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Abstract. Relations between 3D topological field theories and rational con- 
formal field theories are discussed. In the former framework, we can define the 
generalized Verlinde operators. Using these operators, we find modular 
transformations for conformal blocks of one point functions and two point 
functions on the torus. The result is generalized to higher genus. The 
correctness of our formulae is illustrated by some examples. We also emphasize 
the importance of the fusion algebra. 

1. Introduction 

The classification of eonformal field theories (CFT's) is an important issue in recent 
research [,-1-24]. There is evidence suggesting that several areas, including CFT's, 
integrable lattice models, three dimensional topological field theories and the link 
polynomials, are related by an underlying link, namely, the quantum groups. 
Witten [26] conjectured that quantum groups should arise naturally in the 
topological Chern-Simons theories (TCST). Alvarez-Gaum6 et al. [22] found that 
the polynomial equations [15] can be neatly encoded in the structure of a quantum 
group [-32, 33]. However, some important questions remain unanswered. For 
example, why should quantum group symmetries emerge from the RCFT's only as 
a secondary phenomenon rather than the first principle in the theory? The 
profound meaning of the quantum group symmetry can only be understood when 
such issues are settled. 

Further studies on the structure of CFT's may help us catch the key point. In 
our previous paper we showed that one can express modular transformations in 
higher genus in terms of braiding matrices. The tool is the TCST. In this paper, we 
do this explicitly for modular transformations S(j)'s for one-point functions on the 
torus. We find that the S(])'s are not independent data, and that the polynomial 
equations involving S(j) put further restrictions on braiding matrices. This result 
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can also be obtained in the framework of RCFT. With S(j), it is possible to relate 
our formulas in [31] to those obtained by Moore and Seiberg [15]. The 
correctness of our formula for S(j) is illustrated by some examples. By studying 
polynomial equations involving S(/), we can get new constraints on conformal field 
theories. We show explicitly that for the fusion algebra qS. ~b = 1 + n~b, n > 2, there 
are no corresponding modular invariant theories. 

Our paper consists of two parts. The first is concerned with the finite 
topological field theories in 2 + 1 dimensions. Giving an appropriate definition for 
FTFT, we derive many familiar concepts in RCFT. The second part is devoted to 
the study of modular transformations. Here we note that if we work with the help 
of FTFT, everything becomes simpler. 

Our work on Sq) may provide some incentive for further studies of the 
polynomial equations, namely, the proof of the reconstruction theorem. Indeed 
there are two conjectures related to this problem. The first one states that any 
RCFT can be obtained from some topological Chern-Simons theory [ 2 9 ] .  
Another is that all three dimensional topological field theories (TFT's) are TCST's 
[27]. These two conjectures are not independent, provided one believes that there 
is a one-to-one relationship between the set of RCFT's and that of three 
dimensional TFT's. In the next section, we give an appropriate definition of finite 
TFT's and show how this definition leads to all familiar concepts in RCFT's. In 
Sect. 3, the generalized Verlinde operators are defined. By the use of the Verlinde 
operators, we derive the modular transformations for one point functions and two 
point functions on the torus. The formula for S(j) can also be obtained in the 
framework of RCFT. The fact that the same formula can be derived in both FTFT 
and RCFT again suggests that there is a one to one relationship between FTFT 
and RCFT. We stress that the polynomial equations concerning S(j) put further 
restrictions on braiding matrices. Modular transformations in higher genus are 
discussed in Sect.4. We derive a generalized fusion algebra, which is not 
commutative. This algebra should be related to some quantum group. However, 
we postpone our study on this for the future. We also discuss the automorphism 
among the braiding matrices. This guarantees the modular invariance of the 
off-diagonal theories. Some examples are given in Sect. 5 to demonstrate that our 
formula actually works. It can also be shown that the fusion algebra plays an 
important role in the classification of the RCFT's. We give our conclusion for this 
paper in Sect. 6. 

2. Topological Field Theories and RCFT's 

In this section, we discuss the relations between the TFT's and the RCFT's. This 
section is independent of the following sections. 

Witten's study on the 2 + 1 dimensional Chern-Simons theories [26] shows 
that one can relate these theories to the corresponding WZW models. The 
argument is the following. When one quantizes the Chern-Simons action 
canonically on the space X, a Riemann surface, one finds a compact phase space. 
The sympleetic form, together with the complex structure endowed from a con- 
formal structure on X, gives a Kfihler polarization. Thus, the wave functions in the 
Hilbert space depend on the moduli parameters explicitly [28]. All the Hilbert 
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spaces for different Kfihler polarization constitute a projectively flat vector bundle 
over the moduti space of ~. The flatness is due to the fact that the expectation 
values of the observables are topologically invariant, as we shall see later. We 
conclude that this bundle is in fact the bundle of the conformal blocks in the WZW 
model on the Riemann surface X. Recently, this has been shown explicitly in [28]. 

There are several axiom systems for a RCFT. The original one can be found in 
the classic work of Belavin, Polyakov, and Zamolodchikov [1]. Another is by 
Segal [24], which we will not follow here. The pure geometric one is by Friedan 
and Shenker [10], in which one deals with the flat bundles over compactified 
moduli spaces. Most recently, Moore and Seiberg [15] formulated the fourth, 
which is based on the polynomial equations. This axiom system may be referred to 
as a pure algebraic one. To establish a one-to-one correspondence between the set 
of the RCFT's  and that of the FTFT's ,  one starts from a certain axiom system or a 
mixing of them. Hereafter we shall outline the idea which will be proven useful in 
studying the relations between the two categories of the RCFT's  and FTFT's.  The 
main point can be proven working in the TCST's [28], although for a general 
FTFT,  one needs more precise definitions for what we mean here. We start from 
the geometric definition of a FTFT,  and show that it leads to the algebraic axiom 
system by Moore  and Seiberg. This means that a F T F T  provides a bridge between 
the two axiom systems. 

Inspired by the Chern-Simons theory, we define a finite topological quantum 
field theory by three axioms. 1. Upon canonical quantization on manifold ~ x R, 
the phase space is compact and of finite dimension. This ensures that the Hilbert 
space is finite dimensional. Since there is no natural polarization, we assume that 
there is always a K/ihler polarization associated to a conformal structure on Z. The 
polarization depends holomorphically on the conformal structure. 2. The topo- 
logically invariant observables are in one-to-one correspondence with the states in 
the Hilbert spaces. 3. The expectation values of the observables are topologically 
invariant. These three axioms are strong enough to define the theory completely. 

Let us start from the genus one case. Here we have a finite dimensional Hilbert 
space in which one can choose a basis corresponding to the characters of the 
primary fields in the CFT. The wave functions are functions of holomorphic 
parameters of the Teichmtiller space of the torus. This is demonstrated explicitly in 
[28] for the TCST. For  the holomorphic vector bundle over the Teichmiiller space 
we define a parallel transportation. Consider a three manifold bounded by two 
copies in ~1, the torus. For  simplicity let Ma = Za x I, where I is the interval [0, 1]. 
Suppose that the two boundaries are endowed with different conformal structures 
z and z' (Fig. 1). In the canonical quantization, we have two Hilbert spaces ~ and 
~ ,  associated to the corresponding boundaries. Now the parameter t in I 
characterizes a series of conformal structures interpolated between z and z'. This 

I I I 
Fig. 1. The manifold ~1 X I. We assign to each boundary a 
conformal structure. The intermediate slices constitute a 
series of eonformal structures interpolating between the two 
conformal structures on the boundaries 
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describes a path in the Teichmtiller space connecting z and ~'. The symplectic form 
resulting from the action depends on t, as we assumed in Axiom 1. Thus the path 
integral depends on the series of conformal structures which we choose. Given a 
state ~p(v) in ~ ,  by the path integral, we obtain a state ~p(~') in ~ , .  If we denote 
collectively the fields in the theory by ~b, then 

~P(~') = I exp(iS) [dqS]~p(~). (2.1) 

This was discussed for the TCST in [28] and will be exploited further in [30]. By 
invoking the geometric quantization and its relation to the path integral, we can 
use Eq.(2.1) to define a connection of the holomorphic flat bundle on the 
Teichmfiller space. Elitzur et al. [28] showed that this connection corresponds 
precisely to the connection defined by the stress tensor for the Chern-Simons 
theory. Let us compactify the Teichmfiller space. When -c-~0, the torus tends to be 
a cycle and the wave function can be replaced by a loop vertex [26, 27]. This is just 
the Wilson line operator in the TCST (the fact that in FTFT's we can define these 
line-like vertices suggests that any FTFT is a TCST). Thus, we extend the vector 
bundle to the compactified Teichmfiller space. In taking the limit, we have to do 
some regularizations. If, instead of letting ~--*0, we take z ~ l ,  we will obtain 
another vertex by the regularization. These two limits differ by a Dehn twist. So 
by the regularization, the two vertices differ by a phase factor. We will show this 
for the TCST in [30]. 

In the above we showed that there is an operator associated to each state. 
According to our second axiom, we assume that they are topologically invariant 
operators. The flatness of the vector bundle is a consequence of this assumption. 
Suppose we have two paths from the boundary of the Teichmfiller space to a 
conformal structure z. Each path gives a vector parallelly transported from 
the boundary. We can take the inner product of the two vectors. The result is 
given by a path integral over a compact three manifold with the insertion of two 
loops. (The two loops may link each other.) Continuous deformation of one path 
does not change the topology of the three manifold. Thus, the inner product 
remains unchanged. This shows that the connection is flat. 

Consider now the modular group acting on the bundle. Let g be an element of 
the modular group. Under its action z~gz.  By (2.1), a vector at z is transported to a 
vector at gz. Because -c and gz represent the same conformal structure, the new 
vector can be treated as a vector in orgy. We can define a vector bundle over the 
moduli space as the vector bundle over the Teichmiiller space modulo the action of 
the modular group. Usually, the representation of the modular group on the 
Hilbert space is projective, the bundle over the moduli space is a projectively flat 

1 
bundle. Let S be the modular transformation under which z-+ - -. If we choose W~ 

z 
as a basis of the operators, then S~j is given by the path integral with two linked 
operators inserted in S 3, as shown in Fig.2 [-26]. Here we assume Wi are 
normalized such that two parallel lines embedded in S z x S t along the direction S t 
give a delta function (Fig. 3). Considering Fig. 3, we quantize the system by taking 
the time along S t. The space is the sphere with two punctures. The Hilbert space is 
either one dimensional or zero dimensional. In the former case, the charge on the 
punctures are conjugate [26]. 



Braiding Matrices and Modular Transformations 199 

Fig. 2. A link with two components in S 3, the path integral at 
the presence of such a link is given by the entry Si,~ of the 
modular transformation for the characters on the torus 

D Fig. 3. Two parallel Wilson lines inserted in 
mani fo ld  S 2 X S 1, along the direction of S 1 

@ 
Fig. 4. Three parallel Wilson lines reside in S 2 N S 1. The 
path integral gives the fusion rule 

Fig. 5. Three tori removed from S 2 x S 1. Closing 
this manifold amounts to inserting three Wilson 
lines along the direction of S 1 

Fig. 6. The basis for the Hilbert space on the three punctured sphere. 
These are the basic building blocks in the construction of the baryon 
graphs 

) 
Fig. 7. Four Wilson lines inserted in S 2 x S 1 
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We are ready to define the fusion and chiral vertices. Consider three line 
operators embedded in S 2 x S 1 without linking (Fig. 4). The path integral is given 
by the dimension of the Hilbert space of the sphere with three punctures. We denote 
it by Nkj. We thicken each line to a "tubular neighbourhood," namely a solid torus. 
Removing the solid tori, we have a manifold with these boundaries with each 
component being a torus. This manifold can be constructed by removing two solid 
tori from the third one, as shown in Fig. 5. Attaching states Ii>, ~>, and Ik> to these 
boundaries, respectively, the path integral gives Nijk. If we attach states li> and [/> 
to the inner boundaries only, the state generated on the outer boundary is 

Nijklk>. (Attaching the state [k> on the outer boundary amounts to taking the 
\ 

inner product [k> with the state ~ N~jklk>.) In other words, this defines a map 
/ c  / 

The vectors in the Hilbert space on the sphere with three punctures correspond 
to the chiral vertices. We show how the notations introduced in [27] about the 
baryon diagrams emerge here naturally. Suppose we have three lines in a three 
manifold which is not closed. We cut a ball in this manifold which meets these three 
lines. Thus by the path integral we obtain a vector in Hijk, the Hilbert space on the 
sphere with three punctures. Let {]a>} be a basis for Hi ik; we chose the manifold by 
attaching a state la>. We denote abstractly the effect of this operation by a vertex as 
shown in Fig. 6. We will show later that we can actually denote this by a vertex, 
namely three lines meet at a point. 

Consider four lines embedded in S 2 • S 1 without linking (Fig. 7). We denote the 
state generated by two lines W~ and Wj inside the solid torus by lij>, which is 
actually ZNkilk). The expectation value for Fig. 7 is (l 'k* I ij> = ~N~Nijm,  where 
we use l* to denote the line oriented in the opposite direction of I. Thus we find the 
dimension of the Hilbert space for the sphere with four punctures. By the vertices 
constructed before, we can represent the states in H~j~k by diagrams in Fig. 8 or 
Fig. 9. In fact, by counting the number, we find the right dimension. 

We prove now So,i > 0. Let la) be a state in the Hilbert space H~ji. We normalize 

this state by requiring ( a [ b ) =  So, o ~ n l 6 a b ,  where ni= So, i/So, o. This is the 

1 k 
i k 

Fig. 8 Fig. 9 

Fig. 8. A basis for the Hilbert space of the four punctured sphere. The vertices are given by the 
insertions of states on the three punctured sphere 

Fig. 9. Another possible basis for the Hilbert space on the sphere with four punctures 
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convention used by Witten [27]. Let l = 0 and the corresponding state be denoted 
by l i). We have (alb)/(O] O) = So, i. If our theory is unitary, namely, every Hilbert 
space has a positive inner product, then So,i > 0. In the same way we can normalize 
states in HijkZ. If we denote Ira, ab) the state in Him given by Fig. 8, then 

( m, a, b In, c, d> = ~)mn6acfbd~in~nlnk So, o . 

We define the braiding matrices and the fusion matrices [12-15] in accordance 
with our normalizations. 

S O  

'lcd(  
k ab , (2.2) 

c n d 

B... k .b S o , o ~  i k. 

a b Ill 

Next we define the fusion matrices as 

S O  

= ~Fm" k ,,b 

(2.3) 

(2.4) 

c 

= a b, (2.5) Finn k ab So, o ~  

d 

The dotted line indicates that the diagram is not projected to the plane. 
We see immediately that B matrices and F matrices are not independent, we 

deduce directly from comparing the diagrams 

[~ llCd [~ k] dc 
= B m  n era[hl  + hi - hr., - h . ] c m o i  (2.6) Finn k .b l J,b ~'kt'~,,k, 

where ~ is a sign depending on the coupling type of the chiral vertex. By the 
symmetry of the tetrahedron, we can obtain more relations. 

The polynomial equations about B matrices and F matrices can be obtained by 
considering the sphere with 5 punctures. These equations are the consistent 
conditions among the different bases. Consider the pentagon equations as an 
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Fig. 10. The pentagon diagram. In the graph preceding an arrow, we remove a ball containing the 
basis graph corresponding to the four punctured sphere. In the graph after the same arrow, we glue 
back a ball containing another basis graph 

) 
Fig. 11. The baryon graphs, which generate a complete basis for the con- 
formal blocks on genus two Riemann surface 

Fig. 12. Another possible basis for the conformal blocks on the 
genus two Riemann surface 

example. In Fig. 10, along each arrow we change the bases for the four punctured 
sphere accordingly. More  precisely, we remove a ball which contains the graph 
corresponding to the old basis, and glueing back the ball which contains the new 

graph. 
We show that  the vertices defined above can be represented by three lines in a 

ball meeting at a point. To achieve this, we consider Riemann surfaces of higher 
genus. Without  loss of generality, take the genus two case as an example. In (2.1), 
we replace the states on the torus by the ones on the genus two Riemann surface. 
Taking a limit of the moduli  parameters,  one can always shrink the surface to the 
baryon diagrams in Fig. 11 or Fig. 12. The state in the right-hand side of (2.1) 
corresponds to an operator  associated to the diagram. The state in the left-hand 
side of (2.1) is obtained by the path integral over the handlebody with the insertion 
of the operator  (Fig. 13). We argue that each line corresponds to a certain W~ 
known before. If  we have now a new line, we can patch two segments of this line to 
obtain a new loop. Inserting this new loop in the solid torus, we obtain a new state 
on the torus. But this contradicts our assumption: any state can be generated by 
the known loops. Thus, the lines in Figs. 11 and 12 can be identified as the ones 
already presented in genus one case. Now in Fig. 12, we have the vertices which are 
described by three lines joining at a point. By removing a ball, as shown in Fig. 14, 
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Fig. 13. A basis of graphs, after inserted into the 
handlebody, generates the basis of the Hilbert space 
on the Riemann surface 

Fig. 14. A ball containing the vertex is removed. The 
vertices in this way generate all states on the three 
punctured sphere 

we obtain a state on the sphere defined by the vertex, which must be a linear 
combination of the known states. Conversely, we can glue back a ball which 
contains a known vertex and obtain a state on the double torus. The completeness 
of the baryon diagrams then indicate that all the vertices are given by the states on 
the sphere with three punctures. This proves our statement made before. 

In this way we have obtained all the notations appearing in the TCST for a 
F T F T  defined by our three axioms. This formalism needs to be rigorously 
formulated. We believe that this is possible. Starting from the geometric 
formulation, we deduce the polynomial  equations as the consistent conditions. 
Therefore the F T F T  plays the role as a bridge between different approaches to 
RCFT's. The fact that the Wilson lines can be defined for every F T F T  supports the 
conjecture that every F T F T  is a TCST. If one can prove the statement that any 
RCFT gives a F T F T  (this is very plausible, as can be felt by our discussion), then 
the conjecture made by Moore  and Seiberg is proved. The most important  
problem is to find all consistent conditions for a FTFT,  then compare these to 
those for a RCFT. And last, we stress that some argument made for F T F T  can be 
applied to the infinite TFT, for example, to the 2 + 1 gravity. 

3. Modular Transformations for One Point 
and Two Point Conformal Blocks on the Torus 

In our previous paper [31], we derived the expressions of the modular 
transformations in higher genus in terms of braiding matrices and the modular 
transformation S of the characters on the toms, where we used the method in 
TCST theory and the basis shown in Fig. 15. Moore  and Seiberg [15] already 
found the similar expressions in terms of braiding matrices and the modular 
transformation S(j)'s for one point conformal blocks on the torus, where the basis 
in Fig. 16 was used. Our results indicate that S(j) can be expressed by braiding 
matrices. We derive S(j) and modular transformations for two point conformal 
blocks on the torus in this section. 

Fig. 15. A basis of the graphs, which can be viewed as a 
basis of conformal blocks on the Riemann surface 
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/ / 

Fig. 16. Another basis for the conformal blocks 

O O 

Fig. 17. The third basis for the conformal 
blocks on the Riemann surface. The modular  
transformations in this basis can be 
constructed from the ones for the one-point 
conformal blocks on the torus and simple 
duality moves 

When our argument given in the last section is applied to the Riemann surface 
of higher genus, one can construct the generalized characters by the path integrals 
over the handlebody with insertion of the vertices of the diagrams in Fig. 15 or 
Fig. 16. 
These diagrams can be explicitly constructed in the Chern-Simons theory [27]. 
One can also use the basis of diagrams in Fig. 17. This set can be constructed by 
attaching the diagrams for one point conformal blocks on the torus to a tree 
diagram. Thus, duality and modular invariance of one point functions guarantee 
the modular invariance in higher genus. The basis in Fig. 16 are constructed by 
sewing one-point functions and two-point functions. So we derive first the 
modular transformations for the corresponding conformal blocks. 

We start by defining the generalized Verlinde operators [11, 31]. Given any 
closed loop C on the Riemann surface, we associate it with a W~. Continuously send 
it inside the handlebody without breaking any line that already exists. The 
resulting state is denoted as T~(C) Bz), where Iz) is the state generated by the 
original diagram. The framing of the loop is fixed by taking the outward vectors 
along the basic cycles a s and b~ tangent to the Riemann surface. If a loop is a 
composition in these basic cycles, the framing is given by smoothly connecting the 
framing of the basic cycles. 

The same operators can be defined for Riemann surfaces with punctures. Let us 
consider the torus with one puncture. On this surface there are two basic cycles a 
and b. The cycle surrounding the puncture is homotopic to aba-lb-1. We first 
consider the Verlinde operators associated to a. Consider the following basis of the 
states: 

J 

li, a>j= @ i 
(3.1) 
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This Hilbert space is denoted by Moore and Seiberg as 
operator Tq(a) on the state results in 

+ Tq(a) I i, a )  = q 

i 

Sq, i 

So,i  

G Vi~. Acting the 
i 

- -  Ii, a)2. ( 3 . 2 )  

We have used the fact that the expectation values of two linked Wilson loops 
Wq and W/ in the manifold S 3 is Sq,i [-26]. Thus, we find the operators Tq(a) 
diagonalized in this basis. The Dehn twist along the cycle a -  ~ is also diagonalized. 
The eigenvalues are exp(-2ni~i),  where ~i = hi-c/24 and c is the central charge. 
We have the following remarkable identity: 

e2'~i~r'q+~~ T(a~ (3.3) S(a -q=  Z o,~ q,--,. 
q 

To prove this formula we need relation ( S T )  3 = S z ,  namely STS = T-  1ST - 1. Write 
it explicitly 

2 Si je2nihiSJ k : Si k e -  2ni (h l  + h k )  (3.4) 
J 

What is important here is that (3.3) can be generalized to the case of b cycles. 
Let S(j) be the modular transformation under which z-->- 1/z and logz~logz/r. 
Under this transformation, the state Ii, a)j is transformed to S(j)li, a>j. Accord- 
ingly, Tq(b)=STq(a)S -1 and S(b-1)=SS(a-~)S -1. So (3.3) is also valid when a is 
replaced by b. To calculate S(b-1) we first calculate Tq(b). The action of it on the 
state [i, a)j is given by 

Tq(b) I i, a)j = (3.5) 

i 

The diagram in the above equation can 
transformations as in Fig. 18. At last we get 

be deformed by using duality 

I~ l] bc 
Tq(b) Ii, a>j = y. Fit II, b>j, 

t, b, c qAac 
(3.6) 
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Fig. 18. The Verlinde operator acts 
on the basis of one-point conformal 
blocks on the torus. The 
corresponding graph can be 
transformed by simple duality 
moves into a linear combination of 
the simpler ones 

where for simplicity, we have restricted ourselves to the self-conjugate theories. In 
Fig. 18, we have used the following formulae 

1 

2 nm 1 1 
~ (3.71 

m,c 

q 
and 

/ •  m fd  
i = ~ F~, (3.8) a q 

f ,n q Jac j q yd 
n 

njnq ln o :di m 
q J~c 

We remark that the above equation encodes what is called X operations by the 
authors of [22], which were used to generate the quantum group. 

By using the relations among B and F matrices, we can also write Tq(b) in terms 
of B matrices. The Dehn twist along b-  1 is 

S(b- t)ia'lb= ~ e2~i(h~ +h~ ~ l ,c" (3.9) 
q,c 

Knowing S(b-1) ,  it is easy to calculate S(j). Since 

T - 1 S ( b - 1 ) T  -1  = T - 1 S S ( a - 1 ) S - 1 T  -1  = T - 1 S T - 1 S - 1 T  - t  = S ,  

so the entries of S(j) are 

S(j)ia, l b=  ~ e2gi (hq-h i -h ' )So  qBil  . (3.10) 

Now let us consider the constraint on S(j). First, it should satisfy (S(j)T) 3 = S(j) z. 
Next we find that under S(j) 2, the coordinates around the puncture are 
transformed by ahlf monodromy,  so the result under the S(j) 2 is to multiply the 
states by the charge conjugation matrix and a phase e x p ( -  nihj). But here because 
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of the coupling type of the vertices in Vj~, there is a sign ~}~. These together give the 
operator O(-)}~, as defined in [15]. 

What  is remarkable is that SO') can be expressed in terms of B matrices. Then all 
the polynomial equations concerning S(j) in turn put more restrictions on the B 
matrices. 

We note that the Tq(a)'s satisfy the fusion algebra 

Tq(a)Tq.(a) = ~ Nqq, Tm(a), (3.11) 
m 

hence Tq(b) also satisfy the fusion algebra. This can be proved directly by using the 
B matrices and the duality. What is important here is that Tq(b), when expressed in 
terms of the B matrices, can be simultaneously diagonalized by SO'). This fact, 
together with the polynomial equations about S(]), put a strong restriction on the B 
matrices involved. We shall show this explicitly by giving examples in Sect. 5. 
Moreover, using these conditions, we can prove that some fusion algebras do not 
correspond to RCFT. 

Many properties enjoyed by Tq(a) are also enjoyed by Tq(b). For  example, we 
have Tq*(a) = Tq,(a), where q* is the charge conjugate ofq. Thus, Tq*(b) = Tq,(b), which 
is a restriction on some of the B matrices. In the case of zero point functions, this 
statement is equivalent to Nij  k = Ni,j,k,. 

It is easy to see that knowing S(j), the modular transformations for Riemann 
surfaces of higher genus acting on the basis in Fig. 17 can be constructed. To 
construct modular transformations acting on the basis in Fig. 16, we need to know 
the modular transformations for two point conformal blocks on the torus. 

On the torus with two punctures, there are more nontrivial cycles. The Dehn 
twist along the cycle that encompasses a puncture is diagonalized. If we use the 
basis in Fig. 19, the Dehn twists along the up a cycle and the down a cycle are also 
diagonalized. We call the up a as a and the down a as a'. Both Verlinde operators 
associated to these cycles are transformed to the one associated to the b cycle by 
some modular transformations. The relations among all the Dehn twists will be 
studied in a coming paper [40]. Here we merely consider the Dehn twist along the 
cycle b-2, which is related to the modular transformations in higher genus when 

a 

/F . \  

~ ~ / ~ ~ ~ ~  Fig. 19. A basis for the two point conform al blocks on the 
torus. Note that here we have two a cycles, which are 
inequivalent at the presence of the graph inside the solid 
torus 

Fig. 20. The two external legs are fused. We 
obtain in this way another basis for the two 
point conformal blocks on the torus 
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< 

- ~ ~ 

Fig. 21. The graph, which representing the action of the Verlinde operator, can be transformed into 
a linear combination of the graphs in the basis for the two point functions on the torus 

we use the basis in Fig. 16. If we use a fusion indicated in Fig. 20, then T~(b) can be 
expressed in terms of Tq(b) for the one-point conformal blocks. 

Using the basis in Fig. 19, by some operations shown in Fig. 21, we find 
1 

Tq(b)ll'j'a'b)i'k= i ~ b k 

J 

= F~r ]l',j',e,f}i,k , (3.12) 
l',j',c,d,e,f q3~c q_Jbd 

where Eqs. (3.7) and (3.8) have been used. Similar to Eq. (3.9), S(b- 1) can be written 
out 

S(b-1)ll, j,a,b)i,k = ~ e2ni(hq+h~ 
q,r,j',c,d,e,y (3.13) 

F3r ]l',j', e, f)i ,k" F t j' q_l,c q dbd 

However, we remark that Eq. (3.12) can also be obtained from Eq. (3.6) by some 
simple moves i k 

J 

J 

1' 

m ~  ~'" ~ ~1 ~ I~ ~1 ~ I~ ~1 ~ - ~  
J' (3.14) 
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By the symmetry property of the F matrices, we can rearrange the indices in the 
F matrices in the above equation. To prove it is equivalent to (3.12), we then need 
the following pentagon identities: 

We would like to stress that Tq(b) can be diagonalized both to Tq(a) and Tq(a'). This 
means that the eigenvalues of Tq(a) and Tq(a') are the same but arranged in different 
orders. 

Now we show that one can derive (3.6) using the naive Verlinde operation in 
RCFT. By the definition, we insert the identity operator into the trace which gives 
the conformal blocks of the one-point function. Split the identity operator to the 
product of the primary field q and its conjugate q*. Move one of them around the 
cycle under consideration, then fuse them again to the identity operator. The 
resulting function is just what is obtained by acting on the Verlinde operator. We 
first consider T~(a). 

 (a):nq 

1 

k 

k 

k 
i i 

qkl e2~zi(hq +hk-hz) J ~ k  

(3.16) 

where we normalized Tq(a) by adding a factor nq. In the above we need the formula 

S o , k  

This can easily be proved when we substitute 

(3.18) 

S o , q  " 
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We see that this operation is exactly the same as defined by the help of FTFT. The 
action of the operator Tq(b) is demonstrated as follows: 

J y j i i 

k 

i ]  j i 

We see that in the above equation l' must equal 1. If we have the following 
identity: 

we have the formula (3.6) from (3.19). It is easy to prove (3.20), using the 
explicit expressions of the simple F matrices. 

4. Modular Transformations in Higher Genus 

We have derived the modular transformations for one point functions and 
two-point functions in the last section. Based on the bases in Figs. 16 and 17, we see 
that by knowing these we can find modular transformations associated to b cycles. 
Dehn twist along a cycle connecting two genera can also be found by duality moves. 
In this section we derive modular transformations acting on the basis in Fig. 16. 

In the last section, we defined the Verlinde operators associated to a nontrivial 
cycle on the Riemann surface. It is obvious that the operators Tq(ai) are diagonal, 
and satisfy the fusion algebra: 

Tq(ai)Tq,(ai) = E N'~q'Tm(ai)" (4.1) 
m 

This is because the diagonal entries of Tq(ai) are of the form 2 g")= Sq, n/So.n. For a 
fixed n, 2g ") form a one-dimensional representation of the fusion algebra. 

Consider the modular transformation S under which ai---~b~ and bi-~b[- lai- Ibi. 
If under this modular transformation, the state [Z) is transformed into SIz), then 

[31 ] Tq(b~) = S Tq(ai)S -1 (4.2) 
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By this formula, we know that the Tq(bi)'s also form the fusion algebra. In fact, given 
a nontrivial cycle C, T~(C) form the fusion algebra, provided there exists a modular 
transformation under which an a-cycle is mapped to C. Since these operators can 
be written out in terms of the braiding matrices, we have many equations about  the 
braiding matrices coming from the fusion algebra. These provide no more 
restrictions other than the polynomial equations. By concrete calculation, we can 
prove that these operators form the fusion algebra by the use of the fundamental 
duality moves. 

Since the Dehn twist S(a[ 1) along a71 is diagonal, and given by exp(-2rci~q) 
when it is acting on the basis of Fig. 16, we have the following formula similar to 
(3.3): 

S(a~- s) = y exp [2rci(hq- c/12)]S0,q Tq(ai), (4.3) 
q 

where ~q denotes hq-c/24.  
We also have a formula for S(bi- s) similar to (4.3). Using (4.2) and (4.3), we find 

S(by s) = F, exp [2rci(hq- c/l 2)So, q Tq(bi). (4.4) 
q 

If we know all the Tq(b~)'s, all the Dehn twists along bi and bF s can be calculated by 
using (4.4). A similar formula holds for the Dehn twist along aiai-+Xs . 

We know that all the modular transformations are generated by the Dehn 
twists along a~, b~, and a~a:~-+ls. Knowing the operators Tq associated to these cycles 
is enough to help us calculate all modular transformations. 

We work for the basis Fig. 16. By observation we find that the calculation of 
Tq(b~) is similar to the calculation of Tq(b) for the one-point functions on the torus, 
when i=  1, g. Otherwise the calculation is similar to the calculation for the 
two-point functions on the torus. 

We give an explicit expression for the Tq(bi) when 1 < q < g  in the basis of 
Fig. 16: 

! r 

(ql  .... ~ .... cns...,as...ITq(bi)lqt...,~2...,COs...,as...> 

(qi  .... q2"", c~ .... as... I qs---, q2.--, (I)1 . . . .  as...> 

(4.5) 

where the superscript prime in the product means that the indices appearing in the 
braiding matrices should be omitted in the product. The calculation is demon- 
strated in (3.14). We can also write down an expression similar to Eq. (3.6). It is easy 
to check that Eq. (4.5) is equivalent to the formula in our previous paper [31] by 
the symmetries of the fusion and braiding matrices. 

Next we calculate the entries of Tq(aiaT+]), 

q l  - . ~ '  ' . - . ,  ' ' .,q2--.,e)l as...ITq(aiaF+])Iqt...,g12...,o31 .... at.. .> 
( q l  . . . .  q2  . . . .  (D1 . . . .  ai . . . Iq l  .... q2 .... o91 .... aa...> 

= I~ 3q. q,.~. ~,.6co. ~o,.6a. a,A(qi, q i+t ,  gli,~ ,, co :,,,~a'2~-la~ : ,  j J ,  J J ,  j j ,  J t / i + 1 , " / ,  i~t~i}a2i_la2i~ 
J 

(4.6) 
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where the matrix A is defined by the following equation 

= E 
n,c,d 

1 m k 

A(i,j, I, k, m, n)~aab 

The A matrix can be written out in terms of the fusion matrices and the 
eigenvalues of the Wilson line operators, 

A(i,j,l,k,m,n)~= 2 F,,,,, ](m')l~-i . (4.7) 
m',a',b' k ab /~q l m ' n  k a',b" 

As for the basis shown in Fig. 17, Tq(bi) is given by a similar expression for one- 
point functions on the torus. Tq(a~aT+~) is quite complicated, we will not do 
the calculation here. 

We would like to stress here that practically all modular transformations for 
multi-point functions can be derived. Our key point is that operators Tq(bi) can be 
simultaneously diagonalized and obey the fusion algebra. In fact, these operators 
can be generalized to those associated to any graph as in Figs. 15 17. Geometri- 
cally, we can construct an operator associated to a graph as follows. Consider a 
manifold Z x I with boundary (X, Z). Embedding the graph into this manifold as 
we do for the handlebody, we find that the path integral over this manifold behaves 
like an operator: Gluing this manifold to the handlebody along the boundary ~ to 
form another handlebody amounts to continuously sending the graph into the 
original handlebody. We denote this operator as T(F); F is the corresponding 
graph. A typical operator is shown in Fig. 23. From the definition we see that these 
operators are linear operators. The state obtained by embedding the graph F into 
the handlebody without the presence of the other graphs is generated by the 
operator T(F), namely IF) = T(F)10). The vacuum 10) is given by the path integral 
over the handlebody without any graph. This demonstrates that there is a one-one 
correspondence between the set of planar operators and the Hilbert space of the 
states. By planar operators we mean the operators associated to the planar graphs 
as in Figs. 15-17. Of course we have non-planar operators, e.g. Tq(ai). 

We show that for a given basis of graphs, the operators form an algebra. 
Consider the product T(F/)T(Fs); this operator is formed by embedding F s and F~ 
into s x I subsequently. These two graphs can be viewed as a single graph. We can 
use the simple duality moves to reduce this complicated graph to a linear 
combination of the basis graphs. To see this, we demonstrate for an example 

(4.8) 
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The dark marked rings denote some complicated parts of the graph. These 
complicated graphs can be also simplified, for example 

and 

,49, 

- -  , - - @ - -  (4.10) 

Thus we find that the basis of the operators corresponding to the basis of the 
graphs are complete in the sense that we consider only operators associated to the 
planar graphs. Given as basis of graphs {F~}, we have the following algebra: 

T(F~)T(Fj) = E Cf~T(rK). (4.11) 
K 

This algebra is associative. Unlike the fusion algebra, usually it is not commuta- 
tive. Since the operators Tq(bi) belong to this algebra, we see that this algebra 
contains many copies of the fusion algebra. Given a Riemann surface of genus g, we 
have such an algebra, called ~o- The fusion algebra is all .  It is easy to see that 
d o C d 0 + 1. Thus, we have an infinite chain of algebras. This chain of algebras is 
closely related to a quantum group, since both the quantum group and the 
algebras arise from the duality. 

Finally, we discuss the automorphism of the set of B matrices. Dijkgraaf and 
Verlinde in [1 1] discussed the automorphism of the fusion algebra. Starting from a 
non-diagonal theory, modular invariance of the partition function on the torus 
implies that there is a nontrivial automorphism among the operators Tq(b). The 
argument is the following. Suppose we have a non-diagonal theory; the Hilbert 
space of the vertex operators is 

= (~ i, ~ [qSJ | Eq57], (4.12) 

where [~bi] and [q~] are the irreducible representations of the left chiral algebra 
and the right chiral algebra, respectively. Let H be a map under which i ~  the 
partition function on the torus can be written as 

Z - - ~ H z .  (4.13) 

The modular invariance of this partition function implies that S as a matrix 
commutes with H. Note that here H is symmetric. 

We view Z~ as a state [i}. The matrix H can be viewed as an operator such that 
[T}=II[i}. We have the following fact: S~3/So, j=S~.j/So, ) [1 13; this is equivalent 
to Si, j/So,j=S~,JSo,j. From this we deduce that IIT~(a)H=T~(a). Now 
Tq(b) = STq(a)S- 1, since S commutes wi th /7  so/TTq(b)H = Tq(b), namely 

(F] T~(b) ~-} = (i] Tq(b) [j}. (4.14) 

From this equation we find N~j k = N ~ .  This is what is found by Dijkgraaf and 
Verlinde. 

Let us apply the same argument to the one-point functions. Under the map H, 
the conformal blocks associated to the external linej are mapped to the conformal 
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blocks associated with f We consider the Hilbert space which consists of all 
conformal blocks associated to various external lines j. Of course, in this Hilbert 
space the operators Tq(b) are well-defined. We have FITq(b)II= Tq(b) again; using 
(3.6), we find 

where We used the fact that in the non-diagonal theory, under/7, the coupling a of 
i,j,k must be mapped to the coupling a of/ , j ,k.  One can show that (4.15) is the 
sufficient condition t ha t / 7  commutes with the modular transformation @aS(j), 
while this is the condition of the modular invariance. Usually, under /7 ,  0 is 
mapped into 0, so n~ = nq. We can eliminate the factor nq in the above equation. 

We apply this argument to the generalized partition functions on Riemann 
surfaces of higher genus. As a result, we find in [31] that there is a automorphism 
among the squares of B matrices. Similarly, applying this argument to the two 
point functions on the torus, we will find a similar formula from (3.12). 

5. S o m e  E x a m p l e s  

In this section, we calculate explicitly some examples of the S(J) matrices. We found 
our results consistent with the other authors [36, 37]. 

First, let us consider the cases in the minimal conformal field theories [1, 2]. 
The minimal models are described by the central charges and the conformal 
weights. For  the unitary minimal models, the central charge c and the conformal 

6 
c=1  m=2 ,3 ,4  . . . .  , 

re(m+ 1)' 

hr s= (r(m + 1)-sin) 2 - 1  
' 4re(m+ 1) , l<_r<_m-1, l<s<_m, (5.1) 

r--}- s = e v e n .  

The fusion algebra is 

m i n ( r + r '  1 , 2 m - - l - r - r ' )  min(s+s ' - - l ,2m+l-s-#)  
~br,~Or',~' = Z Z qSr,,,~,,. (5.2) 

r " = [ r - r ' [  + 1 s"=ls-s'l+l 

To compare our results with the others, we also write down the corresponding 
formulae for the Coulomb gas approaches: 

1 
c=  1-24~~ e~ 4re(m+ 1)' 

hr,-=fl(fl-2~o), fl=�89 --r)a+ +�89 -- s)c~_, (5.3) 
a +(c%_ -- 2%) = 1, 

~ + =  - -  , c ~ _ = - -  r e + l "  

weight h's are given by 
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Consider the one point function q~1,3(z') on the torus. The corresponding 
conformal blocks can be represented graphically as 

(1,3) ~ (~,s) . 

In the following we shall calculate modular transformation S(j) for m = 3 and 
m-- 4 theories: 

m = 3 corresponds to the critical Ising model which is equivalent to a free 
Majorana fermion. There are three primary fields, ~1,1=I, (~2,2:0", t~1,3:~ , 
which are called identity operator, order parameter and energy operator, 
respectively. The fusion algebra is 

I . I = I ,  I . a = a ,  I . e = e ,  
a ' a = I + e ,  a . e=a ,  g2= i .  (5.4) 

The conformal weights are 

h1,1--0 h ___1 hi 3=�89 (5.5) 2,2--167 , �9 

From the fusion algebra, we know there is only one conformal block for the 
one-point function e(z) 

and the modular transformation is given by, according to (3.10), 

e2'~(hq-ah~ F [ ;  : ] .  (5.6) 2 o , . . ,  
q =  l,,g 

The F matrices have been calculated by Felder et al. in 1-35]. Writing 

we have 

T~ = 1, T~ = 0, T~ = - 1. (5.7) 

The S transformations for the minimal model characters are given by 

8 _~ 1/2 ~rr' 7~ss' 
Sr~ r's'= m(m+ 1)/ sin - -  sin - -  

' m m + l  ' 

(5.8) 
r + s even and r' + s' even. 

For the critical Ising model, we have 

I a 

o - " 

(5.9) 
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Substituting Eqs. (5.5), (5.7), and (5.9) into Eq. (5.6), we obtain 

rri 
S(g) = e 4 .  

Combining r ( e ) = e x p  ~ w e h a v e  

rd 
(S(e) T(e)) 3 = S(e) 2 = e- 5-= e-~ih~ 

as the desired result. 
m = 4 theory corresponds to the tricritical Ising model. In this model  we have 

six pr imary fields. We can write them in the following order: h1,1, ha, 3, h2,2, h2,4, 
h3,1, h3, 3. According to the fusion algebra, (5.2), the Hilbert space of conformal 
blocks 

O,a) @ ( ~ , , )  

is three dimensional,  (r, s) = (1, 3), (2, 2), (3, 3). Using the method  in [35], we write 
down the following relevant braid matrices: 

' r s  r 

r l ,  1 = 1 ' T l ' 3 -  2 cosTz/5 1 , 
0 0 

(5.10) 

T2, 2 - 2 cos ~/5 0 , Tz ,  4 = 0 , 
1 1 

T3,1 = 1 ' T3'3 - 2 cosn/5 1 . 
0 0 

Notice that  the T o matrices satisfy the corresponding fusion algebra. Substi tuting 
the T o matrices into (3.10), and using the fact that  

1 _ ~ - 1  
2 cos ~/5 2 ' 

we finally find 

S ( 1 , 3 ) = e - T 6 ~ i  I 0 - (5.11) 

_V5 
and 

3 . 
S(I, 3) 2 = e -  ~-~I = e -  ~ihl, 3 I .  
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We remark that our result differs from that in [-37] by a diagonal similarity 
transformation A, where 

A-- - 1  , 

0 

which corresponds to a different boundary condition for the conformal block 

(1,3) @ ( 2 , 2 )  , 

The correctness of our formula on this minimal model shows that our method, 
originally derived from the Wilson line insertion in 3D CS gauge theories, applies 
equally to the conformal field theories. This again suggests that to each 2D RCFT, 
there is a 3D CS theory as claimed by the authors of [-29]. 

Now we could continue our check on the WZW models. Take the simplest 
case, SU(2), for example. We check the modular transformation S(j) on the 
conformal block 

where we label the representation by the isospin j. For  an integrable represen- 
k 

tation, j is subjected to 0__<j__< ~, where k is the level of the corresponding Kae- 

Moody algebra. The fusion algebra for the SU(2) WZW models is 

min(i + j , k - i -  j) 

qb~ .qSj-- ~ q~,. (5.12) 
l=[i--j] 

For  k = 1, there is no nontrivial one-point function on the torus. For  k = 2, the 
Hilbert space of the one-point conformal blocks on the torus is one dimensional 

The corresponding braiding matrices are 

B 1 1  = 1 ,  = - 1 ,  ( 5 . 1 3 )  

.11I  ;]=0 
Using these data, we find 

3 1 - u  
S(1) = e - ~ I - :  - r e  , 

1 3 lri 2~zi ( 3  _ ~ ' 3 )  ~--- e 4~ , T(I) = e \16 

S(1) 2 = (S(1)T(1)) 3 = i=  -- e -  ~hl. 
(5.14) 
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This result is correct. The minus sign in front of the exponential in the last equation 
is due to the antisymmetric coupling } | 1 ~�89 As another example, we consider 
the k = 2 SU(2) WZW model. In this example we shall demonstrate that S(j) can be 
obtained from the different approaches. The first method is to calculate the 
braiding matrices, 

Tl(b)~=Bi~ [:  I/], 

B�89189 } 1 =B}} ~ } - [~], 
(5.15) 

B}2 -3 �89 } =B22 } �89 [3]  

So 

( i ~  ( i ~  �84 
1 1 

T~(b) = [3] 0 = ~ 0 
O -  O -  ' 

where, [3] stands for 

Now 

(5.16) 

. 3  . 3  

~%- e -~g  [ 3 ] -  e - - 2 .  
. 1  .1  

~ / - -  - 7 g / -  
e 6 - - e  6 (ooo) 
= 0 - 1  O .  

T~(a)=diag ks~ 0 0 0 

Of course Y~(b) can be diagonalized to Yl(a ) by S(1). But S(1) is not uniquely 
determined this way because of the degeneracy of the Tl(b ) eigenvalues. To 
calculate S(1), we need further information. Consider Y!(b ), 

2 

0 

1 

The eigenvalues are 0, __+ 1, which are not degenerate 

T• = 0 
z 0 -- 

in agreement with the eigenvalues of T!(b). 
2 

Because the eigenvalues are non-degenerate, we can determine S(1) by solving 
the equation 

S-  l(1)Y~(b)S(1)= ~(a) (5.17) 
2 2 
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up to some phases. Further using the equation 
.1 

S(1)2 - e-~ihl = _ e , 

S(1) is determined up to some + signs. We find 

S(1) -- i { _ 0 - e 

- r  
(5.18) 

T o ( b )  = 1 , 

0 

0 2x 0 

~/2(b)  = x 0 = - - ~ / 2 ,  
g 

2X / 

( 01ot 01 ) 2x -12 0 - -  
T1/2(b) = 0 , Tl(b) = 0 0 , 

2x - 0 -  

(5.21) 

T2(b) = 

oo ) 
0 - 1  0 ,  

e 0 0/ 

This is in agreement with the direct calculation using (3.10). Knowing S(1) and 
Tq(a), we can calculate the other braiding matrices by the formula 
Tq(b)--S(1)Tq(a)S(1)-1. We find 

T3/2(b) = S(I)T3/z(a)S(1) -1 - 1/~ 0 , 
1 

/0 0 1 \  (5.19) 

T2(b)=S(1)T2(a)S(1)-I=-( 0101 i)" 

We can check that T3/2(b ) and T2(b ) found in this way agree with that calculated by 
SU(2, q) 6-j symbols [33,221. We stress that here we have used T1/2(b ) to determine 
S(1), then to calculate the other Tq(b)'s. This means that some B matrices are 
determined by some other B matrices in this way. We shall emphasize that  this 
method is independent of using polynomial  equations. 

Our  second method is to use the SU(2) fusion algebra. First we note that the 
fusion algebra together with the constraint $2=C determine the modular  
transformation S for the characters on the torus. We start from the equation 

We only need determine the matrix elements for which Nii, q is not zero. Using 

712=1, T1T2= T, , T~a= To + T1, 
(5.20) 

Tg2= To + T,, T3/2T1/2= Tl + T2, 
we find that Tq matrices can be written in such forms 
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w h e r e  e 2 =  1, X is to be determined. In fact, the other equations 

T1/ 2 Tl = T1/ z + T3 / 2 , T1/ 2 T2 = T3 / 2 , T2 = To + TI + T2 , 
(5.22) 

T2 T3/2= T1/2 , TI T3/2 = T1/2 + T3/2 

do not provide new information. However, we can make use of the fact that SU(2) 

theories are self-conjugate, ( T J  = T~ = Tq. We then solve x up to a sign x = 1/1/2t/, 
t/z = 1. Here we ignore a possible phase, because only in this case S(j) could satisfy 
the polynomial equations. With the help of (3.10), we find S(1) 2= - exp( -zc ih l ) .  
The sign uncertainty in e and t/is due to a possible similarity transformation of the 
form 

0 ,  

0 - -g /  

depending on the boundary conditions of the conformal blocks. As the final 
example, we check the conformal blocks 

' z @ ,  k 

of the fusion algebra 

n>__l, 

which has been discussed by Verlinde in [11]. This is the general form of the fusion 
algebra when there are only two primary fields. We note that this has been 
discussed also in [19]. We can write the S modular transformation of the genus one 
characters as 

(cos0  sin0 ~ (5.23) 
S = \ sin 0 - cos OJ" 

Using (ST) 3= 1, we have 

n 
cos2rch = - ~ 2, t a n 0 = 2 -  n-+~/n2 + 4  (5.24) 

2 

- 1  +[ /5  1 2 
- s o h =  + = - (modl/ .  For  n>2 ,  we have 5' , _ 

5"  " 
For  n = 1 we have cos2rch = 

n 
cos2rch= - ~ ( n - ~ ) .  (5.25) 

Solving this equation does not look easy. However we prove n > 2 is impossible by 
considering the one-point conformal blocks on the torus. Since To(a ) is propor-  
tional to the identity matrix, so is To(b ) . We have 

1 
T4,(b ) = Te(a)= 2 '  



Braiding Matr ices  and  M o d u l a r  Trans format ions  221 

Thus, 

S(~)=e-4~ih cosO-t-e- 2~ihsinO (-- ~) 
(5.26) 

= - 2i cos 0e- 3~ih sin nh. 

By the requirement S(~b) 2 = + e -"h, where the sign ___ is due to the coupling type of 
(q~, ~b, qS), we find 

5h = 0 (rood 1). (5.27) 

Our result is stronger than that obtained in [19] 1. Substituting this result into 
(5.25), we find that n > 2 is forbidden. 

So far we have checked our main formula (3.10) for several examples, and 
showed that the fusion algebra plays a important role even in the case of the 
one-point functions on the torus. In the last section, we discussed the automor- 
phism among B matrices. We shall check our formula given in [31] for some non- 
diagonal SU(2) WZW models. Our result in [31] can be stated as: there is an 
automorphism of the squares of B matrices. Now in the A.D.E. classification of 
SU(2) WZW models [5], when k = 4 n - 2 ,  there is a non-diagonal theory. Under 
the m a p / / w e  discussed in the last section, we have 

f=�89 jeZ+�89 f=j, j eZ .  (5.28) 

We use the following formula of B matrices [22]: 

m . , 1"/ 

2~i (5.29) 
ci=i(i+l), q = e  k+2. 

The 6-j symbols have the following property 

- 1 ~ - n = n , (5.30) 
k p j 

when t, n, m, p are half integers. Using (5;.29) and (5.30), we find 

In/-- 1 [ :  m 1 
~k-n-p ni B~ r~ 1 

= e Bii , (5.31) 
p 

when l, n, m, p are half integers. Since k is even, we see that under H, it is possible 
that the B matrix differs from the original one by a sign. However the squares are 

1 In  [19, 21, 22], those au thors  found tha t  for the case tha t  there are only two characters  on the 
torus, the conformal  weight should  be a mult iple of~, �88 and  �89 Note  tha t  if there are two pr imary  
fields, when  n = 0, the conformal  weight is a mult iple  of �88 But the degeneracy of characters  may  
occur here if there are more  than  two pr imary  fields. Thus,  the conformal  weight of a mult iple of �89 
is possible 
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the same: that is the property we want to check. Other  cases can be checked 
similarly. Also, (5.30) is just (4.15) in this case. 

Recently, Felder et al. [38] obtained the modular  transformations of con- 
formal blocks for any one-point functions on the torus in the minimal models [38]. 
We believe that, using (3.10) and the 6-j symbols we can obtain their formulae. 
Also, Bonora et al. discussed the conformal blocks of general multi-point functions 
on the Riemann surfaces of higher genus in the b-c system approach [39]. The 
modular  transformations can be drawn from their formulae. We hope that one can 
check again our formula about  the modular  transformations for the conformal 
blocks of two-point  functions on the torus. 

6. Conclusion 

In this paper  we have discussed how to appropriately define the so-called 3D finite 
topological quantum field theory. Our  definition help us to reach nearly all 
concepts in the rational conformal field theory. Geometric  and algebraic 
formulations for RCFT's  are unified in this framework. As Witten pointed out 
[27], there is a possible way to verify that a F T F T  corresponds to a R C F T  and vice 
versa. By the help of the FTFT,  we are able to define the generalization of the 
Verlinde operators.  All operations seem to be simplified. Thus, the modular  
transformations are easily derived. 

We showed that the constraints on the modular  transformations for the one 
point conformal blocks on the torus play an important  role in the classification of 
RCFT's .  This is verified by some examples. Since the modular  transformations for 
two point functions contain more information about  B matrices, it is expected that 
from the fusion rules and some constraints on the modular  transformations, one 
can calculate more B matrices. The relation of this procedure to the polynomial  
equations needs to be clarified [40]. We hope that we can eventually solve the 
polynomial  equations in this way. 

Finally, we would like to remark that the quantum group symmetry will play a 
role in such an approach as we provided here. 
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Note added in proof. Recently we found* that our formula for S(n) satisfy the related polynomial 
equations derived by Moore and Seiberg [15]. In addition, we show that S(n) is a unitary 
transformation, provided the duality of the model is ensured. As a consequence, the whole 
consistence conditions for modular invariance on Riemann surfaces of higher genus are 
guaranted by the duality of the theory on the sphere. 

* Reference: Li, M., Yu, M., Duality ensures modular covariance, NBI preprint NBI-HE-89-47 


