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Abstract. We establish a previously conjectured connection between p-adics and 
quantum groups. We find in Sklyanin's two parameter elliptic quantum algebra 
and its generalizations, the conceptual basis for the Macdonald polynomials, which 
"interpolate" between the zonal spherical functions of related real and p-adic 
symmetric spaces. The elliptic quantum algebras underlie the Z,-Baxter models. 
We show that in the n ~ co limit, the Jost function for the scattering of first level 
excitations in the 1 + 1 dimensional field theory model associated to the Z,-Baxter 
model coincides with the Harish Chandra-like c-function constructed from the 
Macdonald polynomials associated to the root system A1. The partition function 
of the Z2-Baxter model itself is also expressed in terms of this Macdonald-Harish- 
Chandra c-function, albeit in a less simple way. We relate the two parameters q and 
t of the Macdonald polynomials to the anisotropy and modular parameters of the 
Baxter model. In particular the p-adic "regimes" in the Macdonald polynomials 
correspond to a discrete sequence of XXZ models. We also discuss the possibility of 
"q-deforming" Euler products. 

1. Introduction 

A connection between p-adics and quantum deformations has been noticed [-1 5] 
in a variety of contexts over the past few years. The possibility of such a connection 
emerges from work on p-adic strings [6, 7] and q-strings [8, 9]; from work on 
scattering on real [10, 11], p-adic [4] and quantum [12] symmetric spaces; and 
from work on Macdonald polynomials associated to "admissible pairs" of root 
systems [1, 2]. 

All this evidence points in the direction of quantum group-like objects with two 
deformation parameters and the corresponding quantum symmetric spaces as 
underlying this "p-adics quantum deformation connection" [2, 3, 12]. Essentially, 
this is how such a connection is expected to work. Corresponding to a root system 
R (or more generally to an "admissible pair" of root systems), one constructs a two 
parameter family of quantum symmetric spaces, such that their zonal spherical 
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functions (zsf's) "interpolate" between the zsf's of ordinary real and p-adic symmet- 
ric spaces in the following sense [1, 2]. If we call the two parameters q and t then 

a) for q = 0, t = l/p, p = prime, these zsf's essentially reduce to the zsf's of a p-adic 
symmetric space whose restricted root system is R v, the dual of the chosen root 
system R; 

b) for t = qt ~ 1, with a certain value of l, these zsf's reduce to the zsf's of the real 
symmetric space with restricted root system R. 

There has been some progress [12-15] in exploring property b) in the context 
of one-parameter quantum groups, obtained from the full two-parameter groups 
by imposing t = qZ, though not necessarily with t near one. However, none of the 
p-adic cases of a) above can be reached this way. We therefore have to address the 
full two-parameter problem. 

Here we shall do just that and find that the two parameter quantum algebra of 
Sklyanin and its generalizations provide the conceptual understanding of the p- 
adics-quantum deformation connection. Specifically, we shall consider the Z,-Baxter 
model of statistical mechanics [16-19] on a square lattice for which the underlying 
algebra is of the (generalized) Sklyanin type [20 24]. For this model, in a regime 
such that the equivalent magnetic chain is antiferromagnetic with finite gap, we will 
study the scattering of two first level excitations and will find that, in the n ~ ov 
limit, the corresponding Jost function coincides with the Harish-Chandra-like 
c-function [25] obtained from Macdonald's polynomials for root system A1 (see 
Eq. (5.8)). The anisotropy parameter and the modular parameter of the Baxter 
model, are then related with the parameters q and t according to the relations (5.9). 
This way of establishing the connection is like "fishing" for SU(2) inside SU(ce). 
One can also establish a connection directly between the Z2-Baxter model and the 
Aa-Macdonald-Harish-Chandra c-function, but this relation is less simple (see 
Eqs. (5.10)). These connections are our main results. We suspect that both the 
complexity of Eqs. (5.10) and the need for the n--, ~ limit before the transparent 
Eq. (5.8) is captured, are connected with the involved coproduct situation in 
elliptic quantum algebras [24]. One may wonder what physics corresponds to 
(q, t) = (0, 1/p) in which cases the Macdonald polynomials yield zsf's of p-adic 
symmetric spaces (case a) above). It is readily checked that the choice of parameters 
(q, t) = (0, 1/p) corresponds to an XXZ model, with a particular value of the 
anisotropy parameter. 

Mathematically, the most remarkable feature of our result is that Sklyanin's 
elliptic quantum group and its generalizations, unify the p-adic and real versions of 
a Lie group (SL(2) in this case). Of course a unification of SL(2, R) with the 
SL(2, Qv)'s occurs also in the adelic [-26] context. But the unification which 
we have in mind here is of a completely different nature. It does not involve 
Euler products, but rather two real parameters which can be "dialed" for any 
Archimedean or non-Archimedean case. One can nevertheless ask the question 
about how this new unification relates to the adelic one. We shall therefore discuss 
the possibility of q-deforming Euler products! 

2. Macdonald Polynomials for the Root System A 1 

Starting from any "admissible pair" (R, S) of root systems [27], Macdonald [1, 2] 
has constructed a corresponding family of orthogonal polynomials enjoying some 
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truly remarkable  features. This construct ion is very general, the root  system [27~ 
R need not  even be reduced, it can be of the BC, type. For  our  purposes, it will 
suffice to describe the Macdona ld  construct ion in the simplest of all cases, where 
both  R and S are reduced and of  rank 1, so that  R = S = A1. 

The root  system A1 has one positive root  e and one negative roo t  - e. The root  
lattice is A~ = {ne: n ~ Z }  and its positive "side" is A + = {ncc nEZ,  n > 0}. The 

t'__ 

lattice A of A1 is A = ~ c ~ :  n s Z ~  and the set of dominant  weight weights 
) 

= e: n s Z ,  n > 0  . 

Obviously A~ + c A + . On  the weight lattice A a partial order is defined 

2, > 2~ ~ 2, - 2 ~ s A  + (2.1a) 

or more  explicitly 

n m 
~ e  > ~c~ ~-* 0 < n -  m e 2 Z .  (2.1b) 

The Weyl group W o f A ~  is W = Z2 = {1, o-}, with 1 the identity element and a the 
reflection which takes _+ c~ into -T- ct. The weight lattice A is an abelian group under 
addition. Its group algebra A over R is suggestively presented in terms of formal 
exponentials 

gt n 
2 = ~ A ~ e  x = e ~ A  (2.2) 

so that  ( )_1 
m n m + n  2 c~ n e 0 

e ~ e y~ = e ~ - ~  e = e - U  = 1 . (2.3) 

These e~ ~ form an R basis of A. The Weyl group action on A defines a W-action 
also on the g roup  algebra A 

w(e ~) := e w~ w 6 W, 2 E A, e ~ ~ A . (2.4) 

The Weyl-invariant  elements of A span a subalgebra 

A w = {a~A: wa = a, Vw~ W} (2.5) 

of A. Obviously the elements 

n n 

m, = e ~-~ + e -~  ~ n e Z +  (2.6) 

provide an R-basis of A w. 
Define the Weyl characters 

e(n+ 1) ~- _ e - ( n +  1)2 

Z n  

m m 

e 2 - -  e - 2  

Then the 

~. with n > 0 

also provide an R-basis of A W. 

(2.7) 

(2.8) 
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Beside these R-bases of A w, there exists a much less obvious two-parameter 
family of R bases of A re. This family of Macdonald bases comes into being due to 
the existence of a two parameter family of positive-definite scalar products on A. 
They are constructed as follows. Call the two real parameters t and q and consider 
the element A (t, q) in A defined by 

(e~; q)oo (e-~; q) co 
A(t, q) - (tea; q)~ (te_~; q) , (2.9) 

where e -+~ are the elements in A corresponding to the roots + c~. Here and 
throughout this paper we adopted the notation [28, 29] 

and 

so that 

(a; q), = (1 - a) (1 - aq) . . .  (1 - aq n-l) (2.10a) 

(a; q)~ = f i  (1 - aqk), (2.10b) 
k = O  

To each 

(a; q), - (a; q )~  (2.10c) (aqn; q)~'  

f =  Z A e~eA 
~,eA 

we associate its "conjugate" 

(A ~ R) (2.1 la) 

f =  ~ f ~ e - * ~ A .  (2.11b) 
2 ~ A  

Now we consider the 1-torus (circle) T = R/A,. ~ , where Ay is the root lattice of the 
dual root system. Obviously any x ~ R then has an image XT on the circle T. Each 
e ~  A can therefore be viewed as a character of T via 

e*(xr) = ei2n(L x) . (2.12) 

Macdonald's two parameter family of positive-definite scalar products on A is then 
given by 

1 
( f ,  c3),,q = } ! fgA( t ,  q), (2.13) 

the measure on T being the (normalized) Haar  measure. 
Finally, for each scalar product (,),,q in the family (2.13), we define a 

Macdonald basis of A w by the following two requirements: 

a) 

P, ,=mm + ~ am,(q,t)mn; 
O<_n<m 
m--n~2Z 

b) the P,~'s are orthogonal under the Macdonald scalar product ( , ) t ,  q on A, i.e. 
(Pro, P~)t,q = 0 for m + n. Then all a,,n(q, t) are rational functions of the two real 
parameters q and t. 
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These P, are clearly polynomials in ml = e ~/2 q- e -~/2, or equivalently Laurent 
polynomials in e "/2. For the A a case under discussion, they are explicitly given in 
terms of the famous Rogers-Askey-Ismail (RAI) polynomials [30, 31] C,,(x; tlq). 
Specifically 

P,(e=/2; tlq) - (q; q)" c~,(e~/Z; tlq) (2.14a) 
(t; q), 

where 

�9 ,(x; t lq)= ~, (t; q)a (t; q)b xa-b (2.14b) 
a+b=, (q; q)a(q; q)b 
a,b~Z+ 

with the q-shifted factorial (t; q), defined by Eq. (2.10a). 
Finally, the connection between the ~/i~'s and the RAI polynomials is 

~6,(ei~ t lq)= Cn(cosO; t]q) . (2.14c) 

For future reference we give here the expression [31] for the RAI polynomials in 
terms of the q-hypergeometric function 3~b2. 

�9 q ) .  
C.(cos0; tlq) t-"e-~"~ ;' q). 3~b2(q -n, 2io. = - -  t, te , t ~,Olq, q). (2.14d) 

The Macdonald scalar product (2.13) now reduces to the usual scalar product 
on RAI polynomials 

+ 1  

( Pro, P. )t, q = S Pm (el~ t ] q) P. (ei~ t] q) w (cos 0; t[ q) (sin 0)- 1 d cos 0 
- 1  

= ~ (tq"__~', q)~%!tq"+l; q)~ (2.15a) 
mn(t2q~; q)~ (q.+l; q)~ 

with the weight function w given by 

1 (e2i~ q)~ (e-2i~ q)~ 
w(cosO; tlq) = 2~ (te2i~ q)o~ (te-2i~ q)oo " (2.15b) 

With the notation (our I is Macdonald's k) 

t = qt or l =  l og t / logq ,  (2.16) 

we can also write 

t ]p . i]Z=(pn,  pn),,q__((qqn+t ~ ; q)lq)z - 

= rq(n + 21) rq(n + 1) 
Fq(n + l) Fq(n + l + l) ' 

(q.+t; q)~ (q.+l+l; q)~o 
(q.+2z; q)~(q.+l;  q)~o 

(2.17) 

where we used Eq. (2.10c) and the definition of the q-gamma function [28, 29] 

(q; q)~o 
Vq(X) = (qX; q)oo (1 -- q ) l -x .  (2.18) 
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Introducing the Harish-Chandra-like c-function of Macdonald 

c(x; l l q ) -  Fq(x) (2.19) 
Fq(x + I) 

we can finally recast Eq. (2.12) in the form 

ilP,]l z _ c(n + 1; Ilq) (2.20) 
c(n + l; llq) 

Through this formula the Macdonald polynomials P,  yield a Macdonald- 
Harish-Chandra c-function. We shall make extensive use of this fact in the 
following sections. 

In Sect. 4 we shall show that this c-function as it emerges from the Macdonald 
scalar product via Eq. (2.20), can be obtained directly from the large n behavior of 
the RAI polynomials along the usual lines of Harish-Chandra theory [25]. 

3. Macdonald's Miracles 

In spite of its relative ease, the A~ case considered here already exhibits a number of 
"miracles", which as shown by Macdonald, generalize to all admissible pairs of 
root systems. 

A) We have 

~F(1 /2)F(n  + 1) lp , (cos0 ) (3.1) 
lira P,(e'~ tlq) = [_ F(n + 1/2) 

t = q l /2  ~ 1 

where P,(cos 0) are the ordinary Legendre polynomials, the zsf's on the ordinary 
compact archimedean symmetric space SU(2)/S0(2) ,  the 2-sphere. 

B) By contrast, for q = 0 and t = 1/p with p a rational prime 

P, x; 0 = 1 + - ~ , o  p ~ - ( l + p )  px(n) (3.2a) 
P 

with 

x"(px - x -1)  + x - " ( x  - px - I ) 
px(n) = p,/2(p + 1)(x - x -1) ' 

(3.2b) 

the Mautner-Cartier polynomials [-32, 33], the zsf's on the non-compact p-adic 
symmetric space H (p~ = SL(2, Qp)/SL(2, Zp), the p-adic hyperbolic plane. 

Remark. There is a big difference between the interpretations of the two "left-over" 
variables x and n in the two cases A) and B) above. In the Archimedean limit A), the 
variable cos 0 = (x + x-1)/2 is the "radial" coordinate on the real compact sym- 
metric space SU(2) /S0(2)  and the quantized (angular) momentum variable n is 
related to the eigenvalue of the Laplacian n(n + 1)(= l(l + 1) in more familiar 
notation). Things are reversed in the p-adic case B). There the discrete variable 
n plays the role Of "radial distance" on the non-compact p-adic symmetric space 
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H (p), which is a discrete space, a Bruhat-Tits tree [-34] (or Bethe lattice). Conver- 
sely, it is now the variable x which is related to the eigenvalue of the Laplacian on 
the tree. This switch of variables between the cases A) and B) has a counterpart for 
all other root systems [1, 2]. Specifically for q = 0, t = l i p  (case B) one obtains the 
zsf's of the p-adic group G relative to a maximal compact subgroup K such that the 
restricted root system of this (G/K)p_adic is R v, the dual of the root system R which 
underlies the real symmetric space ( G / K ) ~ 1  whose zsf's one reproduces in the 
Archimedean case A) (t = qZ/2 __, 1). In the case at hand, R = R v = A~, so that the 
difference between the real and p-adic cases is reflected only in the exchanged r61es 
of the x and n variables. This is a very important point which will be further 
developed in the next section. 

C) For  t = 1, the P, ' s  take the simple q-independent form 

P , ( e ~ ;  l lq) = e"~ + e - " 2 ,  (3.3) 

in other words they reduce to the m,'s of Eq. (2.6). 

D) For q = t the P,'s are again q-independent and this time they reduce to the 
Weyl characters 

c~ 

Pn(e~; q[q) = Z, (3.4) 

with the Z, given by Eq. (2.7). 
Macdonald assumed both q and t real. If we relax this restriction, we can 

consider the case of q an s th root of unity. 

E) For q~ = 1, the Macdonald polynomials P , ( y ;  tls) are quasi-periodic in n: 

P , s + k = P , ~ P k ,  n ~ Z + ,  k ~ { 0 , 1 , 2 , . . . , s - 1 } .  (3.5) 

To see this, recall the recursion relation for Macdonald polynomials (see [31] Eq. 
(2.15)) 

with 

Pn+l  = (Y + y - 1 ) p , ,  _ C,  1 P , - 1  (3.6a) 

1 - t aq  " -1  1 - q" /IP. II 2 
C n - 1 -  1 - t q  " -~  1 - t q " - I l P n _ l l l  2" (3.6b) 

Notice that q~ = 1 then implies 

Cns+k ~" Ck 
nEZ+,  

C,~_ 1 = 0 , 
ke{0, 1,2 . . . . .  s -  1}. (3.7) 

Now from Eqs. (2.14) Po = 1, P1 = Y + y - t ,  so that from Eqs. (3.6), (3.7) it follows 
that 

Pns = P~s Po , 

P,s+ 1 = P,s P1 �9 (3.8) 

Inserting (3.8) and (3.7) into the linear Eqs. (3.6a) then yields the quasi-periodicity 
(3.5). 
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F) For t = q l / 2 ~  1, the P,'s become essentially continuous q-Legendre poly- 
nomials, which can be interpreted [15] as "quasi-spherical" functions of the 
one-parameter quantum group SU(2)q. 

G) In the limit t = q(m-2)/2 ....> 1 the RAI polynomials yield [-35] the Gegenbauer 
polynomials, zsf's on the (m - 1)-sphere S m- 1 = S O ( m ) / S O ( m  - 1). 

4. Further Zonal Spherical Function-like Properties of the 
Rogers-Askey-Ismail Polynomials 

In the remark following properties A) and B) in Sect. 3, we described the remark- 
able interchange of (radial) coordinate and momentum variables between the 
Archimedean case A) and the p-adic case B). This raises the question of what the 
coordinate and momentum variables are for generic values of the two parameters 
q and t. 

This question can be answered by noting a remarkable "self-duality" property 
of the RAI polynomials. To explain this, let us first observe that the Macdonald 
polynomials P~(x; t lq) yielded familiar spherical functions in the two limiting cases 
A) and B) above, only up to the numerical factors in square brackets in formulae 
(3.1) and (3.2a). These inconvenient factors can be eliminated by a change of 
normalization. Then, instead of the P,'s we can define 

�9176 t[q) (4.1) 
7~"(ei~ - ~ , ( t l / 2 ;  t[q) 

These 7in's, rather than the Macdonald polynomials P~ themselves, are the candi- 
dates  for spherical functions of some, as yet hypothetical, quantum symmetric 
space. It is worth noting that 

qr',(tl/z; t lq)  = t -"/2 ( tz;  q)n (4.2) 
(q; q), 

Define 
v = 0/log q .  (4.3) 

Recalling the definition of I from Eq. (2.16), and combining it with Eqs. (4.1), (4.2), 
(4.3) and (2.14d), we then obtain 

~ , ( q ~ )  = q-n(21v+t)/2 3~bz(q- ,  ' qZ, q21V+l;  q2t ,  Olq, q). (4.4) 

Since the prefactor and the q-hypergeometric [28, 29] function a~bz are both  
invariant under the exchange 

- n ~ 2iv + l ,  (4.5) 

it then follows that 

~ n ( q  i,) = 7t_ Zi~_l(q--O'TO/Z) , (4.6) 

where the right-hand side is to be understood as obtained by analytic continuation. 
In Eq. (4.6) the left-hand side is relevant for the compact case, the right-hand side 
(an analytic continuation) applies to the non-compact case. In particular, this 
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explains the r61e exchange of the x and n variables between the two extreme cases 
A) and B) above (SU(2)/S0(2) is compact, SL(2, Qv)/SL(2, Zp) is not). 

We can now use Eq. (4.6) to give a conceptual definition of the Macdonald- 
Harish-Chandra c-function c(x; l] q) of Eq. (2.19). Going to large "distance" in the 
non-compact case, means n ~ oo in T_2i,,._t(q-(n+l)/2). According to Eq. (4.6) this 
means going to large n in tItn(eiVl~ ). Using Eqs. (4.1) and (2.14c), this means going 
to large n in the RAI polynomials C,(cos 0; tlq), where 0 = v log q. But this large 
n-asymptotics of the RAI polynomials follows from the q-integral representation of 
these polynomials. Specifically, for large n [35, 28] 

(t; q)~ [ Cq(iu(O)) e_i. o 
C,(cos 0; tlq) = (1 - q)-~ (q; q)~ Lr + t) + 

to(- iu(o)) J 
Fq(-  iu(O) + l) ei"~ (4.7a) 

with 

20 
l = log t/log q and u(O) - log q ' (4.7b) 

According to Harish-Chandra we expect the coefficients of e ~ i,0 to be c(+_ iu; t lq). 
Comparing with Eq. (2.19), we see this is indeed the case. 

We are concerned in this paper with interpreting the RAI polynomials, or more 
precisely the T,'s (Eq. (4.1)) as zonal spherical functions (zsf's) of a quantum 
symmetric space. In the classical case, a complex valued function r g s G on 
a Lie group G is a zsf of G relative to its compact subgroup K if 

i) ~b is regular at the identity element e of G and suitably normalized there 
4~(e) = 1; 

ii) r is K biinvariant, i.e., r = 0(g) for all gEG and all k~, k2 ~K;  
iii) ~b obeys the functional equation 

(a(gl)~(g2) = y q~(gl ~g2)dHaar k . (4.8) 
K 

According to a classical theorem, condition iii) is tantamount to requiring that 
r be a pull-back to G of a function on the symmetric space G/K which is an 
eigenfunction of each G-invariant differential operator on G/K. As an example for 
Legendre polynomials P,(cos 0), the zsf's of S0(3)/S0(2), Eq. (4.8) becomes 

1 21r 

P,(cosa)P,(cosfl) = 2nn ! P,(cos c~ cos/? - sinc~ sinfl cosy)@.  (4.9) 

Now if the RAI polynomials are zsf's of a quantum symmetric space, then we 
expect them to obey a relation of the type (4.8). As a matter of fact they do [35]. 

5. Macdonald Polynomials, Sklyanin Algebras and Zn-Baxter Models 

Our aim is to find the two-parameter quantum group whose zonal spherical 
functions are the Macdonald polynomials for the root system A1, i.e. the RAI 
polynomials. To explain our way of dealing with this question, let us consider, by 
analogy, a more familiar problem. Suppose we are given the Mautner-Cartier 
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polynomials Eq. (3.26) and we want to find out whether they are the zsf's of 
SL(2, Qp) relative to SL(2, Zp). The simplest way to do this would be to consider 
"S-wave" scattering on the p-adic hyperbolic plane SL(2, Qp)/SL(2, Zp) and to find 
the corresponding scattering matrix element Sp(u), which is expressed in terms of 
the Jost function Jp(iU) 

Sp(u)- Jp(iu) (5.1) 
Jp( -  iu)" 

If the Mautner-Cartier polynomials are the appropriate zsf's, then the Jost func- 
tion Jp(iu) must coincide with the Harish-Chandra c-function derived from the 
large distance behavior of the Mautner-Cartier polynomials (for the chosen value 
of p). Similar considerations apply to the continuation to complex n of the 
Legendre polynomials P,(cos 0). 

In our problem we want to see whether the RAI polynomials are spherical 
functions of a Sklyanin type quantum group. To this end we choose a physical 
system for which the underlying algebra is of the Sklyanin type. Then for this 
system we set up an appropriate scattering problem (of certain excitations) such 
that the corresponding Jost function coincides with the Macdonald-Haris~ 
Chandra c-function (Eq. (2.19)) derived from the RAI polynomials (see Eqs. (4.7)). 

The appropriate physical system is the Z,-Baxter model (N, for short) of 
statistical mechanics on a square lattice [16-19]. The n 2 x n 2 R-matrix of this 
model was parametrized by Belavin [18] in terms of Jacobi theta functions. The 
algebra which allows a solution of the Yang-Baxter equations, thus leading to the 
existence of infinitely many commuting operators and therefore to the integrability 
of the model, was studied by Sklyanin [20, 21], Cherednik [22, 23], and by Odeskii 
and Feigin [24], in whose notation the algebra is Q,2,,_ 1 (g, 7), which we shall call 
Q, for short. Its data are the integer n, an elliptic curve g and a point 7 on g. In 
par t icu lar  Q2 ( = Q4, 1 ( ~ 7)) is the original Sklyanin algebra [20, 2 i I of the 8-vertex 
model [16, 17]. We do not need the detailed form of the Belavin R-matrix elements. 
The essential thing is that the statistical weights depend on three independent 
parameters: the spectral parameter z, the anisotropy parameter 7 and the modular 
parameter z. As is customary, we treat z as a variable and 7, -c as parameters. In fact 
it is convenient to treat n as a parameter on equal footing with 7 and r. Along with 
N, we also find it useful to think in terms of the corresponding (1 + 1)-dimensional 
field theoretical models ~ , .  The Hamiltonian of J/d, is obtained from the transfer 
matrix T(z) of ~ ,  through logarithmic differentiation at a special point. Jr is 
known as the generalized magnetic model [36]. Note that N2 is Baxter's famous 
eight-vertex model, and ~2  the familiar XYZ chain. We shall be interested in the 
antiferromagnetic regime with finite gap, so that the ground state is constructed by 
filling the false (ferromagnetic) vacuum with quasiparticles. The partition function 
t(z) of the N, model in the thermodynamic limit (the Perron-Frobenius dominant 
eigenvalue of T(z)) was obtained by Richey and Tracy [19]. Up to some irrelevant 
factors, it is of the form 

~(z)=~L1/2~ z -'~z z exp - i  2 ~ z - i F  z;?;n; , 

(5.2a) 
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where 
- ircz ) 

sinh ky - -  - 1 
( l ~ 1 7 sinhkT(n - 1) 

- irtr = 2 k k sinh k~n F z;7;n, 7 / = sinhk2)(_~/nz ) 

�9 sin 2~zkz (5.2b) 

and 0 1/2_] is the standard odd theta function with modular parameter z (z ~ iR+ ). 

Notice the remarkable symmetry of F z; 7; n, -- in its last two arguments 

= - - ,  n . ( 5 . 3 )  F z;7;n, F z;7; 7 

This is our first signal to pay special attention to the variable - inr/? or its inverse 
iT/zCr. In fact, it will turn out that precisely this combination iTfizr is to be identified 
with the parameter I in Macdonald's polynomials (Eq. (2.16)). In the next section 
we shall make good use of the symmetry property (5.3). 

A remarkable fact [-37] in quantum integrable models is that the partition 
function, as a function of the spectral variable z, coincides up to some simple factors 
and/or redefinitions of parameters with a two-particle dressed S-matrix, the spec- 
tral parameter acquiring the interpretation of relative rapidity of the scattering 
particles. We have to be more specific, there being n - 1 types of dressed excita- 
tions in rig,. We therefore briefly recall the picture of these excitations in the 
context of the nested Bethe ansatz (BA). The ground state, as was already men- 
tioned is found by filling the false vacuum with n - 1 types of quasiparticles, each 
type at its own "level". The momenta are distributed continuously in segments 
[- - ~r, + ~] at each level. Excitations are viewed as "holes" in these distributions. 
The type of physical excitation is determined by the level at which the hole was 
created. In terms of the system of interacting particles on the lattice associated to 
the rig, model in the usual way, the first level corresponds to charge excitations, 
while the others to "isotopic" excitations. The levels are naturally ordered accord- 
ing to the sequence of the nested BA. It turns out that t(z) of Eq. (5.2) is essentially 
the (scalar) S-matrix S(~ ") for the scattering of two first level dressed excitations. 
More precisely 

S~") = e x p l -  i(~-n l )27zz - iF(z; ,; n, ---y!rc~) l . (5.4) 

This S] ") differs slightly from the physical S-matrix for the scattering of two first 
level dressed excitations, by some Blaschke-CDD pole factors and redefinitions of 
variables. Yet S] ") shares all the essential features of the full S matrix in question, 
while being much more convenient to work with�9 We will study this S(t "). The 
S-matrix elements for the scattering of other types of excitations are more complic- 
ated. Therefore we restrict ourselves to the first level sector and its S-matrix Si n) . At 
this point it pays to introduce new variables 

iz 
l ~7, q = e 12~, u -  (5.5) 
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(notice that I is the combination signaled already in the context of the symmetry 
property (5.3); our q is the usual one, i.e. the square of the one in [19]). Then we can 
write e-iF in the form 

I (  -~rc~) l (r(iu; I; nlq) 
exp - iF z; ;~; n, = a ( -  iu; l; nlq) (5.6a) 

with 

Fq(iU + nl(k + 1)) Fq(iu + nlk + 1) 
~7(iu; l; nlq) (5.6b) 

,=oll G(iu + nlk + l) G(iu T-Yi-k + N -- 1)I + 1) 
i 

Now let n go to infinity. Using the definition (2.18) and keeping in mind that as 
x ~ 00 for q < 1, we have (q~, q ) .  --* 1, it is then readily seen that 

with 

a(iu; I, oo [q) = [iu]qc(iu; l[q) (5.7a) 

1 - qi~ 
(5.7b) [iu]q - 1 - q 

the "q-analogue" of iu and c(iu; llq) the Macdonald-Harish-Chandra  c-function 
for root system AI Eq. (2.19)! Combining Eqs. (5.7), (5.6a) and (5.4) we find 

s~"~l.= ~ - c(iu; Irq) (5.8) 
c(-- iu; llq) 

and we see the Macdonald c-function assuming the r61e of Jost function in this 
scattering process. This clearly establishes the connection between the n --* 0o limit 
of the Sklyanin-Cherednik-Odeskii-Feigin algebras Q., which underlie the 
&~ models on the one hand, and the Macdonald polynomials for the root system 
A1 on the other hand. As was mentioned above, the data for the Q, algebra are an 
elliptic curve g = C/Z + Zre,  characterized by the modular parameter ze, or 
equivalently qe = exp(i27c'ce), and a point ~ on g.  The data for the set of A1- 
Macdonald-RAI polynomials are the two parameters t and q. The connection 
between the elliptic and Macdonald parameters is then 

q = qe, t = e - 2 r ,  (5.9) 

the second equation following directly from Eqs. (2.16) and (5.5). This connection 
between Q, algebras (n ~ oo ) and Macdonald polynomials is our main result. 

At this point the question arises as to why the n -~ m limit had to be taken. On 
the face of it, all we should have had to deal with should have been the elliptic 
algebra Q2 and the models which it underlies ~2 and ddz. Going to Q,, ~ , ,  rid, and 
then letting n ~ oo is like searching for SU(2) inside SU( 0o ). For ordinary Lie 
groups this would be a detour, for elliptic quantum algebras this may be needed on 
account of the complicated coproduct situation [24]. But once in Q~, how is it we 
only found the Macdonald polynomials for root system A1 and not those for higher 
A, root systems? The point is that we only looked at the scattering of two first level 
excitations. 

After this discussion, we would like to see what would happen, were we to 
choose n = 2, as naively indicated for root system A 1, instead of letting n --, oa 
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From Eqs. (5.4)-(5.6) we can see that for n = 2 we find 

l ~ l  - -  m 

S~)1"=2 = c(iuk; llq) C(-- iuk -- I + 1; t[q) 
q~,,/2 c(iuk I + 1;t[q) c( iuk; IIq) 

k = O  
(5.10a) 

with 

iuk = iu + I(2k + 1). (5.10b) 

We see that the building block of S]")1,=2 is again the Macdonald-Harish- 
Chandra c-function of Eq. (2.19), but this time in a pattern not as conceptually 
simple as that of Eq. (5.8). Yet we shall have more to say about this case in the next 
section. 

Whether or not the n ~ Go limit is taken, it would be nice to have a derivation 
of the Macdonald-Harish-Chandra c-function of Eq. (2.19)directly from symmet- 
ric spaces constructed from Q, quantum groups, along the standard lines of 
Harish-Chandra theory (see e.g. [25]) and without any reference to the physics of 
the Z,-Baxter models. Conversely it would be of interest to find the geometric 
object for which the infinite product a(iu; l; n lq) of Eq. (5.6b) is the c-function. To 
steer all this into more familiar territory, notice that in the limit q --, 1 the q-gamma 
functions in the infinite product reduce to ordinary gamma functions and the full 
infinite product (5.6a) becomes essentially that which appears [38] in the soliton- 
soliton scattering S-matrix in the sine-Gordon model, provided one sets n = 2 and 
relates our parameter 1 to the sine-Gordon coupling constant fl via 

8n 
l = ~ -  1 . (5.11) 

Thus the problem of understanding the "geometric" interpretation of the infinite 
products has as an important special case soliton-soliton scattering in the sine- 
Gordon model. Conversely, we can regard the S-matrix given by Eqs. (5.4)-(5.6) as 
a "q-deformation" F ---, Fq of the sine-Gordon soliton scattering matrix of [38]. The 
Sklyanin algebra (n = 2)looks like the further deformation of quantum SL(2) by 
a new parameter. 

To conclude, let us mention that the expression of the Perron-Frobenius 
dominant eigenvalue of Baxter's zero-field 8-vertex model (~2) transfer matrix, has 
been recast in terms of the c-function (2.19). 

6. Interesting Special Cases 

With the just-established connection between Nn or Jr/, systems and Macdonald 
polynomials it becomes interesting to see what happens in the regime in which the 
polynomials, "go" p-adic, i.e., in case B) of Sect. 3. For the n ~ oo situation of 
Eq. (5.8) this corresponds to 

q = O ,  t = e  -2~= l / p ,  (6.1a) 

so that 

? = logxfP.  (6.1b) 
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Equations (5.8), (5.5), (2.19) and (2.18) then yield 

pe i 2 ~ -  1 
S(l")ln=m,q=o,t=l/p - ei2= z _ P , (6.2) 

which coincides with the bare S-matrix in the XXZ model with the same value of 7. 
Could this result also be obtained from a model on a Bethe lattice with p + 1 edges 
incident at each vertex? 

A direct study of JCd~ models using the powerful quantum inverse scattering 
method or the Bethe ansatz is highly desirable. 

The other interesting case is 

so that 

t = ql/Z , (6.3a) 

l =  1/2. (6.3b) 

This corresponds, according to Sect. 3F, to the familiar one-parameter  quantum 
group SU(2)q. In the limit q ~ 1 it then yields the ordinary Lie group SU(2) 
(Sect. 3A). For  the SU(2)q ease we have the direct treatment by one of us [12]. An 
immediate comparison with the results of [12] is not possible, since there n = 2, 
whereas for us 

iT~z 
n ~  or,  l - i -  - 2 .  (6.4) 

7 

It is clear from Eq. (5.4) that for large n, the S-matrix depends only on the function 
F ( z ;  7; n; i ~ / 7 ) .  But, as we saw in Eq. (5.3) this function is symmetric under the 
interchange of its last two arguments. Therefore instead of the case (6.4) we can deal 
with the equivalent case of 

- -  i~z 
n = 2 ,  - - - ~  oo , (6.5) 

which is then in line with [12], provided one replaces (5.5) by 

1 7zz 
l = - ,  q = e  - z~" ,  u = - - ,  (6.6) 

n 7n 

so that, yet again 

t = ql = e-2~ (6.7) 

As in [12], we find the XXZ model in this case. 
We can also view the p-adic and SU(2)q cases directly on the ~2  or 8-vertex 

model or on the equivalent XYZ model, /t la (5.10). For  instance, in terms of 
Baxter's parameters [16] the p-adic case corresponds to the 6-vertex model in the 
principal antiferroelectric regime with 

pl/2 + p -  1/2 
F = I ,  A =  2 (6.8) 

In terms of the XXZ chain this corresponds to the antiferromagnetic XXZ chain 
(F = 1) with asymmetry A given by (6.8) (remember J~: Jy: Jz = 1 : F:  A ). 
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7. Applications and Generalizations 

a) A large class of elliptic quantum algebras has already been brought into play in 
the context of the Z,-Baxter models and the simplest Macdonald polynomials. The 
question then naturally arises as to a full classification of elliptic quantum symmet- 
ric spaces, in correspondence with admissible pairs of root systems. 

There is one more aspect to this. The parameters q, t of Macdonald translate on 
the "Sklyanin side" into an elliptic curve and a point on it. Could one make the 
connection with elliptic curves explicit directly on the "Macdonald side?" 

b) For  generic t and q, the orthogonal RAI polynomials obey of course, a three 
term recursion relation (Eqs. (3.6)). In the p-adic regime (q = 0, t = 1/p) this 
recursion relation becomes precisely the condition that the zsf's be eigenfunctions 
of the Laplacian. On the Bruhat-Tits tree, corresponding to this case, the 
Laplacian has a simple interpretation as a difference operator obeying the mean 
value theorem. It is then natural to expect that for generic t and q, the recursion 
relation (3.6) also corresponds to the requirement that the RAI polynomials be 
eigenfunctions of the Laplacian on some "non-arboreal" discrete space, which 
reduces to a tree in the p-adic regime. It would be nice to find a simple geometric 
description of this generic discrete space which in the p-adic case becomes a tree, 
whereas for t = ql/Z __+ 1 becomes a (continuous) sphere of (real) dimension 2. In 
short then it would be interesting to have a direct geometric picture of the quantum 
symmetric space, not only of its zonal spherical functions. 

c) The interpolation between real and p-adic symmetric spaces by varying the 
parameters q and t, makes one recall another real-p-adic connection, at the adelic 
level [26], via Euler products [39]. In fact, for q = 0, t = lip the c-function is 
a ratio of local (p-adic) zeta functions, 

1 
~p(s) - 1 - p - * '  (7.1) 

whereas for t = ql/2 ~ 1, the c-function is a ratio of (real) local zeta-functions 

r = rE-'/2 r ( 2 )  . (7.2) 

Taking the Euler product yields the adelic zeta-function 

which involves the Riemann zeta function ~(s) and obeys the simple functional 
equation A(s)= A ( 1 -  s). Can this construction be q-deformed? Is there such 
a thing as a "q-Euler product?" To answer these questions, notice that the Euler 
product runs one of the Macdonald variables (namely t) over all reciprocal prime 
values, while the other stays fixed. As the other Macdonald variable one can choose 
either q or 1 = - log p/log q, as both of them stay fixed at zero. It will turn out that 
for us the sensible choice is 1. So we view an Euler product as a product over 
t = 1/2, 1/3, 1 / 5 , . . .  while 1 is fixed at zero. A deformed Euler product then should 
do the same but with I fixed at some value other than zero. 
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At this point  we have to find the deformations of the local zeta functions (p(s) 
and (~(s). If we call ((s; t, l) the ( two-parameter)  "deformed local zeta function," 
then we must impose 

and 

It is easy to see that  (q = t ~/~) 

fits the bill. We have 

~(s;  ~, O) = (p(S) (7.4) 

~(s; 1, 1/2) = ~ .  (s) .  

((s; t, l) = ~ - ~  r w( l s )  (7.5) 

~(s; t, l) = ~-qts ( tilt; t l/t)~ (1 -- t i:)  1-z~ 
(if, t 1:)~ 

f l  (1 - S )  
= z-q~'(1 - tl/1) 1-ts n=l (7.6) 

f l  ( 1 - - t  s+n/z) 
n = O  

1 
which for t = 1/p < 1, l -~ 0 + ,  q -~ 0 does indeed become 1 - pyS - ~p(s), On the 

other  hand, for l = 1/2, t ~ 1 (so that  also q - 1), 

~(s; 1, 1 /2 )=  n-S /2F(2 )=~oD(s ) .  (7.7) 

To get a meaningful q-Euler product  starting from (7.5), we have to unload the ~- r  
factor. So the q-deformed Euler factor will be z:l~((s; t, l)[z=fixed,~=i/p, and our  
"q-Euler p roduc t"  or more  appropr ia te ly  "l-Euler product"  will be (q = t l/t) 

E(s; l) = 1-I ~ ~ s; ~" l 
P 

( 1  - -  p-ill)l-is fl  ( 1  - -  p-n/l) fi  ~(S + nl-1) 
. = 1  . = o  8) 

= l-[ = , (7. 
, 

n = 0  n = J .  

an interesting combination.  
The special role in all this of the q-gamma function Fq(Is) as " interpola tor"  

between the local zeta functions at the finite and infinite places, can be better 
unders tood by tracing it back to a remarkable  proper ty  of the q-exponential  and to 
a remarkable  proper ty  of Jackson's q-integral. The  point  is that  the q-gamma 
function admits a q-integral representat ion [-29], which upon a s tandard change of 
variables turns into a ql(-- t)-integral representation. This is essentially a t-Mellin 
t ransform of eq(-  xl/l). Here the q-exponential  eq(y) is defined as [28, 29] 

y" 1 - -  qa eq(y) = [ a ] q -  - - ,  [a]q! = [ a ] q [ a -  1 ] q . . .  [1]q .  (7.9) 
a = 0  [ a ] q [  ' 1 -- q 
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Not  surprisingly for t ~ 1, l --, 1/2 (the Archimedean regime) this t-Mellin trans- 
form reduces to the ordinary real Mellin transform and eq(-- x TM) becomes the real 
Gaussian (a well known representation of the gamma function of half-argument). 
The p-adic regime, surprisingly allows a similar interpretation. A t-integral is a 
sum [291 

oo + o o  

~ f ( x ) d , x =  ~ f ( t " ) [ ( 1 - t ) t " ] .  (7.10) 
0 n = - -  ao 

In the p-adic regime q --* O, t ~ l/p, the factor in square brackets coincides with the 
volume of the "shell" I, = {~eQv, I~lp = p-"} of p-adic integration, so that the 
sum over n, itself amounts to an integration over Qv of the complex function f([ ~ Iv) 
of the p-adic variable ~ (fdepends on ~ only through its norm I~ Ip). Under the sum 
(7.t0), e q ( - x  l/z) becomes e q ( - : / ~ ) = e q ( - q " )  (since t =q~). As q ~ 0 ,  the q- 
analogues of all nonnegative integers go to one, so that eq(-  q") behaves like the 
geometric sum ~ , % o ( -  q")" = (1 + q , ) - i  and thus equals one for n > 0 and zero 
for n negative. When the case n = 0 is included, this shows that the function 
eq(-  xl:), under t-integration dtx, translates into the characteristic function )~p(~) 
of the p-adic integers 

1 for I~l~>_ 1 
Zp(~)= 0 for [ ~ l p > l  

(7,11) 

under p-adic integration. But this Z,(~) is the "p-adic Gaussian," that is the Fourier 
self similar complex-valued function of the p-adic variable 3. 

We thus come to realize that t-integration "interpolates" between real Riemann 
integration and p-adic integration, while at the same time the function eq(-- x 1/t) 
plays the role of a "quantum Gaussian" which interpolates between the 
ordinary real Gaussian and the step-functions ;gp(~), the p-adic Gaussians. 
All this clearly begs for a q- and/or/-deformation of Tate's Fourier analysis on 
local fields. 

d) Does any of this work bear on string theory? Yes, we can construct two- 
parameter deformations of string theory which for t = l/p, q = 0 reproduce the 
known p-adic strings, for t = q l /Z~  1, the ordinary Veneziano string, and for 
t = ql/2 :# 1 involve q-strings. We shall return to this elsewhere. 
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