segment of positive length and let o- be such 
that the segment A is I BI/2-annihilating. Then for sufficiently large l there is 
a segment B' c B such that T*(B ') = A and T t is monotonic on B'. Also, there 
exists m such that T*(B ') =fm(B'). Let r be such that f ' ( A ) =  [f(1), 1]. Thus, 
f("+r)(B') = If( l ) ,  1], which means that v(f("+r)(B)) = 1. 

4. Non-Peripheral Spectrum Of the P-F Operator 

This section is crucial for the entire paper. Its goal is to estimate the spectral radius 
of the P - F  operator P: BVo ~ BVo of a BV class mapping T. It was known (cf. 
[9, 6]) that this operator is a contraction, provided that the system possesses 
mixing property. However, the work prior to this paper does not provide an 
estimate for the contraction coefficient. It is apparent from the sequel that the need 
for such an estimate appears naturally in the problem of continuity of the metric 
entropy. A similar, simpler method was used in [10] to show continuity of the 
metric entropy for expanding mappings with respect to the unique absolutely 
continuous invariant measure. 

For  mappings of class BV the most important assumption we had to make is 
that the map has an annihilating segment (cf. Sect. 3). One can view the existence of 
an z-annihilating segment as a way to quantitatively express the fact that the 
system has topological mixing. It is described quantitatively as a choice of con- 
stants 6, l and C for an arbitrary e > 0. 

Another ingredient we need in this section is the basic inequality: 

Var(P"~) < Ax" Var(q~) + Bll ~b IIL~ �9 (35) 

The way to compute the constants A, B and s: for any BV class map has been 
described in Sect. 2. 

Theorem 5. The operator P: BV0 --* BVo is a contraction in a suitable norm equiva- 
lent to the norm of BVo. Moreover, there are constants D < 1 and l ~ 7/ such that 
[[ pl [[BVo < D. These constants admit upper bounds depending on A, B, C, 6 computed 

for some fixed e, which will be described later. 

Proof Let us fix l e 7/+ as in the annihilating segment condition for some suffi- 
ciently small a (described later) and 7 > 0, R > 0. Let us consider a new norm on 
BVo described by the following equation: 

H q511 = max(Var(~b), R I1 ~b HE'). (36) 

For  any q~ e BVo let us consider the following two cases: 

Case 1. Var(~b) __> ~ II ~b IlL ~. In this case the basic inequality yields 

Var(Pl~b) __< (A~ t + B/y)Var(0) ,  

R II Ptcp I[L' < RII ~ IlL' < (R/?) Var(~b). (37) 

So, 

[I Pl~ b II < max(Aw z + B/y, R/7)II ~ II �9 

If B/7 < 1, R/? < 1 and 1 is sufficiently large, the norm of ~b is contracted. 

(38) 
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Case 2. Var(qS) __< 7 H q~ IlL 1. Let Ko be an annihilating segment. We may assume 
that II q~ IlL' = 1 and obviously SO+din = ~q6_dm = 1/2 (q~ e BVo). 

Let 2;1 = {x e I: q~+(x) > 1/4}. We claim that rn(N1) > 1/(47). Indeed, 

1 
I49+dm 5 49+dm+ I 4 9 + d m < ? r n ( Z l ) + ~ m ( I \ S 1 ) .  (39) 

Hence, we can write 

1 4 1 ?m(.St) => ~ - -  m(I \Z1)  = 4  > - "  (40) 

This implies that re(Z1) > 1/(47). 
Our next claim is that there are at least 1/(470 disjoint segments of length 

e which contain a point of Za. The proof is obvious. 
We also observe that there are at most 87 disjoint segments such that on each 

of these segments the variation of q~ exceeds 1/8. Suppose that ~ < 1/(3272). 
This implies that 82 < 1/(470 and there is a segment K of length ~ such that 
infKqS+ > 1/8. Consequently, there is a subsegment L+ c K , L +  c B e  {z, such 
that: 

1. TI(L+) = Ko; 
2. supL+ gdinfL+ g~ _-< C; 
3. infL+ ~b+ >__ 1/8; 
4. IL+I > 6. 

In a similar way we define a segment L_.  It is not difficult to notice that II pt  IIv < 1, 
due to the fact that the segments L+ and L_ meet after I iterations and some part of 
the measure ~bm will be "annihilated." A more precise estimate yields 

1 
IIPq~ I1,~, < 1 - ~ C - 1 3 .  (41) 

Indeed, we always have I P~q~l < P~lq~[ and because of cancellations, on Ko we have: 

[Pt4)l < PZl~ol - 2 m i n  in fgz4+, inf0 t4-  < P Z l ~ b l - ~ m i n  infgz, infgt �9 (42) 
\ L +  L \ L +  L / 

Integrating these inequalities we obtain: 

1 ( / 
It et,~ I1,~, _-< II q~ IIv - ~ re(go) min infg l ,  infgt , (43) 

\ L +  L_ / 

and since 

inf gt > C_ l sup gl > c _  l m(L+_) > c _  X __3 (44) 
L• L~ m(Ko) -- m(Ko) ' 

(41) follows. The basic ineqality yields 

Var(P'gb) __< (A~c'? + B)II q~ IlL, _-< ((AKZ? + B)/R)II q~ II, (45) 

and by (41) we get: 

IlPt~b [I < max(1  C-164 ' A~:t? + B)  Ilq~l] ' R  (46) 
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The conclusion for Cases 1 and 2 is that if B/7 < 1, R/7 < 1, B /R  < 1, and 1 is 
sufficiently large then U is a contraction with respect to the norm 1[ �9 ][. All other 
claims follow easily, and the details are left to the reader. �9 

5. Continuity of the Invariant Density I 

Let us recall that P, (the Perron-Frobenius operator of T,) is a bounded operator 
either in Ll-topology or BV-topology. But it is not true that P, depends continu- 
ously on c~ in either topology. The density p, of the a.c.i.m, in an eigenvector of 
P~ corresponding to the eigenvalue 1. We are going to show that p, varies 
continuously in LP-topology for any p e [-1, oo). 

Proposition 1. As ~ ~ 2, we have P~ ~ P2 in L(BVo, LP)-topology for any p ~ [1, ~) .  
More precisely, if o~, fi ~ J ~ ~r then 

II Pp~b - P,~b IIL~ < const.(lS' .r  ~ Ifl - ~l ~/p + IS'.l-'~ (47) 

where o o, oa are positive constants. 

Proof  We can write: 

where 

P,ga = ~, P,,k((~), (48) 
k = O  

J" 0 outside of T,,k(M,.k) 
P,.kO (49) l (~g~,k) o T~,.~ on T~,k(M~,k). 

We have an obvious estimate 

11 P~,kC~ [[p ~ sup g~,k sup [~b[ < const.Ao k Var(~b). (50) 

So the norms in L(BVo, LP)-topology decay exponentially, uniformly in c~ E A~. To 
show continuity we need to prove that for each k "the difference" P~,k -- Pp,k is 
small in L(BVo, LP)-topology, when [ ~ -  fl[ is small and ~, f l ~ J  ~ d ,  for suf- 
ficiently large n. 

Let K be a maximal subsegment of M~,k contained in the domain of the map 
H~p,=TT,  loT~ and Mp,,k for all f i '~[a ,  fi]. Since Supp(lP~,kO--Pp,k(OI)= 
T~,k(M~,k) ~ Tp,k(Mp, k) for p ~ [1, 2) we can write: 

(. IP~,kO -- Pa ,kOf  = ~ IP~,kthf + ~ IPa,kr p -4- ~ IP~,kO -- P~,kr 
I $1 S2 83 

where 

+ ~ [P~,kr Pa,kO[ v,  
T~ (K) 

S 1 = T~,,k(M~,k)\(Tis,k(Mp,k ) ~ T~(K)) ,  

$2 = T~,k(M~,k)\(T~,k(M~,k) W T~(K)), 

S 3 = (T~,k(M~,k)~ T~,k(M~,k)) \T~(K) .  

and 
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Noting that IP~,kq~ -- Pa,kr v ~ 2 v- l(IV~,kr + IPa,kr p) on S3 and changing vari- 
ables of integration, we get: 

S Ie~,kr -- Pa,kr p ~ 2 p- 1 sup lr IP(IM~,e\KI + IMa,k\n~a(K)l) 
I 

+ sup [r + IMa, k\n~a(M~,k)l) 

+ S Ig~,kr162176176 
T,(K) 

< 4 sup Ir + IMa,k\H,p(K)[) 

+ SIC - (r ~ n~p)n~lPlg~l  p : I ,  (51) 
K 

The last term of this inequality can be estimated using the following 

Lemma 1. Suppose that H: [a, b] --* [c, d] is a homeomorphism and ~9: F,. ~ ]R is 
a function with bounded variation on a segment U containing both [a, b] and [c, d]. 
Then 

1r - q6~ HI p ~ dist(id, H -  1)Var~(r (52) 
[a, b] 

Proof. Just in this proof let p be a measure on U such that q~(x) - qS(y) = ~d#(t)  
for any x, y E U, x < y. 

First, in view of the fact that p > 1 we have the following obvious inequality: 

It(x) - r p < It(x) - r "Vary- 1(r 

=<Var~ -a(~b) ~ dp .  
[ x , / / ( x ) ]  

Integration of this inequality over [a, b] (with respect to the Lebesgue measure and 
change of variables yield the following: 

S I r  r <= Var~-l(r  S ~ dl~dx 
[a, b] [a, b] [x, H (x) ] 

=< Var~-l(~ b) S ~ dxd# 
U [t, H - a (t) ] 

=< Vary-1(r S dist(id, H-1)dp  
U 

= dist(id, H -  a) Var~(r 

This concludes the proof. �9 

Therefore the last term of the inequality (51) admits the estimate: 

for p e [1, 2). 

S [r - (r176 H~p)H'p f =< 2 p- 1 VarP(~b) dist(Hp~, id) 
K 

+ 2 p-1 sup [r fdisff(H'p,  l) f53) 
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Note  that  the ends of M,,k are Lipschitz with respect to ~ and let L be 

the Lipschitz constant.  Since ~ ( T Z k ) =  --6(T,.k) the ends of H,~,(K) move 

with speed not  exceeding supp,~t,.p][6(T~,,k)[. It follows that  dist(0K, OM,,k)< 
(L + supl6(Tp, k)l)J/~ - ~zl. 

It is also easy to see that dist(H,~, id) __< const .sup 16(T~,,k)[ Ifl -- ~l. Moreover ,  

~flloglHLal = ([Thl IAax(Ta, k) + Axx(Ta,k) f(Ta,k)l)~ H,a . (54) 

Combining these estimates with inequalities (3.18) in [11] we can easily complete 
the proof. Indeed, 

l[ P=,kq~ -- Pa, kq5 IlL" < const. IS~l '~176 le - flll/P Var(qS), (55) 

where o9o > 0 is some constant.  So, we can write: 

lIP= - PpIIL(BVo,L') < const.]~ -- fll 1/v ~ ISLI TM + const. ~ ISLI -~'~ , (56) 
k < n  k > n  

where o91 > 0 is determined by (50), and, using the fact that IS~l < Aot"-k)lS~l for 
Ao IS, I for k > n, bring the last expression to the form in the k < n and I S~l _-> k - ,  , 

s tatement of the proposit ion.  �9 

Theorem 6. I f  ct is a Misiurewicz point then there exists o92 > 0 such that for any 
0 e B Vo and fi ~ A o~ we have: 

IIP=4~ - Ppq5 IlL, < const, let - fll~'z Var(q~). (57) 

Proof F r o m  construct ion of A, in [11] it follows that for a Misiurewicz 
point  c~ there is J s A, which contains e and fl for any n __< const, log(I/let - fll'~ 
We can also prove that I s ' l  _-> 2", where 2 > 1 (for Misiurewicz points the 
sequence s, grows linearly). Therefore,  we can pick n in such a fashion 
that  IS'l _-< const, l c t -  fll -~ < IS'+xl. We immediately notice that  IS'l >_- 
const, l e -  fil- '~ Plugging these inequalities into the inequality from the last 
proposit ion,  one can easily show the desired inequality. �9 
We will need the following well-known fact: 

Lemma 2. The norm of P in LP-topology does not exceed liP x I1~ -a/~ 

Proof The proof  is based on Jensen's inequality and we leave it to the reader. �9 

Corollary 1. I f  sup, liP'111~ < oo then the operators P" have uniformly bounded 
norms in L p topology for p E [1, oo]. 

Let  p,  be the density of ~ (the unique a.c.i.m, for T~). We set out now to prove 
the following 

Theorem 7. The function A~o3e~-*p, ~ LP(m) is continuous at Misiurewicz points. 
Moreover, for every p ~ [1, oo) there is a constant o94 > 0 such that if c~ ~ A~o is 
a Misiurewicz point then: 

lip= - pallL, < const.[e -- fl[ (D4 (58) 

for all fl~ A~.  
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Proof  This proof incorporates the same ideas as a corresponding proof  in [10]. Let 
h = p, - pp, so that p~ = po + h. Rewriting the equation P,(pp + h) = p~ + h, we 
obtain: 

def  
(I -- P,)h = u = (P, - Pp)p~ . (59) 

One can easily see that u ~ BVo and is uniformly bounded (i.e. Var(u) is uniformly 
bounded with respect to ~ e A~o). This follows from the uniform basic inequality 
(see Sect. 2). 

Therefore, we can write the von Neumann series expressing h in terms of u: 

h= ~ Pgu. (60) 
n=O 

We can estimat the LP-norm ofh by splitting the series into a finite part  and the tail: 

IlhllL~ ~ ~ IIP~IIL~ + IIP~71IL~ 
n=O n = N + l  

~ const .Nllul lL,  + ~ const.A"llullBvo 
n = N + l  

< const.N II u IIL~ + const.2 N �9 (61) 

From the definition and the previous theorem we known that ][U[ILP ~ 

c o n s t . l e -  ill'% Using an optimal choice of N, we arrive at the desired inequal- 
ity. �9 

6. Continuity of the Invariant Density II 

Let t~, be the density of the invariant measure v, (f,-invariant). It  is not difficult to 
show that this density admits the following representation in terms of the invariant 
density p~, which has been proved to be continuous at Misiurewicz points: 

oO Sn--  1 

t ~ =  ~ ~ p .... j ,  (62) 
n=O j=O 

where 

P~ o i f J l M  )-1 
P .... J =  (fi), , j  . . . .  , on fJ(M~.,)  

0 otherwise 
(63) 

The first result we intend to prove in this section was announced in [11] and is 
analogous to a result proved in [1]. 

Proposition 2. The series (62) converges in L;-topology uniformly with respect to 
e e A o ~ f o r  all p c  [-1, 2). 
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P r o o f  We may assume that j > 1; the case j = 0 is easy. By changing coordinates 
we can easily show that  

fJ(M,,n) POt Po ~ [ .~ot IV ( fs) ,  ( f s  I Mot,,)- tdm = din .  (64) 
d,,. I(ff) ' l  p-1 

Let  I e Z be such that s~ > j > st_ ~. Let  i = s~ - j. F r o m  our  definitions it follows 
that  Sl = f i  o f f - t ,  l < n and i __< Sk,. Therefore the chain rule yields: 

' inflS[[ fAo'~' inf [ ( f f -1) ' l  > inf]S~[ > > (65) 
v. = (max [f,[)i = 4 ~ = \~ -y j  �9 

In particular, infv, I ( f f -  1)'1 > const. (we recall that  fl was a small constant,  so that 
Ao > 4P). Therefore, on Mot,. we have I(ff) '[  > const.lxl. This implies that  

IpotIP d m <  const. ~ dm M,,. [ ( f J ) ' [P-~  = , JX~ -z~ < cons t .  [In[ 2 - p  . (66) 

The  last number  converges to 0 exponentially uniformly in ~ ~ A~o, as was shown in 
[11]. Therefore, the infinite series (62) can be majorized in LV-topology by the 
exponential ly convergent  series: 

s,[I,[ 2/v-~ (67) 
n=0 

(We recall that  s, < fln2/2). �9 

Our  next objective is to show that  pot is cont inuous at Misiurewicz points. It is 
clear that  in order  to prove this it suffices to show that  each term of the series (62) is 
cont inuous in LP-topology for p ~ [1, 2). 

Fo r  this part  of the proof  it will be convenient  to fix n and j and introduce the 
following notation: Tot = f S l M ~ , , ,  ~ot = Mot,, for domain  of Tot, ~ot = Tot(~ot), and 
Hota = T~-* o Tot. Let us also denote p .... ~ by o-,. In this simplified nota t ion we can 
write: 

p~ T-1  Not 
aot = IT'I ~ 

o n  

0 otherwise 
(68) 

Our  goal is to estimate 11 aot - ae ]ILP for two close parameters  e and fi and p s [1, 2). 
This estimate is somewhat  similar to the estimate of the previous section. 

Let K be the maximal segment contained in all the segments ~ot c~ ~ ,  
n Hotp,(~ot) for every fl' E [~, fi]. We can write 

[~rot - a~ [P dm = ~ [aot - a~ [P dm + ~ [aot - aplP d m .  (69) 
I ( ~  • ~ ) \  T~ (K) T, (K) 

We have: 

]aot - cr~f dm = ~ [aot]P drn 
(~, ~ ~ ) \  T, (K) ~\(~B ~ T~)\ (K)) 

+ ~ l a ~ f d m  + ~ l ao t -  crpf 
~p \ (~  L, T. (K)) ( ~  c~ ~ ) \  T~ (K) 
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1 1 
suplp~f ~ iT~,lp_~dm + suplppf ~ dm ~\~ ~,\~ I Tp I v -  1 

f Ip=I v Ipa l  ~ . "~ I 
~=\K ~ ~r ~a \K  I 

( , 1 ) 
Nc~ suplp~l v I i x~~dm+suplp~[  v I i x ~  dm 

.@,\K ~a \K 

_< const. (suplp~lVl~=\KI 2-p + sup [pplVl~p\Kl2-p). (70) 

Meanwhile, 

[a ,  - apl p = ~ p"  - P P ~  
~ ~ I T'I ~ -  

< 3v_1 ( ~  IP_~_ ~ p~lVdm + ~[Pas2_ Pa____~~ ~ 
= iT,  f - 1  i T ' f - x  

+ s u p [ p p f ~ [ l ~ [ P d m ~  
IT~l - / 

<const .3v- l ( s  s176 v 
= ]x~_ ~ dm + ixlP_ x 

+ sup }palp ~ l1 - H~al v dm'~ (71) 

The terms of the last formula can be estimated as follows. Let us pick positive 
numbers q and r such that 1/q + 1/r = 1 and ( p -  1)r < 1. Then by H61der's 
inequality 

IP= - Paflxl 1-vdm < ~ IP= - Po[ vq'~l/q ~ Ixl ( l -v)"  , (72) 
K K K 

[P~ - Pa ~ ~-pdm < IP~ - Pa~ adm IX[ ( 1 - p ) r  , 
K 

(73) 

~11-H'plPlxl'-Vdm<(~ I1-H'~lVqdm) l/q/ \ l /r  /~ = [ ~ l x [  " - p ' r )  , (74) 

and 

\l/r ]K[a/r-tv-1) 
~K [X[(1-p)r) ~ (1  - -  r(p -- 1)) x/r' (75) 

We notice that if p is close to 2 then r has to be close to 1 and q has to be very large. 
Therefore, we need the L p estimates of the previous section with large p. 
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Lemma 3. The following inequalities are true: 

IP# - P#~ <= dist(id, H#~)]l~v 
K 

r~ll -- H___~p_]" < sup IT'I2-P(A~,x(T) + Ax~(T)Ib(T)I)Pla -- ill" 
Ir;I p-1  p,~L~,p] 

dist(id, g ~ )  __< sup[6(T)l [c~ -- fl[. (76) 

It is clear now that we need estimates for 6(T), A~(T) ,  and A~(T) .  

Lemma 4. For any p e [1, oo) there is o9 > 0 such that 

6 (T), A ~x (T), A ~ (T) < const. I S'I ~ �9 (77) 

Proof. The proof follows from the possibility to representfflM~,,  fo r j  < s, (j > 1) 
as a composition: 

f f l M , , ,  = T~s,~o . . . .  T~2, oSz,, o ( f l M , , , ) ,  (78) 

where the first s expanding maps form a t-homogeneous sequence in the terminol- 
ogy of [11]. The proof of this lemma is then completely similar to the proof of 
Lemma 3.1 and Theorem 3.4 of [11]. �9 

Combining all the estimates of this section we obtain 

Theorem 8. For every p e [1, 2) there are positive constants 0)4, 0)5 such that for any 
Misiurewicz point a and f l e  Aoo we have 

lip . . . .  j - -  p#,n, j l lL  p ~ const.[ct - BII/~[S'I  ~ , (79) 

I[/~ --/~# IlL" < const.lc~ - fl[~'~. (80) 

Remark 2. Our estimates allow us to prove continuity (but not H61der continuity) 
of t~, at the points c~ s -4~o ~ A~. Construction of A~ is very similar to that of Aoo; 
at the n th stage, instead of deleting only r  2 - '~ ,  2- ' /~]) we also delete 

arbitrarily small neighborhoods (e.g. ~ 2 -'/~) of the endpoints of I,,k. It is easy to 
see that m( /~ )  > 0, and continuity follows from the fact that I ~ - fll < e implies 
that c~,/3 e J e ~r for some n = n(e), which tends to ~ when e ~ 0. As in the case of 
Ao~, Misiurewicz points are dense and they are Lebesgue density points of Aoo. 

Remark 3. The proofs presented here apply to A~ built near the special 
Misiurewicz point a = 2. A complete proof for other Misiurewicz points requires 
additional constructions. 

7. Continuity of the Lyapunov Exponent 

Let us recall the Rokhlin formula for the Lyapunov exponent, 

Lyapunov exponent off~ = h~, = ~ log IfJ, ldv~ 
I 

(81) 
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converges uniformly. As a consequence of our  est imates of  the continuity of the 
invar iant  density the L y a p u n o v  exponent  is cont inuous  at the Misiurewicz points 

close to 2. 

Theorem 9. The Lyapunov exponent of f~, as c~ --* 2 and ~ ~ A~o, tends to log 2. 
Moreover, there is a constant co > 0 such that if F~ is the Lyapunov exponent 
computed for the parameter ~ ~ Aoo and ~ is a Misiurewicz point sufficiently close to 
2 then 

I F ~  - rp I ~ const, l e - fl ]~ �9 (82) 

Proof The formula  (81) yields an explicit expression for the L y a p u n o v  exponent  of  
f~ in terms of the invar iant  measure.  

A simple calculat ion shows that  

r~  -- Fa = Slog Ixl(P~ - pp)dm + l o g ~ .  (83) 
I P 

By the H61der inequality for p = 3/2 we obtain  the following inequality: 

log Ixl(P~ -- < S(log Ixl)3dx IIP~ - ~pllL3'2 �9 (84) 
1 

As a result, if/~ is a Misiurewicz point  near  2 then we can apply  the results of Sect. 
6 to obta in  the last s ta tement  of our  theorem. �9 

8. Appendix A: The Measure of the Central Segment 

The objective of  this appendix  is to est imate v(C), where C = ( - 7, 7). 

Lemma 5. The density of fJ (~lM~,n), which we called p .... j ,for j ~ {1, 2 . . . . .  s, - 1} 
admits the estimate 

Ix - f ~ - l ( 1 ) l - m  
IP ... .  j(x)l < const, i(fj_1),(1)11/2 (85) 

Proof As we have shown already, the m a p  f J-1 I M=,, has bounded  distortion. 
Moreover ,  the density of the measure  f .  071M~,,) is bounded  by const. Ix - l I-1/2. 
F r o m  the formula  (62) for t3, we know that  the density p .... j can be bounded  by 

const. 11 - f - ( J -  1)(x)l- 1/2 

i ( f i -  1), (1)l (86) 

Also, because of the bounded  distortion, 

[1 - - f - ( J -  1)(x)l ~ IX - f J - l ( 1 ) l  [ ( f J -  1)'(1)1-1 

This yields the desired estimate. �9 

Proposit ion 3. Let C = ( - 7, 7). Then: 

Iv(C) - 9(C)l _-< const. 7 l~176200 , (87) 

where ~ has the same meaning as in (78). 
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Proof. F r o m  the definitions and the previous l emma  it follows that  

oO Sn--  1 

v ( C ) -  ~(C)= Z E ~ p .... ~dm 
n=O j = l  C c ~ f J ( M , , n )  

~.-1 I C n f i ( M . , . ) l  '/2 
< const. /__. y. (88) 

.=o j=l  [(fJ-1) '(1)[ t/2 

I t  is easy to see f rom the definitions of [11] that  for j < Sn- -1  we have 
f J (M. , . )  ~ 1l = 0, where l = m a x m z ,  k(m). Also we have 

Iltl = const.IS/(1)l -~ > 4 -~aegs' ~ 4 - ' a"  . (89) 

Therefore,  for n < (1/2zfl) log(l/7) we have f~(M, , , )  ~ C = 0. Hence, for sufficiently 
small 7 we have the following estimate: 

s.-1 i f i(L,.)i1/e 
Iv(C) - ~(C)[ < const. ~ ~ (90) 

. __> . /2~a)log./ , )  j :  1 I ( f i -  a), (1)11/2 �9 

We have an easy est imate I f i ( L , D I  < c o n s t . l ( f i - x ) ' ( 1 ) l l L , , I  2. Combin ing  this 
with previous inequality, we obtain: 

Iv(C) - ffC)[ < const. 
n > (1 /2 ' r f l ) l og (1 /7 )  

=< const, a o  0/#)1~ 
log AO 

= const. 7 # 

flne l L ,  . I 

(91) 

This concludes the proof.  �9 

9. Appendix  B: Pos i t iv i ty  o f  the L y a p u n o v  Exponent  

There  is a very short  self-contained p roof  of  the fact that  for the parameters  e e Ao~ 
the L y a p u n o v  exponent  is positive f o r s  = 1 - ex 2. One  has to assume that  the 
measure  v is obta ined f rom ~, as described above. 

The propert ies  below which follow f rom the construct ion will be useful: 

i. Sk < const.k 2 (k > 1). 
2. Ilkl < const.2 k for some 2 e ( 0 ,  1). 
3. IT'I > a  > 1. 

We define functions c~(x)=loglT'(x) l  and n(x)=Sk ,  as X e I k \ I k + l  
(k = 0, 1,2 . . . .  ). To  compute  the L y a p u n o v  exponent  for f~ we consider: 

~)(x) + 4)(Tx) + " "  + ~b(T ' -1  x) 
(92) 

n(x) + n(Tx) + �9 �9 �9 + n(T l- 1 x) 

This number  is 

1 
log I (fff) '  (x) l ,  (93) 

where N is the denomina to r  of Eq. (92). Hence taking l ~ oo in (92) yields the 
L y a p u n o v  exponent  off~ for v-almost  every x. We can rewrite (92) as follows: 
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1 l - 1  
72, :  o 6(r'x) 

(94) 
1 ~ l - 1  
7 L,~ n(r'x) 

The last limit exists for 9-almost every x by the Ergodic Theorem, applied to (T, 9). 
The limit is positive, provided that the denomina tor  does not  blow up to ~ .  This is 
true if J~ n(x)dg(x) < ~ .  But using Properties 1-3 we can see that  

More  precisely, Lyapunov  exponent  > logA/~n(x)dg(x). We would like to empha- 
size that this inequality holds for the L y a p u n o v  exponent computed  at ~-almost 
every point. It is also true for almost  every point  with respect to v, since the support  
of v is the union off~-forward images of the support  of ~. 

F rom the previous sections it follows that  the measure v is unique (up to 
a constant) and that the support  o fv  is the segment If,(1),  1]. Each point  o f / o r  its 
image belongs to this interval, so the Lyapunov  exponent exists for almost  every 
point  in I. Because v is unique, it is ergodic. This implies that  the Lyapunov  
exponent  is a well-defined constant,  depending on ~ ~ A~ only. 
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