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The publication of Karmarkar's paper has resulted in intense research activity into 
Interior Point Methods (IPMs) for linear programming. Degeneracy is present in most 
real-life problems and has always been an important issue in linear programming, 
especially in the Simplex method. Degeneracy is also an important issue in IPMs. 
However, the difficulties are different in the two methods. In this paper, we survey 
the various theoretical and practical issues related to degeneracy in IPMs for linear 
programming. 

We survey results, which, for the most part, have already appeared in the literature. 
Roughly speaking, we shall deal with the effect of degeneracy on the following: the 
convergence of IPMs, the trajectories followed by the algorithms, numerical perfor- 
mance, and finding basic solutions. 

Keywords: Linear programming, interior point methods, degeneracy, polynomial 
algorithms, global and local convergence, basis recovery, numerical performance, 
sensitivity analysis. 

1. Introduction 

Since Ka rmarka r  [50] published his projective method for solving linear 
programs, world-wide interest in Interior Point  Methods  (IPMs) has increased 
enormously 3. This resulted in several different classes of  IPMs for linear program- 
ming. For  an introduction and/or  survey of  IPMs we refer the reader to the excellent 
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survey of Gonzaga [36], the IPM section of the article by Goldfarb and Todd in [27], 
the Ph.D. thesis of Den Hertog [41], Kranich's bibliography [59], and Wright's 
paper [105]. The IPMs are not only theoretically sound, but several implemen- 
tations have already shown that some IPMs can outperform the simplex method 
on large linear programs [12, 49, 61, 62]. The various methods can be divided 
into four main categories: 

(1) projective methods (e.g. [25, 35, 50, 92, 113]); 

(2) affine scaling methods (e.g. [8, 9, 17, 18, 33, 96, 99, I01]); 

(3) path-following methods (e.g. [31, 36, 41, 44, 54, 77, 80, 84]); 

(4) affine potential reduction methods (e.g. [30, 32, 47, 56, 109]). 

It is well-known that degeneracy can cause cycling in the simplex method. 
This motivated many researchers to search for anti-cycling pivot rules. (See the 
survey of Terlaky and Zhang [90].) But even with such anti-cycling rules imple- 
mented, the presence of degeneracy may slow down the computational efficiency 
of the simplex method. 

In this paper we discuss the role of degeneracy in IPMs. At first glance, 
degeneracy does not seem to be as serious a problem for IPMs as it is for simplex 
methods. Proofs of polynomiality for IPMs in the first, third and fourth category 
hold true without any non-degeneracy assumption. However, degeneracy plays a 
role in these methods when we consider local convergence (see section 3.2.). Degen- 
eracy also plays a role in affine scaling methods (category two), which are believed 
not to be polynomial [69]. All the known global convergence proofs developed 
earlier needed some kind of non-degeneracy assumption. It is rather recent that 
these conditions are removed in a satisfactory way. We will review these results in 
section 3.1. 

The search directions used in IPMs are usually linear combinations of two 
fundamental search directions, the so-called affine scaling direction and the 
centering direction [34, 42]. It is of interest to study the vector fields which are the 
infinitesimal (continuous) versions of these search directions since the IPMs can 
be considered as methods for (approximately) following these vector fields. 
Degeneracy has a strong influence on the shape of these vector fields as well as 
on their limiting behavior. We especially deal with cases where these continuous 
trajectories converge in the optimal face. For example, many IPMs follow, in 
some fashion, the central path which converges to the analytic center of the optimal 
face. 

The numerical performance of the simplex method depends on the degree of 
degeneracy of the problem. This is seen in terms of the iteration count. Degeneracy 
also affects IPMs, but as we shall see, the problems and the difficulties are quite 
different and numerical problems rarely occur in practice [82]. 

While the simplex method iterates on the vertices of the feasible set, and the 
final solution is an optimal vertex, the IPMs generate an infinite sequence of points 
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in the interior of the feasible set. The algorithms stop if the duality gap is sufficiently 
small, and therefore IPMs never compute an exact optimal solution. From the 
viewpoint of complexity theory this is not an issue: IPMs produce a solution 
sufficiently close to an optimal solution, which can then be rounded to an optimal 
solution. For many practical applications, it suffices to find a point that is merely 
close to optimal. Sometimes, however, one would like to obtain an optimal basis, 
e.g. for cutting plane methods in integer programming. It is also important, in prac- 
tice, that basic solutions have a minimal number of nonzero coordinates (e.g., a 
manager wants to produce a few products). Degeneracy appears to cause some 
difficulties in these areas. 

All of these aspects will be addressed in this paper. The rest of the 
paper is organized as follows. In section 2 we introduce the notation and the 
definitions used in this paper. Some preliminary concepts are also reviewed. 
Section 3 deals with degeneracy and the global and local convergence of IPMs. In 
section 4 the influence of degeneracy on continuous and discrete trajectories is 
discussed. In section 5 we study the influence of degeneracy on the numerical 
behavior of IPMs. In section 6 we show that degeneracy can cause some problems 
in finding basic solutions. Theoretical and practical methods for finding an 
optimal basis are discussed. Finally, some concluding remarks are made in 
section 7. 

2. Preliminaries 

In this section we introduce the notation and the definitions used in the paper. 
We also discuss some preliminary concepts. 

We first introduce the notation used in the paper. The vector e denotes the 
vector of ones and I the identity matrix. Given an n-dimensional vector x, we 
denote by X the n x n diagonal matrix whose diagonal entries are the coordinates 
xj of x; x T is the transpose of the vector x, and the same notation applies to 
matrices. Finally, I1"11 denotes the/2 norm. 

We consider the primal linear programming problem in the standard form 

(P) min {cTx : Ax = b, x _> 0}. 

Here A is an m x n matrix, b is m- and e and x are n-dimensional vectors, respec- 
tively. The dual linear program for (P) is 

(D) max {bTy : ATy + s = e, s > 0}. 

A vector x is called (primal) feasible for (P) if Ax = b and x is non-negative. 
We say that s is (dual) feasible for (D) if there exists a y such that (y, s) is feasible for 
(D). A feasible point x (or s) is said to be strictly feasible if it is positive. A strictly 
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feasible point is also called an interior point. We say that (x, s) is a (strictly) feasible 
pair for (P) and (D) ifx is (strictly) feasible for (P) and s is (strictly) feasible for (D). 
A pair (x, s) is called complementary, if Xs = 0 or, equivalently, xTs = 0. 

We denote by 79 = {x : Ax = b, x > 0}, and 79 = {(y, s) : A'ry + s = e, s > 0}, 
the set of primal feasible variables and dual feasible variables, respectively; 790 and 
D O denote the set of strictly primal feasible solutions and strictly dual feasible 
slacks, respectively. Finally, 79. and 79. denote the set of optimal solutions to (P) 
and (D), respectively. Note that 790 and D O are the relative interiors of 79 and 79. 

Because of its significance for IPMs, we point out the relationship between 
the existence of strictly feasible solutions and the boundedness of the level sets 
(including the optimal solution sets). Assuming that both the primal and the dual 
programs have feasible solutions, these two concepts are dually related: 7 9o ¢ 0 if 
and only if the dual level sets are bounded, and D O ¢ 0 if and only if the primal 
level, sets are bounded, see [3] for example. Many IPMs either explicitly or 
implicitly make the assumption that there exists a strictly feasible pair (x, s), that 
is, 790 ~ 0 and D ° ¢ 0. Both 79. and 79, are bounded under this assumption. For 
convenience, we also assume that rank(A) = m. (This is not a restrictive assump- 
tion as it is easy to eliminate the redundant constraints [63].) 

The central path or central trajectory of the LP problems (P) and (D) plays 
an important role in most IPMs. In order to define the central path, one needs to 
introduce the logarithmic barrier problems associated with the pair (P)-(D), which 
are defined as 

and 

max + In sj : A ' ry  + s = c . 

j=l 

The common necessary and sufficient first order optimality conditions for these 
problems are: 

ATy + S = C, S _> O, 

Ax = b, x _> O, 

Sx = #e. 

(1) 

Under the above assumptions this system has a unique solution [39, 64] denoted by 
(x(Iz), y(#),s(#)). The primal and dual central path is defined as the solution set 
x(Iz) and y(#) respectively, for lz > 0. 
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Recall that the problem pair (P) and (D) is called primal degenerate if there 
exists a primal feasible x with less than m positive coordinates, and dual degenerate 
if there exists a dual feasible s with less than n - m positive coordinates. The pair 
(x, s) is called degenerate if it is primal or dual degenerate. A problem (P) ((D)) 
is called primal (dual) non-degenerate if it is not primal (dual) degenerate. We 
note that more restrictive non-degeneracy conditions are used to prove global con- 
vergence of some affine scaling algorithms. Sometimes degeneracy definitions apply 
only to optimal faces, see e.g. [96]. 

Another important result in linear programming is the existence of a strictly 
complementary optimal solution, that is, an optimal solution pair (x*, s*) such that 
x* + s* > 0. It has been known since the early days of linear programming [28] (see 
also [7, 81]) that such solutions exist in any linear program. It is also well-known 
that the indices of the positive coordinates are the same for all strictly complemen- 
tary pairs. We denote by B _C { 1 ,2 , . . . ,  n} the set of indices of the positive coordi- 
nates of x*. Similarly, N denotes the set of indices of the positive coordinates of s*. 
We have B U N = {1 ,2 , . . . ,  n} and B N N = 0, so that (B, N) is a partition of the 
column indices of A. We thus have a column partition A = (As, AN) of A. 

It is then easy to see that the primal and dual optimal faces are given by 

79, = {x : ABXB = b,x > 0, x N = 0} 

and 

7 ) . =  { ( y , s ) : s E O ,  sB=CB- -A~y=O,s~c=cN- -ATy} .  

We denote the relative interior of 79. (79.) by 790 (79o) The importance of 79o 
and 790 for IPMs is due to the fact that the limit points of various continuous and 
discrete trajectories (for a definition see [76, p. 216]) for IPMs lie in these sets. Thus, 
the limiting behavior of these trajectories (how they approach the optimal facet) is 
interesting only in the degenerate cases. 

Projection onto an affine space is a basic operation in IPMs. Given a matrix 
A, the projection matrix onto the null space of A is the matrix 

Pa = I -  AT(AAT)-IA. 

All IPMs start from an initial strictly feasible point and generate strictly 
feasible solutions. Some algorithms are called primal and generate primal solutions 
in 79°, e.g., Barnes [8], Dikin [17], Karmarkar [50], Vanderbei et al. [102]. Some are 
called dual algorithms and generate dual solutions in D °, e.g., Iri and Imai [47, 46], 
Adler et al. [1]. The more recent algorithms generate primal and dual solutions in 
790 x D °, e.g., the primal--dual IPMs of Kojima et al. [56] and Ye [109]; the path- 
following methods of Monteiro and Adler [77], Kojima et al. [54] and Roos and 
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Vial [80]. We refer to any particular IPM simply by specifying its search directions, 
or giving its author(s). 

The IPMs stop when the duality gap is sufficiently small (theoretically smaller 
than 2 -2z', where L is the length of the input data). In practice, different stopping 
criteria are used [6, 21, 51, 88, 89, 108]. In general, one has no convergence of the 
iteration sequence. Only the duality gap converges to zero, and this implies that 
all limit points of the generated sequence are optimal solutions. 

3. Convergence of IPMs 

In this section we discuss both global and local convergence of IPMs. 

3.1. GLOBAL CONVERGENCE 

As mentioned in the introduction, the methods in categories one, three and 
four are polynomial without any non-degeneracy assumptions. The best known 
complexity bound is O(naL), with an O(v/-nL) iteration bound [36, 41]. 

In the rest of this section we summarize the results concerning methods in 
category two. The affine scaling method had already been proposed by Dikin [17] 
in 1967. This simplest IPM is believed not to be polynomial, see Megiddo and 
Shub [69]. We now explain a version of the method for the primal problem (P); 
the dual case is analogous [17, 1]. 

Suppose x is the current iterate, then problem (P) is rescaled into 

(~') min {~T~ : ~ii = b, i _> 0}, 

where ,,1 = AX, ~. = Xc. We then replace the non-negativity constraints i > 0 by the 
more restrictive "ball constraint" 

Ili - ell <__/~ ___ 1, 

which makes the problem easy. The solution is explicitly given by 

~(f l )  = e - / 3  P'i~" 
I I e ~ l l  

We then unscale to obtain the next iterate for (P) 

XP AxXC 
x(/3) = x - / 3  IIeAxX~ll" (2) 

It is known [18] that x(/3) is also strictly feasible if/3 < 1, except for that special case 
where x(/3) happens to be on the optimal face with/3 = 1. 
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The dual estimates defined by 

s(x) = X-IPAxXc,  y(x) = (AX2A'r)-IAX2c 

play a very important role in the analysis of the affine scaling algorithm. These 
quantities satisfy ATy(x) + s(x) = e but not necessarily s(x) > 0. The affine scaling 
algorithm is regarded as a primal-interior dual-exterior point algorithm in the sense 
that it generates the pair (x, s(x)) of primal-interior-feasible solution and dual- 
feasible/infeasible solution (not necessarily feasible) at each iteration. 

To prove global convergence of the algorithm, some non-degeneracy con- 
ditions are required in the earlier analyses. Since x satisfies the equation Ax = b 
and (y(x), s(x)) satisfies ATy + s = e, some reasonable conditions for the solutions 
of these two equations make the analysis easier. We say that the LP problem is 
strongly primal non-degenerate if every solution x to the linear system Ax = b has 
at least m nonzero coordinates. It is called strongly dual non-degenerate if every 
solution s to the linear system A'ry + s = c has at least n - m nonzero coordinates. 

In the primal affine scaling algorithm, the point x is required to be positive 
which means that a non-degeneracy condition is needed only for points x > 0. 
This leads to the (usual) primal non-degeneracy condition introduced in section 
2. However, the strong dual non-degeneracy condition is needed since we do not 
have control over the signs of the coordinates ofs(x). Thus, in the primal affine scal- 
ing algorithm, the primal non-degeneracy assumption and/or the strongly dual non- 
degeneracy assumption are relevant for the analysis. 

The results of the different convergence proofs for atone scaling methods are 
summarized in table 1 and discussed below. The great advantage of assuming primal 
non-degeneracy is that convergence of x implies convergence of s(x), while the major 
advantage of assuming strongly dual non-degeneracy is that the limiting point is con- 
fined to a vertex. In order to obtain their global convergence results, Barnes [8] and 
Vanderbei et al. [102] require primal and strongly dual non-degeneracy. A similar 
result is presented by Chandru and Kochar [14]. They require primal non-degeneracy 
and used a perturbation technique to avoid the dual non-degeneracy assumption. 
Dikin's proof [18] requires primal non-degeneracy, and Tsuchiya's first proof [95] 
requires a dual non-degeneracy condition that is satisfied if we assume the strong 
dual non-degeneracy condition. Thus, the symmetry between the non-degeneracy 
conditions breaks down in the convergence analysis. 

Barnes [8] shows that, for fixed/3 < 1, the method converges if both (P) and 
(D) are non-degenerate. Vanderbei et al. [102] allow/3 to be greater than 1, as long 
as all components ~i(/3) remain greater than 1 - 7 > 0. This corresponds to moving 
a fraction "r of the distance to the boundary of 7:'. This is referred to in the literature 
as taking large steps. 

Dikin [17] proves convergence for the unit step length (/3 = 1). Vanderbei and 
Lagarias [101] clarify Dikin's proof. The proof is extended to large steps by Gon- 
zaga [33] under primal non-degeneracy. 
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Table 1 
Convergence proofs for affine scaling algorithms. 

Author Step l e n g t h  Non-degeneracy assumptions 

Dikin [17, 18] /3 = 1 primal 
Barnes [8] /3 < 1 primal and strong dual 
Vanderbei et al. [102] large primal and strong dual 
Tseng and Luo [94] /3 = 2 -L - 
Tsuchiya [95] /3 = 1/8 strong dual 
Tsuchiya [96] /3 = 1/8 - 
Gonzaga [33] large primal 
Dikin [20] large 1/2 - 
Tsuchiya and Muramatsu [99] large 2/3 - 

Tseng and Luo [94] use ergodic convergence theory to show that the affine 
scaling method converges for all problems if a very small step length is taken (in 
fact/3 = 2-L). Tsuchiya [95] proves convergence for/3 = 1/8 under strong dual 
non-degeneracy, and later in [96] without any non-degeneracy assumptions. We 
explain here the main ideas of the proof in [95], since the recent long-step conver- 
gence proofs without any non-degeneracy assumptions [20, 99] are also based on 
this approach. 

The proofs of global convergence of the affine scaling methods under primal 
non-degeneracy [18, 8, 102, 33] are based on the fact that the convergence of the 
iterates immediately implies the convergence of the dual estimates. If the dual esti- 
mate is positive, it is a feasible solution to (D). The primal solution and the dual 
estimate satisfy the complementarity condition, but the dual estimate is not neces- 
sarily non-negative. Further, the sign of the dual estimate becomes exactly opposite 
to the sign of the displacement vector of the iterate. It follows from these facts that 
all components of the dual estimate have to be positive asymptotically. Hence, the 
main part of the proofs is to show that the iterates converge. 

This proof technique breaks down when the primal non-degeneracy assump- 
tion is removed. This is because the convergence of the primal iterates does not 
necessarily imply the convergence of the dual estimates if the primal iterates 
converge to a point on a primal degenerate face. Thus, the problem is to analyze 
the behavior of the algorithm in the vicinity of a primal degenerate face. To over- 
come this difficulty, Tsuchiya's proof [96, 98] (without primal non-degeneracy 
conditions) uses the observation that the (local) structure of primal degenerate 
faces is similar to that of homogeneous LP problems. This suggests that the 
behavior of the affine scaling algorithm near degenerate faces is similar to its 
behavior when applied to homogeneous LP problems. It is known [11] that the 
affine scaling algorithm applied to homogeneous LP problems is precisely Karmar- 
kar's algorithm. Thus, we can apply Karmarkar's analysis to study the behavior of  
the algorithm near degenerate faces. By introducing a local Karmarkar potential 
function, global convergence can be proved with step size/3 = 1/8. 
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As was mentioned above, this bound was further improved recently. Using 
his very interesting result on the reduction of Karmarkar's potential function 
[19], Dikin [20] proved the global convergence of the iterates to an interior point 
of the optimal face, and the global convergence of the dual estimates to the analytic 
center of the dual optimal face with large step size (1/2 to the boundary). The best 
result in this field is due to Tsuchiya and Muramatsu [99]. Motivated by Dikin's [19] 
work, independently from Dikin's last result they got better results by allowing 
larger step size (2/3 to the boundary) and they also showed that the asymptotic 
reduction rate of the objective function value is 1/3. On the basis of Tsuchiya's con- 
jecture, Hall and Vanderbei [40] recently constructed an interesting example to show 
that the dual sequence cannot be convergent any more if we take any (fixed) step size 
greater than 2/3. Thus 2/3 is shown to be longest step size for the affme scaling algo- 
rithm that guarantees convergence of the primal-dual pair. 

All the methods discussed above are either primal or dual methods. There 
also exists a primal-dual version of the affine scaling method. Taking very small 
steps,/~ = (nL In n) -1, Monteiro et al. [78] prove that this method converges with- 
out any non-degeneracy assumptions. Their search direction is given by formulae 
(5) below. In fact, they prove that this primal-dual algorithm is a short-step 
primal--dual path-following algorithm. 

The large-step version of the primal-dual affine scaling algorithms has been 
implemented in several codes. This method shows good practical behavior even if 
the problem is primal degenerate. In theory, whether the large step version is 

Dptimal Solution 

Objective Vector ~ 

\ \ / 
optimal Solution 

i 
Objective Vector ] 

b 

Fig. 1. The iterations of the affine scaling algorithm. The optimal face is a line segment, which is dual 
degenerate (but primal non-degenerate). (a) The iterates generated by a long-step version where 
7 = 0.9. (b) The iterates generated by a short-step version where/~ = 1/8. With this step size the 

global convergence is ensured without requiring any non-degeneracy conditions. 
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convergent even for both primal and dual non-degenerate problems is still an open 
question at present. 

Figure 1 illustrates some long- and short-step trajectories of the affine scaling 
algorithm. The optimal face is a line segment, which is dual degenerate (but primal 
non-degenerate). 

3.2. L O C A L  C O N V E R G E N C E  

One may claim that the local convergence properties for IPMs are not very 
important, as there exist finite termination procedures to obtain an optimal solu- 
tion from a near optimal solution (see section 6). Since the practical efficiency of 
these procedures is not fully established, there are good reasons to study local con- 
vergence properties of IPMs. 

Several recent papers [38, 71, 88, 98, 100, 105, 111, 1t4, 116] deal with the 
local convergence of primal-dual path-following and potential reduction 
methods. The search directions used in these methods are 

p =  (S -1 - S - I~ fAT(AS- IxAT) - IAs -1 )  ( X s - o ' - -  

(xTs) 
d = - ( A S - 1 x A T ) - I A S - I  X s -  cr - e , 

xTs) 
e , 

Y/ 

for the primal x space and the dual y space, respectively [42, 34]. These are in fact the 
Newton directions for the Karush-Kuhn-Tucker conditions for the logarithmic 
barrier problem. The choice of the centering parameter cr and the step length are 
the fundamental issues here. 

Zhang et al. [116] give conditions that these choices must satisfy in order to 
achieve superlinear or quadratic convergence. None of the existing polynomial algo- 
rithms satisfies these fast convergence requirements. In [116], a basic assumption for 
superlinear convergence is the convergence of the iteration sequence, and a basic 
assumption for quadratic convergence is the non-degeneracy (equivalently the 
uniqueness) of the primal and dual optimal solutions. 

Ye et al. [114] study the "predictor--corrector" method of Mizuno et al. [74], 
which takes cr = 1 and a = 0 alternately. They prove the superlinear convergence of 
the algorithm under the condition that the solution sequence converges. They also 
prove the quadratic convergence of the duality gap to zero, while maintaining the 
global O(x/nL) iteration bound, under the uniqueness of the primal and dual 
optimal solutions. Finally, Ye et al. [111] and Mehrotra [72] obtain the same results 
without any assumptions. 

In a different development, Iri and Imai [47] prove that the iterates in their 
method converge quadratically if (P) is non-degenerate and exact line searches 
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are performed. The search direction used is the Newton direction of the multipli- 
cative barrier function (4). Recently, Tsuchiya [97] has removed the non-degener- 
acy assumption and has shown that most of the generated sequences converge to 
vertices of the optimal face. 

4. Continuous trajectories 

The main purpose of studying the limiting behavior of IPMs is to investigate 
the properties of the resulting optimal solutions. This analysis also reveals the rich 
structure of the continuous trajectories. Here we review the asymptotic properties of 
the trajectories from these standpoints. We first discuss the primal (and dual) IPMs, 
and then the primal-dual IPMs. 

4.1 CONTINUOUS TRAJECTORIES OF THE PRIMAL (AND DUAL) IPMs 

It is now well-known [34, 42] that the search directions of the various primal 
IPMs for (P) can be written as linear combinations of the affine scaling search direc- 
tion (see (2)) 

PAFS "----" --XPAxXe, 

and the Newton direction for the problem max {)--~7=1 In X i : Ax = b}, which is also 
called the centering direction [42, 34, 11,106] 

PC = XPAxe. 

We refer to the vector fields defined by PArS and Pc as the affine scaling vector field 
and the centering vector field, respectively. 

After reviewing the asymptotic behavior of the trajectories of these two 
fundamental vector fields, we explain the asymptotic behavior of the continuous 
versions of some of the primal IPMs: the path-following algorithm [84, 79, 80, 
29], Karmarkar 's projective scaling algorithm [50], the Iri-Imai algorithm [47, 
46], and Gonzaga's affine scaling potential reduction algorithm [30]. 

It has been observed by several authors (e.g., [69]) that both the affine scaling 
and the centering vector fields can be smoothly extended to the boundary of 7 ~. The 
extended vector field on a face H is exactly the same as the vector field defined for the 
subproblem obtained by restricting the feasible region to H. This property holds true 
even when (P) is degenerate. 

The singular set of a vector field is the set of points where it vanishes, that is, 
where it is equal to zero. It is known [87, 96] that the singular set of the atone scaling 
vector field consists of the dual degenerate faces (including vertices) on which the 
objective function is constant. Moreover, the singular set of the centering vector 
field is known to be the analytic centers of the individual faces [69, 87, 97]. 
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Objective 

a 

Optimal S o l u t i o n J ~  

Objective Ve~ b 

Fig. 2. The two fundamental vector fields associated with IPMs. (a) The affine scaling vector field in the 
dual non-degenerate case. (b) The centering vector field. 

An illustration of the affine scaling and the centering vector fields is shown in 
fig. 2. 

4.1.1. Continuous trajectories o f  the affine scaling direction 

The trajectories of the affine scaling vector field are by definition the solutions 
to the system of ordinary differential equations (ODE) 

dx 
- XPAxXc.  

dt 

The limiting behavior of these trajectories is studied by Megiddo and Shub [69] 
under primal and strong dual non-degeneracy. In this case, the global convergence 
of the trajectories is easily deduced from the global convergence proof of the origi- 
nal discrete algorithm under the same assumptions [8, 102]. Megiddo and Shub 
focus attention on the behavior of the trajectories near the optimal vertex. They 
prove that all the trajectories share the same limiting direction, namely the limiting 
tangent direction of the central path of the problem. 

It is not trivial to extend these global and local convergence results to the 
general case without making some non-degeneracy assumptions. To analyze the pro- 
blem, Adler and Monteiro [3] (see also [76, 104]) consider the trajectories consisting of 
the minimizers xp(#) of the following one-parameter convex programming problem 

min c a ' x - #  P T r x + E l n x i  : A x = b  . (3) 
i----1 / 
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They show that for suitable p the trajectories {xp(#) : # > 0} are the same as the 
continuous trajectories of the affine scaling algorithm. Once an initial interior 
point is specified, the vector p and the initial value o f#  are easily computed from the 
Karush-Kuhn-Tucker conditions Ax = b, x > 0, e - ATy -- #X- l e  = #p. The 
limiting behavior of the trajectories of system (3) can be analyzed by letting 
# ~ 0. Based on this idea, Adler and Monteiro [3, theorem 3.2] prove the following 
result: initiated at any interior point of the feasible region, the affine scaling 
continuous trajectory converges to an interior point of 79., which depends on the 
initial point. Further, the limiting tangent directions exist. The N-component of 
all the limiting directions is the same, but the B-component does depend on the 
initial points. It is interesting to note that B- and N-components of both the 
limiting points and the limiting directions of the trajectories exhibit quite different 
behavior. 

It is worth noting that this result requires neither non-degeneracy assump- 
tions nor the boundedness of 79.. (In [3], Adler and Monteiro require boundedness 
of 79,, and Monteiro removes this assumption in [76] to make use of  their result in 
analyzing the limiting behavior of the continuous trajectory of Karmarkar's projec- 
tive scaling algorithm.) 

Some continuous affine scaling trajectories are shown in fig. 2(a) (dual non- 
degenerate case) and fig. 4(d) (dual degenerate case). 

4.1.2. Continuous trajectories o f  the (negative) centering direction 

The trajectories of the negative centering direction are the solutions to the 
ODE 

dx 
-- X P  Axe. 

dt 

It is known [4] that every trajectory of this ODE coincides with the central path of 
some LP problem. From the properties of the central trajectories (studied in detail 
because of its theoretical importance, e.g. [1 1]), we have the following result: every 
continuous trajectory of the negative centering vector field is well-defined when 
t ~ co, and converges to the analytic center of one of the faces of 7 9. The vertices 
of 79 are the only stable limit points, the remaining limit points being unstable 
[87, 97]. 

It is worth commenting on how these negative centering trajectories approach 
their associated limiting points, see [87]. Let H be a face of 79, and let Xu denote the 
components of a vector x which are always active on H. Interestingly, Xu behaves as 
if it were the vector field of the Newton method to  find a point :~ such that i~u = 0 in 
a sufficiently small neighborhood of H. (Note that we say nothing about the behav- 
ior of the remaining components of the vector field.) This property even holds when 
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/4 is a degenerate face. In particular, i fH is a vertex x*, then the negative centering 
vector at an interior point ~ near x* is approximated well by the displacement vector 
from ~ to x*. Thus, the negative centering vector field has a property similar to that 
of the Newton direction. This is an interesting feature of the negative centering 
vector field, which is quite different from the limiting behavior of the continuous 
affine scaling trajectories. 

Some continuous centering trajectories are shown in fig. 2(b). 

4.1.3. Continuous trajectory of path-foUowing algorithms 

Since path-following algorithms are homotopy methods which follow the 
central path [84, 79, 80, 29], their continuous trajectories coincide with the central 
path, which ends at the analytic center of the optimal face 7:',. It is easy to see 
that the affine scaling and the centering trajectories coincide with the central path 
if they are initiated at a point on the central path. 

We show some central trajectories, with different objective functions, in fig. 3. 
The central path ends up in the analytic center of the optimal face in the degenerate 
case, and at the optimal vertex in the non-degenerate case [39, 64]. 

Optimal Solution 
Objective Vector 

\ /~. 

(s)~ l (A)Optimal Solution 
Objective Vecto~ 

a b 

Fig. 3. Central trajectories, with different objective functions. The central path ends up in the analytic 
center of the optimal face. (a) The degenerate case. (b) The almost degenerate and non-degenerate 
cases. In the almost degenerate case the central path comes close to the boundary, which illustrates 

that the analytic center is not a geometric concept. 
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4.1.4. Con tinuous trajectories of Karmarkar's projective scaling algorithm 

Bayer and Lagarias [11] prove that the iterates of the projective scaling algo- 
rithm [50] are obtained as the conical projections of the affine scaling iterates for the 
homogenized LP problem. Hence, the results on the limiting behavior of the affine 
scaling continuous trajectories can be used to analyze the limiting behavior of the 
projective scaling continuous trajectories. Using this idea, Monteiro [76, theorem 
4.1] obtains the following result: the continuous trajectories of the projective scal- 
ing algorithm applied to LP problems in Karmarkar 's canonical form converge 
to an interior point of 79,. Further, the projective dual estimates defined by Todd 
and Burrell [92] converge to the analytic center of 7),. 

We note that analogous results hold true for the variants of the projective 
scaling algorithm for the general standard form problems, e.g., [25, 113], even 
without requiring the boundedness of the optimal face [98]. 

Before presenting the results on the Iri-Imai algorithm and Gonzaga's 
algorithm, we introduce the potential functions used in these methods. Let z be 
the optimal value of (P). We assume below that z is known in advance and that 
79. is bounded. The potential function and its multiplicative version are 

n 

fq(X) = q In (eTx -- z) -- y ~  In xi, 
i = 1  

Fq(x) = exp (fq(xl) = (cTx -- z)q 
IIi% 

(4) 

respectively, where q is a non-negative parameter that depends on the algorithm 
used. Under some reasonable assumptions, the value of the potential function is 
shown to diverge to -oo  only if x approaches 79.. Hence, solving (P) reduces to 
minimizing the potential function. 

4.1.5. Continuous trajectories of  the Iri-Imai algorithm 

Imai [45] proves that the potential function Fq(X) above, which they call the 
multiplicative barrier function [47, 46], is strictly convex if q >_ n + 1, or if q = n and 
79 is bounded. They propose to solve (P) using the Newton method to minimize 
Fq(X). Their search direction is also a linear combination of the affine scaling and 
the centering directions (see e.g. [42, 106]). Tsuchiya [97] analyzes the discrete trajec- 
tories of this algorithm in the vicinity of the optimal solution set, demonstrates its 
quadratic convergence, and observes that the search direction approaches the nega- 
tive centering direction in the limit. Using the same type of analysis, he obtains the 
following result: the limiting point of a continuous trajectory of the Iri-Imai algo- 
rithm is the analytic center of one of the faces (including vertices) of 79.. Further, the 
only stable limit points are the vertices, and the remaining limiting points are 
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Fig. 4 Continuous trajectories for various IPMs. (a) The continuous projective scaling trajectories. 
Although the trajectories terminate in the relative interior of the optimal face, they do not approach 
the analytic center of this face. Co) The continuous trajectories of the Iri-Imai algorithm. Most of the 
trajectories are pulled towards one of the two vertices of the optimal face as they approach it. (c) The 
continuous trajectories of Gonzaga's affine scaling potential reduction algorithm. This figure illus- 
trates the case where q > r. Every trajectory is seen to approach the analytic center of the optimal face 
from a direction tangential to the optimal face. (d) The continuous trajectories of the affine scaling 

method. The trajectories end up in the relative interior of the optimal face. 
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unstable. This is similar to the limiting behavior of the negative centering direction 
mentioned earlier. 

The continuous trajectories of many IPMs end up in the relative interior of 
79., whereas almost all the trajectories of the Iri-Imai method lead to vertices. 
This unusual property deserves further investigation. 

4.1.6. Continuous trajectories of Gonzaga's affine scaling potential reduction 
algorithm 

Gonzaga [30] proposes a steepest descent method (with respect to the metric 
used in the affine scaling algorithm) for minimizing fq (q > n), and proves its 
polynomiality. This steepest descent direction is a linear combination of the affine 
scaling and centering directions [42]. The limiting behavior of the continuous 
version of this algorithm is analyzed in detail by Monteiro [75]. He uses the idea 
of characterizing the trajectory as the set of minimizers of the one-parameter 
convex programming problems as in [3]. He proves the following interesting results 
under the assumption of bounded feasible region: the continuous trajectories of 
Gonzaga's affine scaling potential reduction algorithm converge to the analytic 
center of 79,, and the limiting direction depends on the parameter q of the potential 
function. There exists a threshold value r such that if q < r, then the limiting direc- 
tion of every trajectory coincides with the limiting direction of the central path. If 
q > r, the limiting direction of the trajectories is tangential to the optimal face 
79.. In the remaining case (q = r), the limiting directions (which depend on the 
initial point) of the trajectories are not parallel to P, .  

In fig. 4 some trajectories of the following methods can be found: projective 
(fig. 4(a)), Iri-Imai (fig. 4(b)), potential reduction (fig. 4(c)), and affine scaling 
(fig. 4(d)). 

4.2. CONTINUOUS TRAJECTORIES OF PRIMAL-DUAL IPMs 

As in the primal (or dual) IPMs, there are several standard primal-dual IPMs 
such as the primal-dual affine scaling algorithm, path-following algorithms, and the 
potential reduction algorithms. The search directions for these algorithms can be 
shown to be linear combinations of the search directions of the primal-dual affine 
scaling algorithm. A recent survey of search directions is given by Den Hertog and 
Roos [42]. Also see Gonzaga [34] for an earlier survey on search directions. The 
primal-dual affine scaling directions are 

PAFS : -DPAD(XS) l/2e, d~,FS = - D - I ( I  - PAD)D(XS)I/2e, (5) 

where D = X1/2S-1/2, and the primal-dual centering directions are 

p~ = -DPao(XS)-1/Ze, dE = - D - I ( I  - PAo)(XS)-U2e. 
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While the vector fields associated with the primal IPMs have a rich structure near or 
on the boundary of the feasible region, as demonstrated above, the corresponding 
properties are not yet known for the primal-dual vector fields. This is an interesting 
topic for further research. 

One of the important tools in analyzing the continuous trajectories of the 
primal-dual IPMs is the following map T from 7 ~° x D O to the interior of R~_ given 
by 

T(x, s) : XSe = t. 

This map is studied by McLinden [64] in a more general context and is shown to be a 
homeomorphism (i.e., T is one to one and onto, and T and T -1 are continuous) 
between the two sets. He also shows that the inverse map T -1 is differentiable 
almost everywhere. The boundary behavior of mapping T is studied for monotone 
complementarity problems in [65, 37]. 

4.2.1. Continuous trajectories of  the primal-dual affine scaling algorithm 

The primal-dual affine scaling algorithm can be regarded as the Newton 
method applied to the Karush-Kuhn-Tucker necessary conditions for (P) and 
(D). Hence, in the t-space introduced above, the trajectory is the line connecting 
the initial point and the origin. The limiting behavior of this trajectory is studied 
by McLinden [64], Megiddo [66], and Kojima et al. [53]. The continuous trajectory 
of the primal~dual affine scaling algorithm, initiated at the point (~, ~,), converges to 
the weighted primal--dual analytic centers of the optimal faces 7:'. and D., which are 
the unique minimizers of the weighted logarithmic barrier function, 

x , s  iEB i E N  

where t = . ~  and (B, N) is the partition discussed in section 2. 

4.2.2. The primal-dual potential reduction algorithm 

The primal-dual potential function 

n n 

(n + x/n)InxTs - ~ I n x i s i  : (n + V%) lntTe -- ~-~lnti 
i = 1  i = 1  

was introduced independently by Tanabe [85] and Todd and Ye [93]. The primal- 
dual potential reduction algorithm is the steepest descent method for the primal- 
dual potential function with respect to the affine scaling metric in the t-space, see 
[85, 56, 5.5]. 
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It is shown [86, 55] that the continuous trajectories of this algorithm can be 
expressed explicitly in t-space. Using this result, we see that every trajectory 
approaches zero in the t-space from the direction e. Together with the result explained 
above, this implies the following: the continuous trajectories of the primal-dual 
potential reduction algorithm converge to the analytic centers of P .  and 79.. 

5. Effects of degeneracy on numerical performance 

The main computational step in all IPMs is solving a linear equation system 

AD2ATu = v, (6) 

for some v, where D is a diagonal matrix with positive diagonal elements di, 
i = 1 , . . . ,  n. The matrix D depends on the IPM. The primal methods usually use 
D = X ,  the dual methods D =  S -1, and the primal-dual methods use 
D = X 1 / 2 8 - 1 / 2 .  

It is shown in Giiler and Ye [38] that if any algorithm for linear programming 
generates interior points (x k, s k) satisfying the condition 

min (Xks k) 
(xk)Ts k _> ~, (7) 

for some constant ~ > O, then any limit point (x*,s*) of the iterates (xk, s k) is in 
7 ~° X D °. In fact, relation (7) implies that there exists a constant 7, where 
0 < 7 < 1, such that the relations 

7 < x f < 1 / 3 '  f o r j E B ,  (8) 

7 < s k  < 1 / 7  f o r j E N ,  (9) 

are satisfied for all k > 0. Here (B, N) is the partition defined in section 2. To the 
best of our knowledge, except for the Iri and Imai method, methods like Karmar- 
kar's original algorithm where the optimal value is assumed to be known, and the 
primal-dual potential reduction algorithms with exact line search, all the known 
polynomial IPMs satisfy condition (7) and hence conditions (8) and (9). 

Note that xku ~ 0 and s~ ~ 0 in any convergent IPM. Therefore, the limiting 
behavior of As(D~)2A~ determines the asymptotic behavior of the linear systems 
(6). 

In the primal or dual affine scaling methods, it seems difficult to obtain 
detailed information about the asymptotic behavior of D k and hence to obtain 
information about the asymptotic rank of the matrices As(DkB)2A~. Of course, in 
the primal affine scaling method of Dikin and its variants, if (P) is non-degener- 
ate, then the matrix k 2 T As(DB) As converges to the matrix As(x~)EA T, which is 
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non-singular. If (P) is not near-degenerate, then this matrix is well-conditioned and 
numerical problems are absent. However, the algorithm might have trouble if the 
starting interior point x ° is very close to the boundary of the non-negative 
orthant. The same considerations apply to the dual affine scaling methods. 

The situation is much clearer for path-following methods [30-32, 43, 52, 54, 
79, 80, 77], and primal-dual potential-reduction algorithms [56, 93, 109]. As shown 
in [38], all these algorithms either explicitly generate a primal-dual solution 
sequence (x k, s k) satisfying condition (7), or can generate such a sequence. It turns 
out that we can obtain more information about the matrices Ds k in this case, as we 
shall now explain. 

Assume for the moment that (Dk) 2 = Xk(Sk) -1. Then, for any i, 

X i X 2 xT$ 

s i xTs XiS i 

If i E B, it follows from relations (7), (8), and (9) that 

7 2 X i 1 
< - - <  . ( 1 0 )  xTs -- Si -- ~72(xT$) 

This shows that the condition numbers of the matrices D k are uniformly bounded 
and bounded away from zero. Thus, when matrix As has full rank, then matrices 

k 2 T  AB(DB) A B also have full rank, and the condition numbers of the latter matrices 
are uniformly bounded. It is not hard to verify that similar results hold true for 
D~ in the remaining cases. We summarize our conclusions below. 

(1) If (P) and (D) are both non-degenerate on their respective optimal faces, then 
both programs have unique solutions and the matrices As and As(Ds)k 2AsT 
are all non-singular. The linear systems (6) are well conditioned, at least 
when ~ and 7 are not too small in (10). 

(2) If (P) is degenerate and (D) is non-degenerate, matrix As has less than rn 
columns and so rank As < m and k 2 T AB(DB) As is singular, This means that 
the linear system (6) is ill-conditioned. Numerical problems caused by this 
ill-conditioning are reported by Gill et al. [26]. Shanno [82] reports that in 
his experience with OB 1, degeneracy does not seem to cause great problems 
under these conditions. In fact, IPMs achieve great advantages over the 
simplex method in precisely these situations.* 

(3) If  (P) is non-degenerate and (D) is degenerate, then matrix As has more than 
m columns and so rank As m and k 2 T = AB(DB) An is non-singular. This implies 
that the linear systems (6) will be well-conditioned. It is rather interesting that 

*Recently our attention was called to the paper of Stuart, where he proves that the norm of the matrix 
(AD2AT)-1AD2 is bounded uniformly, independent of the scaling matrix D. This might clarify the 
computational robustness of IPMs. [G.W. Stuart, On scaling projections and pseudoinverses, Lin. 
Alg. Appl. 112 (1989) 189-193.] 
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if (P) is non-degenerate, the degeneracy status of (D) matters little from the 
numerical point of view. 

(4) If both (P) and (D) are degenerate, then not much can be said about the par- 
tition (An, AN). It is possible that As has full rank m so that the resulting 
matrices A(D'~)2A "r might have a chance of being well-conditioned. How- 
ever, ill-conditioned matrices cannot be ruled out. 

One final issue here is the selection of the starting point. A well centered initial 
point (x°,s °) and repeated centering during the algorithm is essential for good 
numerical performance [82]. A bad initial point (x°,s °) (meaning close to the 
boundary, but neither close to an optimal face nor an optimal vertex) can cause 
immediate problems for any IPM. This point is emphasized by various authors, 
e.g. [10, 62, 63, 82, 83]. To the best of our knowledge, it is not known how an 
IPM behaves numerically when it is initiated from a degenerate (primal and/or 
dual) point very close to the optimal set. 

6. Finding basic solutions 

6.1. FROM AN OPTIMAL INTERIOR SOLUTION TO AN OPTIMAL BASIS 

The simplex method solves the LP problem by moving from basis to basis, 
while the objective value changes monotonically (in general, not strictly). Due to 
degeneracy problems, it is impossible to guarantee strict monotonicity of the objec- 
tive value in pivot methods, and this implies cycling and stalling problems. As a 
compensation, pivot methods always provide an optimal basic solution, and this 
is important for several reasons. A basic solution is necessary for cutting plane 
methods in mixed integer programming, and methods for sensitivity analysis and 
parametric programming are relatively inexpensive when an optimal basic solution 
is at hand. Basic solutions have a minimal number of non-zero coordinates, which is 
also important in practice. 

These advantages provide sufficient motivation for generating an optimal 
basic solution from an optimal or near-optimal solution obtained by an IPM. It 
is evident that this question occurs only in the case of degeneracy, since otherwise 
the primal and dual optimal solutions are unique and are also basic solutions. As 
we have seen in section 3, in the case of degeneracy, most of the IPMs (except 
Iri-Imai's method) converge to the interior of the optimal face, and hence provide 
an optimal solution with a maximal number of nonzero coordinates in both the 
primal and dual problem (see e.g. Giiler and Ye [38]). The existence of strictly 
complementary primal-dual optimal solutions has been proved first by Goldman 
and Tucker [28]. Balinski and Tucker [7] propose a (non-polynomial) algorithm 
to generate such a strictly complementary pair. In contrast, as we will see below, 
an optimal basis can be obtained from an optimal primal-dual solution pair in 
strongly polynomial time. 
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Since IPMs provide a maximal complementary optimal solution pair, a 
description of the optimal face is immediately at hand. This seems to be useful, addi- 
tional information for which one has to do work in pivot methods. It was believed 
for a long time that for postoptimal analysis an optimal basis solution is necessary. 
Until recently there was no method known for postoptimal analysis without an opti- 
mal basis at hand. For surveys of the traditional methods, see Gal [22, 23] and Ward 
and Wendell [103]. Without first obtaining basic solutions, Adler and Monteiro [2] 
present a method for right hand side parametric analysis. The amount of work 
involved in these methods is substantial. In contrast, the familiar simplex post- 
optimal analysis techniques are inexpensive. Unfortunately, in the degenerate 
case, the methods implemented in simplex based packages provide unreliable infor- 
mation [48]. To get the correct information one has to find all the primal optimal 
and all the dual optimal bases [48, 103]. In theory this is an exponential proce- 
dure, and in practice at least as expensive as the algorithm in Adler and Monteiro 
[2]. Jansen et al. [48] present a method for postoptimal analysis based on the solu- 
tion obtained from an IPM. The IPM and simplex based approaches are compared 
as well. They show that all the information concerning postoptimal and parametric 
analysis can be obtained by using IPMs, with the same or frequently better compu- 
tational complexity. In conclusion we may say that if the optimal solution is non- 
degenerate then there is no difference between the IPM and simplex based 
postoptimal analysis approaches. In case of degeneracy, the IPM approach is 
theoretically better since the computational cost of obtaining the complete infor- 
mation is polynomial. 

Megiddo [67] presents a strongly polynomial algorithm for finding an optimal 
basis, provided optimal solutions are available to both (P) and (D). Due to its 
theoretical and practical importance we present the algorithm. 

ALGORITHM TO FIND AN OPTIMAL BASIS 

Initialization: 
Suppose that x primal and y, s dual optimal solutions are available. Let 
A = [A1, A2, A3], x = (xt, x2, x3), s = (sl, s2, s3), c = (ct, c2, c3) where index 
1 refers to the positive coordinates of x, index 2 refers to the zero coordinates 
of both x and s, and index 3 refers to the positive coordinates of s. Then we 
have AlXl = b, x I > 0, x2 = 0, x 3 = 0, and ATy = el, A~y = c2, A3Ty < c3. 

Reduce the positive part of  x: 
While the columns of A~ are dependent do 

begin 
Find (e.g., by pivoting) a vector t such that Alt = 0 (this implies cx'rt = 0). 
Using t, eliminate a positive coordinate (say j )  from xl, while preserving 
the non-negativity of xl (ratio test). Remove column aj from Al and add 
it to A2. 
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end 
Let B = Al. (Note that the columns of B are independent at this step.) 

• Extend B to a basis: 
Extend B using A2: 
While rank(B) < rank[A1, A2] do 

begin 
If rank[A1, A2] > rank(B) and a column aj of [A1, A2] is independent from 
B, add aj to B. 
end 

Extend B using A3: 
While rank(B) < m do 

begin 
Find (e.g., by pivoting) a vector u such that BTu = 0 (this implies A~u = 0, 
A~'u = 0) and A3Tu ~ 0. Note that u satisfies bTu = 0 (since uTA~xl = bTu). 
Using u, eliminate a positive coordinate (say j )  from s3, while preserving 
the dual feasibility of s (ratio test). Remove aj from A3, and add it to A2 
and B. 
end 

(We now have an optimal complementary pair (x, s), where rank(B) = m. 
Using the formulae Bxs = b and BTy = es, we see that basis B is optimal.) 

We remark that only Gaussian elimination steps (pivoting) are necessary to 
perform this algorithm. The amount of work involved depends on the degree of 
degeneracy of the LP problem. In the worst case n pivots (the dimension of the 
space) are necessary to identify an optimal basis. The algorithm uses both primal 
and dual information and generates optimal basic solutions both to (P) and (D). 
In this sense Megiddo's result is quite unique since most authors concentrate on 
getting just a primal or dual optimal basic solution, which is much simpler. 

Further, Megiddo [67] presents the following three problems: 

Problem 1. Find an optimal basis for the LP problem or conclude that no such basis 
exists. 

Problem 2. If it is known that optimal solutions exist, find an optimal basis, i.e., a 
basis which is optimal for both (P) and (D). 

Problem 3. Having an optimal solution to (P), find an optimal basis, i.e., a basis 
which is optimal for both (P) and (D). 

Problems 1 and 2 are equivalent to solving the LP problem. Problem 3 asks for an 
optimal basis (optimal both for the primal and dual problems) provided a primal 
optimal solution is available. This last problem seems to be easier than the other 
two since we have an optimal solution to (P). But Megiddo also proves the surpris- 
ing result that the complexity of the above three problems is the same. This result 
shows that if we have only partial information (just a primal or dual optimal solu- 
tion), then identifying an optimal basis is equivalent to solving an LP problem. 



130 O. Gfiler et al./Degeneracy in interior point methods 

These results indicate that we need a primal-dual approximate optimal 
solution if our purpose is to obtain a primal-dual optimal basis. Primal-dual and 
path-following methods generate primal and dual solutions in the course of the 
algorithm; the other methods do not. In theory, many of the primal (and dual) algo- 
rithms including the affine-scaling algorithm and Karmarkar's algorithm are shown 
to generate a dual (and primal) optimal solution in the final stage of the iterations. 
However, from the practical point of view, at present it seems fair to state that 
primal-dual algorithms have an advantage in producing approximate primal- 
dual optimal solutions. 

If we were only interested in an optimal basic feasible solution to (P), prob- 
lem 3 can be relaxed. 

Problem 4. Having an optimal solution to (P), find an optimal basic feasible 
solution to 0P), i.e., a basis which is optimal for the primal, but not 
necessarily feasible for (D). 

The solution to this problem can be obtained by modifying Megiddo's algorithm. 
The algorithm can be sketched as follows: if the column vectors of the positive 
coordinates are dependent, then one can eliminate the dependent columns (one 
Gauss elimination for a dependent vector) while the objective does not change. 
Then the obtained independent system can easily be extended to a basis. There- 
fore, we conclude that there exists a strongly polynomial algorithm for generating 
a primal optimal basis from a primal optimal solution. 

Based on an old paper of Charnes and Kortanek [15], Kortanek and Zhu [58] 
present some "purification algorithms" which solve problem 4. From an interior 
solution, they generate a basic feasible solution which has at least the same objec- 
tive value. Conversely, having a basic feasible solution, they generate an interior 
solution with at least the same objective value as the basic solution. This purifi- 
cation algorithm, like Megiddo's algorithm, is based on Gaussian elimination 
(pivoting). It is a strongly polynomial algorithm for identifying an optimal solution 
from a 2 -2L approximate optimal solution, which demonstrates its theoretical 
importance. 

Mehrotra [70] chooses another approach. His algorithm generates "controlled 
random perturbations" of the LP problem. The objective vector is perturbed with a 
small positive vector r with components r i = e R A N D ( 1 , 2 ) / ( 4 O n x i )  for all i. 
Here R A N D ( l ,  2) is a function generating a random variable uniformly distributed 
in (1,2). If the primal--dual predictor--corrector method ends at a basis, the 
algorithm is stopped; otherwise another perturbation is generated. There is no 
guarantee of success in this method; theoretically an exact basis identification 
method (see above) might still be necessary. However, Mehrotra reports that in 
his experiments the perturbation method always produced an optimal basis. 
This algorithm is different from the Megiddo and Kortanek-Zhu approaches. 
Instead of postoptimal basis generation, the problem is modified to obtain an 
optimal basis. 
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6.2. SWITCHING OVER TO A SIMPLEX METHOD 

Another interesting (reported to be efficient for very large problems) 
approach to generate an optimal basis is to switch over from an interior point 
method to a simplex method. Such approaches are discussed below. The theoretical 
disadvantages of these methods are obvious. Polynomial time bounds are lost and 
without degeneracy handling methods cycling (stalling in practice) is possible. 

The first such approach is presented by Kojima and Tone [57] for Karmar- 
kar's projective algorithm. If the duality gap is small, they use the value of the 
variables to predict the optimal basis, and initiate the simplex method from this 
basis. 

The recent experiments carried out by Bixby et al. [12], Lustig [60] and Ye and 
Kaliski [112] use such an approach. They report that this approach is superior (on 
an extremely large practical problem) to both the simplex method and the IPMs. 
After generating a feasible basis, the simplex method seems to work well. Bixby 
et al. [12] and Lustig [60] use Megiddo's strongly polynomial optimal basis identifi- 
cation technique to switch over to the simplex method. This algorithm does not 
suffer from degeneracy problems during the generation of an almost optimal 
interior solution. Ye and Kaliski [112, 49] project the actual interior solution 
onto the predicted optimal facet. If this does not give satisfactory results due to 
numerical problems, they switch over to the simplex method by using some purifi- 
cation algorithm. Another difference between the above mentioned two approaches 
is that Bixby et al. switch over to the simplex method earlier than Ye and Kaliski. In 
both approaches, after generating an optimal basis, the simplex method seems to 
work well. 

Megiddo [68] also considers a similar approach and switches from a primal- 
dual IPM to an appropriately parametrized variant of Dantzig's parametric self- 
dual simplex algorithm [16]. Here any iterate of the primal-dual IPM provides an 
appropriate parameter vector and an initial solution to the self-dual parametric 
simplex algorithm, which terminates at an optimal basic solution. 

Bixby and Saltzman [13] use a different approach. They do not use the dual 
information provided by the IPM, but only the actual primal solution. Therefore 
their method is theoretically not polynomial. Another difference is that unlike 
Megiddo's [67] strongly polynomial algorithm they construct a numerically stable 
full basis at the start (not step by step as Megiddo) and then they use the standard 
simplex steps to recover the solution. Both the standard Phase I and Phase II pro- 
cedures of CPLEX are used. 

The purification algorithm of Kortanek and Zhu [58] can also be regarded as 
a combination of IPMs and simplex methods. Here, given an interior solution, a 
primal feasible basis with an improved objective value is identified. Then the opti- 
mality of the primal basis is checked. If it is not optimal, then a step is taken 
back into the interior of the feasible set. In case of degeneracy cycling prevention 
algorithms are needed. 
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6.3. DETECTING POSITIVE AND ZERO VARIABLES AT THE OPTIMUM 

In the third class of methods one tries to identify an optimal basis during the 
process of an IPM. Such methods usually assume non-degeneracy, but in some cases 
the non-degeneracy condition can be relaxed. Using inscribed and circumscribed 
ellipsoids, Todd [91], Ye [107], and Ye and Todd [115] give criteria for identifying 
active and inactive constraints at the optimum. Asic et al. [5] and Tapia and Zhang 
[88] use an indicator associated with the current iterate which converges at the same 
rate as the square of the measure associated with the iterate. Hence, this indicator 
converges much faster and identifies the active and inactive variables at the opti- 
mum. This indicator approach breaks down if both the primal and dual problems 
are degenerate. 

Gay [24], Ye [110] and Mehrotra and Ye [73] have also developed some tech- 
niques to identify optimal faces of  LP problems. We do not discuss these methods 
here, for two reasons. On the one hand, these are not basis identification, but opti- 
mal face identification methods. On the other hand, there is no guarantee that active 
or inactive variables can be identified in every case. 

7. Conclusions 

Although IPMs go through the interior of  the feasible region, degeneracy 
still has a role to play in IPMs. Global convergence proofs are dependent on non- 
degeneracy only for affine scaling algorithms, which might suggest that IPMs do not  
suffer from degeneracy problems. Unfortunately, this is not the case, but the 
problems here are different from the cycling and stalling problems occurring in 
the simplex method. 

Degeneracy and redundancy affect the central path, which most IPMs aim to 
follow. Numerical performance of  the algorithms may suffer from problems of  
numerical instability and ill-conditioning if the optimal solutions are degenerate 
or near-degenerate. Degeneracy does not seem to cause serious problems in other 
areas. 

In case of  degeneracy, most  of  the IPMs provide a strict complementary solu- 
tion pair. Generating an optimal basis from this solution is strongly polynomial, but 
the computational  complexity depends on the degree of  degeneracy. 
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