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Abstract. The solutions to Burgers equation, in the limit of vanishing viscosity, are 
investigated when the initial velocity is a Brownian motion (or fractional Brownian 
motion) function, i.e. a Gaussian process with scaling exponent 0 < h < 1 (type 
A) or the derivative thereof, with scaling exponent - 1  < h < 0 (type B). Large- 
size numerical experiments are performed, helped by the fact that the solution is 
essentially obtained by performing a Legendre transform. The main result is obtained 
for type A and concerns the Lagrangian function z(a) which gives the location at 
time t = 1 of the fluid particle which started at the location a. It is found to be a 
complete Devil 's staircase. The cumulative probability of Lagrangian shock intervals 
Aa  (also the distribution of shock amplitudes) follows a (Aa) -h law for small Aa. 
The remaining (regular) Lagrangian locations form a Cantor set of dimension h. In 
Eulerian coordinates, the shock locations are everywhere dense. The scaling properties 
of various statistical quantities are also found. Heuristic interpretations are provided 
for some of these results. Rigorous results for the case of Brownian motion are 
established in a companion paper by Ya. Sinai. For type B initial velocities (e.g. white 
noise), there are very few small shocks and shock locations appear to be isolated. 
Finally, it is shown that there are universality classes of random but smooth (non- 
scaling) initial velocities such that the long-time large-scale behavior is, after rescaling, 
the same as for type A or B. 

1. Introduction 

Burgers' equation 

(1) 

was introduced in the twenties as a model of turbulence [1, 2]. The discovery of its 
integrability in the early fifties by Hopf [3] and Cole [4] has led to a rather complete 
understanding of the properties of individual solutions, particularly in the inviscid 
limit (u --+ 0) and also to th6 realization that.., it is not a good model of turbulence, 
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because it does not display any chaos, even when a force is added to the right-hand 
side. 

More recently it has been discovered that Burgers equation arises naturally 
in a number of different problems. Zel'dovich [5] has proposed to use the multi- 
dimensional Burgers equation to study the formation of large-scale structures in the 
Universe. Kardar, Parisi, and Zhang [6] have shown that Burgers' equation can be 
used for studying the dynamics of interfaces, particularly when a random force is 
added. Kuramoto [7] has shown that the phase diffusion equation 

0 ~  = c~o2~ + f l (G~) 2 (2) 

describes long wavelength phase modulations in a medium with travelling periodic 
waves (when parity-invariance holds). Observe that (2) is equivalent to Burgers' 
equation as long as c~ > 0, after z-differentiation and suitable rescaling. Among the 
many applications of phase diffusion, let us mention here the transmission of neural 
signals along giant axons of squid [8]. 

Thanks to the Hopf-Cole solution, there is a fairly good understanding of the 
properties of the solution to Burgers' equation in the inviscid limit when the initial 
velocity uo(z) is smooth. Typically, after some time, the solution u(z, ~) displays 
isolated discontinuities (shocks), separated by smooth regions, which for long times 
become ramps of slope 1/~. When the initial velocity is smooth and random (e.g., 
Gaussian with a spatially decreasing correlation function) there are few rigorous re- 
suits, but various asymptotic laws have been proposed, based on partially heuristic 
arguments. They concern mostly the k -2 behavior of the energy spectrum at high 
wavenumbers k and the law of decay of the mean energy ([2, 9-11] and references 
therein). 

It is our purpose here to investigate the behavior of solutions to the unforced 
Burgers' equation with random non-smooth initial velocities having no characteristic 
scale. The prototypes are the Brownian motion function and the white noise distribu- 
tion, but we shall consider two broader classes (type A and B) of which the former 
are instances. All our initial conditions can be characterized by a scaling exponent h 
between - 1  and +1 (h = 1/2 for Brownian motion and h = - 1 / 2  for white noise; 
see Sect. 3 for precise definitions). 

Such initial conditions arise naturally in at least two of the above mentioned 
problems. In extending Zel'dovich's work on the formation of "pancake structures" 
in the Universe, Gurbatov et al. [12] were led to use the (multi-dimensional) Burgers' 
equation in the inviscid limit with Gaussian initial conditions having a power-law 
spectrum with adjustable spectral exponent (see also [13-15] and the book [16]). In 
the neural signal transmission experiment of Musha et al. [8], the initial condition 
for the quantity which satisfies Burgers' equation is essentially white noise (at those 
scales where the phase diffusion equation applies). 

Burgers' equation with an initial random velocity having scaling properties is an 
interesting problem in itself. For example one expects a conflict between the initially 
imposed scaling and the scaling which is dynamically generated through the formation 
of shocks. Finally, we discovered the existence of universality classes of random but 
smooth initial velocities such that the long-time large-scale behavior of the solutions 
(suitably rescaled) to Burgers' equation is the same as that arising after a finite time 
for the non-smooth initial conditions considered in this paper (see Sect. 7). 

The present investigation is a coordinated effort with Ya. Sinai, who has been 
able to rigorously establish some o f  our conjectures. These conjectures were based 
on qualitative features of numerical solutions of Burgers' equation with an initial 
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velocity field which is the Brownian motion function. Ya. Sinai obtained further rig- 
orous quantitative results which we have numerically verified with high accuracy. 
The results by Ya. Sinai are presented in a separate paper in the same issue, hereafter 
referred to as the "companion paper" [17]. In the present paper, our approach will be 
a mixture of heuristic theory and of numerical experiments. The paper is organized as 
follows. In Sect. 2, we briefly retail the Hopf-Cole solution of Burgers' equation and 
define our notation. In Sect. 3, we introduce two types of Gaussian initial conditions 
with scaling properties. Type A has scaling exponents 0 < h < 1, and contains as 
a special case the Brownian motion for which exact results are established in the 
companion paper. Type B has scaling exponents - 1  < h < 0, and contains as a 
special case the white noise. We then establish some elementary scaling properties 
of the solution. The numerical strategy used for this study and related problems are 
presented in Sect. 4. In Sect. 5, we present qualitative aspects of the solutions together 
with heuristic interpretations. Section 6 is devoted to quantitative results such as the 
accurate determination of scaling exponents for various statistical quantities; some 
conjectures are made for initial conditions other than the Brownian motion. In the 
concluding Sect. 7, we summarize key results and make various remarks. 

2. Hopf-Cole in a Nutshell 

Burgers' equation (1) may be rewritten as 

Let us introduce a potential function % defined by u = - 0 ~ b .  Using the Hopf-Cole 
transformation [4, 3] ~b = 2u In 0, we obtain a heat equation for 0: 

at 0 = uO~x o. (4) 

In the absence of boundaries, the solution of (4), for t > 0, is 

O(x, t) - 1 
(x-a) 2 

~ e - - ~ -  Oo(a)da, (5) 

where 

Oo(a) = exp [ l %(a)] , 

and ~b0(a) is the initial potential function such that no(a) = -Oar 
In the inviscid limit (u ~ 0), the solution found by a steepest descent argument 

reads 

r162  ( x -  a)2] 
2-t , for u ~ 0. (6) 

We denote by a(x, t) the location where the maximum in (6) is achieved (when it 
is unique). The function a(x, t) will be called here the inverse Lagrangian function. 
As we shall see below, its inverse x(a, t), is the usual Lagrangian function, i.e. the 
location at time t of the fluid particle initially at a. Both functions, x(a) and a(x), 
will be central objects of interest in our study. In what follows, we shall define the 
solution of the inviscid Burgers equation by (6). The finiteness of the maximum is 
guaranteed as long as ~0(a) increases less rapidly than a 2 for a ---+ c~. 
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We now show [2] that, for fixed t, the inverse  L a g r a n g i a n  f u n c t i o n  a(x)  is a 

non-decreas ing  f u n c t i o n  o f  x .  Indeed, let a ,  and a~ denote one of  the maximizing 
locations corresponding to x and x I, respectively. We then have, by definition of  the 
maximum, 

(X --  a , )  2 ( x  - -  a )  2 

Co(a,)  _> Co(a) - -  , Va, (7) 
2t 2t 

and 
(x' - a~) 2 _> r (x' - a)~2 , ga  . (8) 

r 2t 2t 

We substitute a = a~ into (7) and a = a ,  into (8), we add the resulting inequalities 
and multiply by 2t. After simplifications, we obtain 

2(x - x')  (a ,  - a~) _> 0.  (9) 

This proves the result. 
The maximizing condition in (6) can also be expressed as 

�9 [ ~(x,  t) + ~ -  = max r + , for u ~ 0,  (10) 

a 2 

where r = r - - - .  Hence, the solution to Burgers' equation can be expressed 
2t 

in terms of  a Legendre transform of r This gives a direct geometrical method for 
the construction of the solution. The key observation is that the Legendre transform 
of a function coincides with the Legendre transform of its convex envelop. When the 
initial condition has bounded velocity gradients, r is convex in a, for sufficiently 
short times [because a 2 / 2 t  is large and convex, and r has bounded second deriva- 
tives]. For such times the Legendre transformation is smooth, and the maximum in 
(6) is obtained at the single Lagrangian location a at which the derivative with respect 
to a of  the bracketed quantity vanishes. This gives 

x = a + t u o ( a ) .  (11) 

Hence, x is the location at time t of a fluid particle starting at location a and moving 
with velocity uo(a).  Thus, it is justified to call x and a, Eulerian and Lagrangian 
coordinates, respectively. By taking the x-derivative of  (6), one easily finds that 

u(x ,  t )  = uo(a ) .  (12) 

After some time, singularities may develop, corresponding to those a ' s  where the 
convex hull of  r departs from the function itself. For some values of  x there 
may be two values a -  < a + where the maximum is achieved. For such values of  x, 
the (Eulerian) velocity is discontinuous. From (11), its left and fight limits are given 
respectively by 

u -  = (x  - a - ) / t ,  (13) 

u + = (x  - a + ) / t .  (14) 

Thus, the amplitude of  the velocity discontinuity (shock) u -  - u + is proportional to 
the length of  the Lagrangian interval a + - a -  which gets absorbed into the shock: 

u -  - u + = (a + - a - ) I t  = A a / t .  (15) 
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Points within shock intervals such as [ a - ,  a +] will be called Lagrangian shock 
points. The corresponding x ' s  will be called Eulerian shock points. 

Note that the quantity Aa = a + - a- may also be viewed as the mass of the fluid 
absorbed into the shock (assuming an initially uniform mass density). 

Finally, we define Lagrangian regular points to be points a ,  such that they 
have not participated in a shock for any time 0 _< t '  < t. This is equivalent to 
the geometrical statement that there exists a couple (x , ,  C , )  such that the parabola 
a ~ (a - x ,)2/(2~) + C ,  touches the graph of a ~ ~0(a) at the single point 
( a , ,  r  The point x ,  is said to be an Eulerian regular point. 

Concerning regular points, there are several interesting possibilities. (i) If  the func- 
tion % ( a )  is differentiable once, the tangent at a ,  is unique and this implies the 
uniqueness of  the parabola. (ii) If  the function r is twice differentiable, there may 
be an entire interval of  regular points near a , .  (iii) If, however, the function 00(a) 
is not differentiable at all, the parabolas may not be unique and generally there will 
be a whole range of x ,  's for a given a , .  Case (ii) is standard for very smooth initial 
data. Case (i) and (iii) will be relevant for the type A and type B non-smooth initial 
velocities which are considered here. 

3. Self-Similar Initial Conditions 
and Elementary Scaling Properties of the Solution 

We now specify the different types of  initial conditions chosen for our investigation. 
In all cases, the initial velocity uo(a) is a Gaussian random function with zero mean 
value. The velocity increments are homogeneous and self-similar. The former means 
that the statistical properties of  increments are invariant under translations. The latter 
means that there is a scaling exponent h such that 

Uo(d + Aa) - uo(a') law Ah(uo(at ~- a) -- uo(at)) VA > O, Ya, Va', (16) 

where law refers to equality "in law," meaning that the 1.h.s. and r.h.s, have the same 
probability distribution. 

The simplest instance is the Brownian motion function b(a), a Gaussian random 
function satisfying b(0) = 0 and (b(a)b(a')) = inf(a,  a'). It is easily checked that for 
Brownian motion h = 1/2. More generally, we will consider the class of fractional 
Brownian motions with 1 > h > 0. We call these initial data type A initial conditions. 

Our second class of  initial conditions, type B, are just the derivatives of the former. 
In other words, it is now the initial potential function r which is of  type A. Type 
B initial conditions for the velocity are not random functions but random distributions. 
They have scaiing exponents - 1  < h < 0. The simplest instance, corresponding to 
h = - 1 / 2 ,  is the white noise which is the derivative of  the Brownian motion. 

Both type A and B initial conditions can be characterized by their energy spectrum, 
which is easily seen to be a power-law: 

E(k)  o( [k1-1-2h , (17) 

where k is the wavenumber. 
The self-similarity of  the initial conditions has an important consequence for the 

solutions to Burgers'  equation, given by (6). To derive this relation, we start from 
(16) and specialize to a '  = 0. We then integrate once to obtain a relation for the initial 
potential function: 

r law /~l+h@0(a) " (18) 
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Straightforward manipulations of  (6), using (18) lead to: 

r Al-ht)  law Al+h~(x, t) VA > O. (19) 

In particular, 

r  t) 1~w l+h ___!_1 = t ~ - h r  i h ,1 ) .  (20) 

Similarly, for the velocity, we obtain: 

U(X, t) law h l = tVZ-~u(xt--~=~, 1). (21) 

Such scaling relations allow us to express the (single-time) statistical properties of the 
solution at any time t > 0 in terms of  the solution at t = 1. Hereafter, we shall set 
t = 1. Note that for smooth (non-scaling) initial conditions, the statistical properties 
of the solution at two different times cannot in general be related. This is consistent 
with the observation that, for smooth initial conditions, it takes some time for shocks 
to be formed (typically the inverse of  the largest initial negative velocity gradient). In 
contrast, for our non-smooth initial conditions, shocks are formed after an arbitrarily 
short time. 

Note that the restriction on scaling exponents (e.g. h < 1) guarantees that the 
solution given by (6) is almost surely finite. Indeed, for large a ' s  the initial potential 
~0(a) grows as ]a] l+h which is bounded by a 2 for h < 1. Thus, the subtraction of  the 
parabolic term (x - a)2/2t  guarantees almost surely a bounded maximum achieved 
at one or several Lagrangian locations a. 

4. Discrete Numerical Analysis 

Explicit numerical realization of  our non-smooth initial data requires discretization. 
That is, we have to introduce a smallest length A x  (mesh size) ,  and the solution of  
(6) should be studied at scales >> A x .  In order to verify that the numerical solutions 
reported hereafter are representative of  the continuous limit ( A x  --+ 0), we have 
performed computations with different mesh sizes. 

We have used two methods for generating initial data: a random walk method and 
a Fourier transform method. It is well known that a random walk with zero-mean and 
finite variance steps (and otherwise arbitrary distributions) converges, after rescaling, 
to the Brownian motion function at scales larger compared to the step size. Thus, we 
can generate a discrete Brownian motion function (of step size A x )  by sums of the 
form: 

M 
b ( M A x )  = E wi ,  (22) 

i~1 

where the wi 's  are randomly and independently chosen with, e.g. a Gaussian prob- 
ability distribution function, zero-mean and variance ~r 2. We impose O "2 = O(Ax) 
to ensure that b(x) converges to the Brownian motion function as Ax --4 0. The 
corresponding discrete initial velocity we use is 

u~b)(M A x )  = b (M Ax)  , (23) 
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where the superscript (b) refers to "Brownian motion." For the initial potential func- 
tion, we must integrate once. Given the lack of smoothness, no accuracy is lost by 
simply taking Riemann sums. Thus, 

M 

Co b)(M Ax) = - E u~b)(iAx) " (24) 
i=1 

For the case where the initial velocity is white noise, we work directly with the 
potential, which is then the Brownian motion. We thus take: 

C~)(M Ax) = b(M Ax) , (25) 

where the superscript (w) refers to "white noise." 
The random walk method for generating initial conditions works only because 

Brownian motion is a Markov process. This is not the case for fractional Brownian 
motion which must be generated differently. Approximations to fractional Brownian 
motion with a finite large period L can be generated as a Fourier series 

uo(a) = E uke~k~ k -- 21rn (n = 0, =51, + 2 , . . . ) ,  (26) 
' L 

k 

where the uk's  are complex Gaussian random variables with variance {lukl 2) (x 
Ik] -1-2h, chosen independently except for the Hermitian symmetry uk = u* k. The 
velocity generated in this way is self-similar with exponent h (at scales large com- 
pared to the mesh and small compared to L). The potential function can be similarly 
synthesized from its Fourier series. In practice, we generate directly the initial po- 
tential function with similarity exponent 1 + h, and use it to obtain the solution by 
solving (6). 

Solving (6) with t = 1 is done by searching for those a ' s  which maximize the right- 
hand side of (6). Given C0(a) at N discrete points, determining C(x, t) at all N points 
apparently requires O ( N  2) operations, since searching for maximums for each point x 
needs O(N) operations. Actually, using the monotonicity of the Lagrangian function 
x(a) [or its inverse a(x)] from (9), the total number of operations can be reduced to 
O(NlogN)  operations as we now show. Consider N discrete points xi, with i = 
1, . . . ,  N,  and denote the corresponding maximizing a ' s  by ai, i = 1, . . . ,  N.  First, 
we determine a aN~ 2 by searching through Xl to XN [this requires O(N) operations]. 
The next step is to determine aN/4 and a3N/4 , for which the search needs to be 
performed only in the subinterval [xl, aN~2] and  [aN~2, XN]. Thus, a total of O(N) 
operations can determine two values of a. The third O(N) operations gives then four 
maximizing a's,  and so on. This greatly reduces the computational work for problems 
having large N ' s  as is the case in the present study. 

The numerical strategy discussed above gives a discrete version of the original 
continuous problem that we study. Thus, it is important in the numerical solution to 
be able to identify those features which are not an artefact of the discretization. In the 
discrete problem, there is generically only one point a which maximizes the r.h.s, of 
(6). Thus the inverse Lagrangian function a(x) obtained from the discrete problem is 
single-valued instead of being multi-valued at shocks, as happens in the continuous 
limit. The discrete analog of a shock is a change in a occurring over one mesh size 
Ax, that is, a(xi+l) > a(xi). Actually, we must require the stronger condition that 

a(xi+l) -- a(xi)  ) )  Z~x, (27) 
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so as to have a finite change in a when the mesh A x  is very small. Observe that, 
because the Burgers dynamics corresponds to an infinitely compressible fluid, La- 
grangian intervals are infinitely compressed during the formation of  shocks. It fol lows 
from (15) that, when (27) holds, the velocity displays a finite negative discontinuity. 
We shall call such points shock points. The amplitude of  the jump, Aa  = ai+l - ai, 
correspond physically to a Lagrangian interval [ai, ai + Aa] which, at t ime t, is 
absorbed (compressed) into the shock. 

Now,  consider the opposite situation, where 

a(Xi+m) = a(xi) , m >> 1. (28) 

This corresponds to an initial point a being stretched out infinitely to an (Eulerian) 
interval [xi, xl + m a x ] .  This is how we  identify regular points. 

5. Quali tat ive Features  of  the Solutions and Interpretat ion 

To gain a first insight into the property of the solutions, let us consider graphs of 
the velocity u(x, 1) and the inverse Lagrangian function a(x, 1). We recall that it is 
enough to study the property for a particular time, here t = 1 (see Sect. 3). Figures 1 
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Fig. 1. a Inverse Lagrangian function a(x) correspond- 
ing to the solution to the inviscid Burgers equation 
at t = 1 with the Brownian motion function as ini- 
tial velocity (type A). Note the hierarchy of plateaus 
and jumps, b, c Show successive zooming, displaying 
smaller and smaller structures, d Shows the (inverse of 
the) standard Devil's staircase constructed on the stan- 
dard Cantor set, and e shows one of its randomized ver- 
sions 
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Fig. 2. a Eulerian velocity u(x), solution to the inviscid 
Burgers equation at t = 1 with the Brownian motion 
function as initial velocity (type A). b, c Show succes- 
sive small-scale zooming, as in Fig. 1. Note the hierar- 
chy of ramp-like structures with slope 1 and the prolif- 
eration of small shocks 

and 2 illustrate such solutions, computed numerically from (6) with N = 100,000 
and Ax  = 0.002. Brownian motion is assumed for the initial velocity. Successive 
zooming has been set to display smaller and smaller structures. Let us first describe 
the inverse Lagrangian function a(x). It displays a number of jumps which correspond 
to Lagrangian shock intervals. There are also a number of intervals where the function 
is seemingly flat (constant). However, when inspected more closely (after zooming), 
these intervals reveal smaller jumps inside. This scenario continues, until zooming 
reaches scales comparable to the mesh size. 

The graph for a(x) looks impressively like a Devil 's  staircase (in inverted coordi- 
nates). For comparison, in Fig. l(d), we plot the graph of (the inverse of) the standard 
Devil 's  staircase function constructed on the Cantor set (by the 2/3 rule). In Fig. l(e), 
we plot also the graph of (the inverse of) a randomized version of the standard Devil 's  
staircase. (Randomizing means that we shift randomly the position of jumps.) Ob- 
serve that Fig. l(a) and Fig. l(e) have similar features. This observation has led us to 
conjecture that the Lagrangian function a(x) for the solution to the Burgers equation 
with Brownian motion initial velocity is a Devil's staircase. 

Now we turn to the velocity u(x) (evaluated as always at t = 1). u(x) is related to 
a(x) by (12)-(15). As shown in Fig. 2, it displays a hierarchy of saw-tooth structures. 
There is an appearance of ramps with slope 1, associated with (nearly) flat regions of 
a(x). (The slope would be 1/t at a time t ~ 1.) However, when zooming into these 
ramps, it is found that they actually contain many tiny shocks. This suggests that (in 
the continuous limit) for Brownian motion initial velocity, the total number of shocks 
per unit length is infinite and the Eulerian shock points are dense. 

Let us now consider a particular type /3 initial velocity, the white noise (h = 
- 1/2). In Figs. 3 and 4, we show the graphs of the inverse Lagrangian function a(x) 
and of the Eulerian velocity u(x), displayed in the same way as in Figs. 1 and 2. 
Here, we again see a hierarchy of shocks, but this time there are very few small 
shocks. Inspection of the largest magnifications (Figs. 3c and 4c) suggests that (in 
the continuous l imi t ) for  white noise initial velocity, both Euclidean shock points and 
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Lagrangian regular points are isolated. In particular, the total number of  shocks per 
unit length is now finite. 

The two most  conspicuous  features for type A initial data are (i) the presence of  
ramp-like structures with slope l i t  (which holds also for type B);  (ii) the denseness  
of  shocks.  The corresponding rigorous statements and their proofs are found in the 
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Fig. 3. a Inverse Lagrangian function a(x) correspond- 
ing to the solution to the inviscid Burgers equation 
at t = 1 with white noise initial velocity (type B). 
b, c Show successive zooming, displaying smaller and 
smaller structures. Note the sparseness of small scale 
structures, compared to Fig. la-c 
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Fig. 4. a Solution u(x), solution to the inviscid Burgers 
equation at t = 1 with white noise initial velocity (type 
/3). b, c Show successive small-scale zooming. Note the 
hierarchy of ramp-like structures with slope 1 and the 
isolated character of shock points C 
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companion paper for the special case of  Brownian motion initial velocity [17]. Here, 
we present some simple heuristic explanations. 

We begin with the 1 / t  ramps. They are associated with Lagrangian regular points. 
At such points the solution of the inviscid Burgers equation may be written implicitly 
a s  

u ( x ,  t) = u0(a),  (29) 

where 
x = a + t u o ( a ) .  (30) 

Let us now pretend that the same relation holds also for points x ~ close to x. Let a ~ 
denote the initial position associated with x' .  From (30) we then have 

x - x '  = a - a' + t [uo(a)  - u0(a/)]. (31) 

Let us first consider type A (fractional Brownian motion) initial conditions. We then 
have for small l a - a ' l ,  

[uo(a) - uo(a') I ~ la - a'l h , 0 < h < 1. (32) 

It follows that, for small la - a '  1, the first term on the r.h.s, of  (31) is negligible 
compared to the second. The derivation is completed by using (29), which implies 

u ( x ,  t)  - u ( x  I, t )  1 
--~ - .  (33) 

X -- X I t 

For type B initial data, the derivation is the same, except for the fact that h is now 
negative, so that on the r.h.s, of (31) the second term dominates even more. 

The same heuristic argument can be used to show that the inverse Lagrangian 
function a(x )  for type A initial velocity (0 < h < 1) has typically a vanishing 
derivative. Indeed, using (31) and (32), we have, for small l a  - a ' l ,  

la - a'[ ~ Ix - x ' l  ~ / h  . (34) 

The latter is o ( [ x - x ' l )  since 1 / h  > 1, thereby implying the vanishing of the derivative 
O a / O x .  Actually, it is proven in the companion paper that for h = 1/2 the derivative 
vanishes almost everywhere. 

6. Quantitative Features of the Solutions 

In order to obtain a more precise picture of  how dense shocks are, and in particular to 
quantitatively verify the conjecture that the inverse Lagrangian function a ( z )  forms a 
Devil 's  staircase, we have performed a much larger simulation with N = 1,600,00 and 
with 300 realizations. This permits accurate statistical measurements. In the following, 
we present the results for both the type A initial data (the first three subsections) and 
type B initial data (the last subsection). 

6.1. Probabi l i t y  Dis t r ibu t ion  o f  S h o c k  A m p l i t u d e s  

Let us begin with the distribution of Lagrangian shock intervals A a ,  that is jumps 
in the inverse Lagrangian function a(x) .  By (15), this is also the distribution of the 
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Fig. 5. Cumulative probability of shock amplitudes obtained (from the corresponding Lagrangian 
shock intervals Aa) by octave-binning (2 -k _< Aa < 2-k+t). Brownian motion is taken for the 
initial velocity (h = i/2). The straight line is a least square fit which has exponent - i / 2  

shock amplitudes. We first consider the case of  the Brownian motion as the initial 
velocity. To facilitate comparisons with analytical results presented in the companion 
paper, we have calculated the cumulative probability P(Aa) to find Aa in an octave 
interval [ak,ak+l[, where ak = 2 -k  (k = 0, 1 , 2 , . . . ) .  In Fig. 5, l o g P  is plotted 
against log Aa.  We observe that for small Lagrangian shock intervals (Aa ~ 0), the 
probability follows a power law: 

P( Aa) (x ( Aa) + . (35) 

The exponent s determined by a least square fit is s = - 0 . 5  • 0.005 which agrees 
within one percent with the value obtained in the companion paper. Several other 
runs have been performed with decreasing mesh-size Ax, ensuring that the result is 
representative of the continuous limit Ax ~ O. 

A similar analysis for the case type A fractional Brownian initial velocity with 
scaling exponent h r 1/2 shows that cumulative probability of Lagrangian shock 
intervals also follows the power-law (35). The exponent is now given by s = - h  
(with high accuracy again). Thus, in all type A cases, the total number of shocks per 
unit length diverges due to the proliferation of small shocks. 

6.2. Multifractat Analysis for Lagrangian Regular Points 

As shown in the companion paper, the (z~a) -1/2 law for the cumulative probability 
of Lagrangian shock intervals is connected with another (rigorous) result: the set 
of Lagrangian regular points has Hausdorff dimension 1/2. Heuristically, this is the 
dimension one would expect if intervals are removed with a cumulative probability 
o((Aa) -1/2. More detailed information about the set of regular points can be obtained 
by performing a multifractal analysis of a positive measure concentrated on this set. 

Ox 
Such is obviously the case of  the measure ~ada whose density is the derivative (in 

the sense of distributions) of the Lagrangian function x(a). Indeed, we know that the 
non-decreasing function x(a) is constant over shock intervals, so that its derivative is 
non-negative and concentrated on the regular points. 
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Fig. 6. Moments M~(l) = ((x(a + l) - x(a)) q} for Brownian initial velocity (h = 1/2). The straight 

lines are least square fits over the range of scales where there is power-law behavior: ML(I) :x l~-Lq 

The multifractal analysis involves the following steps ([18, 19]). First, one com- 
putes the moments 

f Ox , \  
MLq(1) = ~a~da ) = ( (x (a  + l) - x(a))q)  . (36) 

The superscript "L" stands for "Lagrangian." In the simulations, the averages are 
computed by a combination of  space and ensemble averaging (over typically 100 
realizations of 106 space points). In Fig. 6, we show the / -dependence  of the moments 
M ~ ( t )  for several q 's  for the case of  Brownian initial velocity. It is seen that over 
two decades in l, all moments behave as power laws: 

MLq(1) (x l~-Cq . (37) 

The exponents 7-q L plotted in Fig. 7a, can be well fitted empirically by the law Tq L _~ 
0.5 + 0.5q. This suggests that there is a single fractal dimension present, namely 

4 

b- 

' '  ' 1 ' ' ' 1 ' ' ' 1 ' ' ' 1 ' ' '  

, r l P ~ l ~ l , , , t , , , I , i I  
2 4 6 8 10 

q 

1 

0.5 

b0 
0 2 4 6 8 10 

q 

Fig. 7a, b. Dependence of the scaling exponents ~-~ (a) and ~-~L (b) on the order q (see Fig. 6) for 
Brownian initial velocity (h = 1/2). Note that in case a the linear dependence on q indicates the 
existence of a single fractal dimension (D = h). For case b the presence of a different slope for 
small and large q's reflects a bifractality 
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D = 1/2. (Recall that the distribution of  scaling exponents is the Legendre transform 
of ~-q; cf. [19].) We have thus obtained additional evidence, for the Brownian initial 
condition, that the set of regular points forms a fraetal set of  Hausdorff dimension 
1/2. 

For type A fractional Brownian motion with scaling exponent h r 1/2, analogous 
simulations (not shown) give the empirical law 7 L ~_ 1 - h + hq. This suggests the 
following 

Conjecture.  For initial conditions which are fractional Brownian motion with scaling 
exponent 0 < h < 1, the set o f  (Lagrangian) regular points has Hausdorff  dimension 
h. 

6.3. Multifractal Analysis for  (Eulerian) Shock Points 

Eulerian information such as the characterization of the set of shock points [where 
there is a jump in a(x)] can be obtained by applying the same multifractal analysis 
as in the preceding section, but now to the inverse Lagrangian function a(x) rather 

0a  
than to z(a).  Indeed, the measure ~ x d Z  is concentrated on shocks. We are thus led 

to calculate the following set of  moments 

f Oa t \  
M~L(z) = --~-~,dx ) = ((a(:~ + l) - a(x))q).  (38) 

Here, the superscript "IL" stands for "inverse Lagrangian." Again we find that the 
moments M~L(I) scale with 1 over a suitable range: 

M~L(I) oc F-~ L . (39) 

However, now the range of scales where the power law behavior is observed is 
different for q > 1 and for q < 1. Specially, for the case of Brownian initial velocity, 
we obtain the following behavior (see Fig. 7b) 

c~q 0 < q < q *  < 1 (40) 
[ 1 q* < q ,  

with c~ ~ 1.33. A similar numerical experiment, performed with fractional Brownian 
initial velocity (h = 0.7), gives c~ ~ 1.30. In both cases, q* ~ 0.5. We do not attach 
too much significance to this value, because the crossover from one to the other 
scaling r6gime was not studied in a great detail. 

The result above suggests that we have a bifractal structure as discussed in [20]: 
singularities of  exponent zero on a set of  dimension zero and singularities of exponent 

[see (40)] on a set of  dimension one. The former could be the contributions of strong 
isolated shocks. The latter can be obtained by a heuristic argument based on (31). If 
we assume that a and a f are close, we have 

uo(a) - uo(a') = O(]a - aP]h) . (41) 

Neglecting the first term compared to the second in the r.h.s, of (31), and inverting 
(if legitimate), we obtain 

a - a' = O(Ix - x t [ 1 / h ) .  (42) 
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The substantial discrepancy between 1/h and the measured value c~ may be due to a 
slow convergence of small-q moments towards their true asymptotic value. 

A bifractality similar to the one observed here exists in the standard Devils stair- 
caise for the Cantor set. I f  one takes away a fraction (r at every step ((7 being �89 in 
the middle third Cantor set) it is easy to see by explicit computation that 

Tq L = 1 + (q - -  1)D0 

T•L __-- 0 

q >  Do 

(Cantor staircase), 

(Cantor staircase), 
(43) 

where Do is the Hausdorff dimension (here - l o g  2 / l o g  ~7) of  the set. For simple 
generalizations, such as asymmetric bisection ratios, the function Tq L depends on the 
details of the construction procedure [19]. The analog of the measure Ox/Oa, con- 
centrated on Lagrangian regular points, is then multifractal. It can be shown that the 
low-q branch (q < Do) of $IL is related to the high-q branch (q > 0) of  Tq L through 

Tq m = 1 -- q ' ,  q = 1 -- T~L,. (44) 

Finally, we mention that we have also measured standard Eulerian statistical prop- 
erties of  the velocity field, such as the structure functions 

((u(x + l) - u(x)) p) (45) 

for p > 1. These calculations were done only for the case of Brownian initial velocity 
(h = 1/2). We found that, for large l ' s  the structure functions scale just as the initial 
conditions, namely e( I p/2, whereas, for small l 's  they scale just as the structure 
functions of Burgers'  equation with smooth initial conditions [20], namely (x 11 for 
all p _> 1. The former is probably due to the fact that the large-scale properties of 
the solution for t = 1 are deducible [by (21)] from the properties for short times of 
the solution for scales order one. The latter is explained by observing that there is 
a dominant contribution to structure functions of  order p _> 1 coming from strong 
shocks, which are well separated. Further studies of structure functions for h r 1/2 
will be reported elsewhere. 

6.4. Initial Conditions of Type B 

We have repeated all of  the above described analysis for initial conditions of  type B 
for which - 1  < h < 0. It is now the initial potential function, rather than the velocity, 
which is a fractional Brownian motion. For the case of  the white noise (h = - 1 / 2 ) ,  
Fig. 8 indicates that the cumulative probability of Lagrangian shock intervals is still 
approximately given, as for type A, by a power law: 

P( Aa)  (x ( Aa) s . (46) 

A least square fit indicates s _~ 0.5. A comparison between Fig. 8 and Fig. 5 (type 
A; h = 1/2) shows that the scaling is not as clean as before. Still, the fact that the 
exponent s is now clearly positive shows that there is only a finite number (per unit 
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Fig. 8. Cumulative probability of shock amplitudes obtained (from corresponding Lagrangian shock 
intervals Aa) by octave-binning (2 -k <_ Aa < 2-k+1). White noise is taken for the initial velocity 
(h = -1/2). The straight line is a least square fit which has exponent 1/2 
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Fig. 9a, b. Scaling exponents 7 L (a) and ~.qm (b) obtained as in Fig. 7 but with initial velocity of 
type B. h = -1/2:  circles; h = -1/4:  triangles 
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length) of  small Lagrangian shock intervals. Thus, no Cantor-like set can be obtained 
by removing such intervals, i.e. for the Lagrangian regular points. 

We now turn to the multifractal analysis for the solution of  type B initial conditions. 
We again find that there is scaling for both the moments M~(1) and MIqL(1). The scaling 

exponents ~_qL and ~_qm, shown in Fig. 9a and 9b (for h = - 1 / 2  and h = - 1 / 4 ) ,  are 
not straight lines: they both display curvature. This Could be taken to suggest that 

Ox Oa 
the measure -~ada and the measure --~xdX have both non-trivial multifractal behavior 

for type B initial conditions. It is likely, however, that such weak multifractality is 
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a numerical artefact. Actually, for the white noise initial condition (h = - 1 / 2 ) ,  the 
large-q behavior of both "r L and rq ~L suggests a straight line with slope zero. (The 
vertical scales are very much stretched, especially for Fig. 9b.) This is consistent with 
our previous conjecture that both Eulerian shock points and Lagrangian regular points 
are isolated. 

7. Conclusion 

We begin by summarizing our main quantitative results. They concern (i) the cumu- 
lative probability P(Aa) of Lagrangian shock intervals Aa, (ii) the moments MLq(l) 
of increments of the Lagrangian function x(a) over a distance l, (iii) the moments 
MIL(I) of increments of the inverse Lagrangian function a(x). (These increments are 
equal to the integrals of the mass density when the latter is initially assumed uniform.) 
We have found that P(Aa) behaves for small Aa as (Aa) -h. This result holds for 
type A (0 < h < 1) with very good accuracy, and also for type B ( - 1  < h < 0), 
but not so accurately. For type A, the multifractal analysis indicates the following: 
the measure Ox/Oa, concentrated on Lagrangian regular points, is monofractal with a 
dimension equal to the scaling exponent h; the measure Oa/Ox (the mass density) is 
consistent with a bifractal description involving dimensions 0 and 1 with respective 
scaling exponents 0 and 1lb. (Precisely the same result holds for Cantor-like con- 
structions, as explained in Sect. 6.3.) For type B, our multifractal numerical results 
may not be fully reliable. The indications are that both the Eulerian shock points and 
the Lagrangian regular points are isolated. 

We now turn to a different matter. As we shall briefly show, the results established 
in this paper, for rather special non-smooth initial conditions of Brownian type, have 
actually implications for a large class of smooth random initial conditions, provided 
very large times and very large scales are considered. Let us explain this for the 
white noise (a particular type B) initial condition. Consider the universality class of 
initial conditions having all of the following properties, which are expressed in terms 
of the initial velocity: uo(z) is random homogeneous and smooth (infinitely many 
derivatives), has zero mean value and finite variance, is mixing (correlations decrease 
with separation) and has a correlation function F(x - x t) = (Uo(Z)Uo(Z~)) such that 
+oo 

f F(z)dx = D > 0.1 These assumptions imply by a central limit argument that 
--(3<3 

e2 

~o = - - ~  uo(y')dy' (47) 

0 

tends for e --~ 0 to the Brownian motion function (scaled by a factor Dr~2). Con- 
sider now the solution to Burgers equations given by (6). Simple rescaling gives the 
following relation: 

J ' 7  = m a x  r j 

It thus follows that, for e ~ 0, the rescaled solution tends to the solution corre- 
sponding to an initial velocity which is the (negative) derivative of the Brownian 

1 Other more technical assumptions may be needed for a rigorous proof 
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motion function, namely white noise. Thus, the long-time large-scale behavior can 
be obtained from the solution of Burgers' equation with non-smooth initial velocity 
of type B (with h = -1 /2 ) .  Burgers himself was probably aware of this, since in 
his book he uses diffusion techniques to study the long-time behavior of the solu- 
tion to his equation for random initial conditions having D 5k 0 (see Sect. 9 of [2]). 
We observe that similar universality classes are associated to any type A or type B 
solutions. It is easily seen that the universality class to which a given smooth initial 
random velocity field belongs depends only on the behavior of the energy spectrum 
No(k) of the initial velocity at small wavenumbers. If Eo(k) ~ Ik1-1-2h as k --+ 0, 
the long-time large-scale behavior will be as for type A or type B solutions having 
scaling exponent h. 

Let us finally mention that the present study can be extended to the multi- 
dimensional Burgers equation,.which reads, in terms of the potential function ~b(r, t): 

l Ot~, = ~lV~012 + uV2~.  (49) 

The Hopf:Cole transformation and the Legendre transformation method (for u --+ 0) 
are readily extended, but the theoretical analysis and the numerical experiments be- 
come considerably more involved. Early results from high resolution two-dimensional 
simulations indicate that scaling properties similar to those of the one-dimensional 
case are found [21]. 
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