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P E R F E C T  D I S T R I B U T I O N  O F  P O I N T S  ON A S P H E R E  

by 

L. FEJES TOTH ('Budapest) 

w 1. Circles , dictators and fuel depots 

We recall MESC~:OWSK~'s [1] interpretation of the problems of the 
densest packing and the thimmst covering of the sphere by n congruent circles: 

How should the residences of rt inimical dictators, governing on a plan- 
et, be distributed so a s  to maximize the least distance between any two 
of them ? 

How should n fuel depots be arranged on a planet so as to minimize 
the  greatest distance between a point of the planet and the nearest depot ? 

Tile dictator problem may be interpreted bv fuel depots and vice versa: 
How should n fuel depots be arranged on a planet so that  an accidental 

explosion of one of them should least endanger the rest ? 
How should the residences of n Mlied dictators, governing on a planet 

be placed so as to control the planet as well as possible [3] ? 
These problems have a rather vast literature (see e.g. [2], [3]). However, 

the only values of n for which the solutions are known, are n -- 2, 3 , . .  
9, 12, 24 and n -- 2, 3 . . . . .  7, 10, 12, 14, respectively. 

There are some point sysvems which are solutions of both problems, 
namely t~vo antipodal points, the  vertices of a regular trigonM ~essella~ion 
{3, It} (]c -- 2, 3, 4, 5) and the vertices and face-centers of {3, 2} (or {2, 3}). 
So the numbers 2, 3, 4, 5, 6 and 12 are espeeially favorable for a set of allied 
dictators not trusting each other, as well as for a set of fuel depots. The start- 
ing point of the present investigation was a problem which I was not able 
to solve: Are there any further such favorable numbers ? I t  may be conjectured 
tha t  the answer is " N o " .  We try to support this conjecture by proving a 
weaker s tatement.  

w 2. Perfect distribution of points 

The problem of the densest circle-packing and the problem Of the  
thinnest circle-c0vering of the sphere may be united ii~ a more general prob- 
lem: How should the centers of n circles of given I radius r be distributed on 
the sphere so as to maximize the area covered by the circles. I t  may happen 
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t h a t  a set of n points yields the solution of  this problem for all values of r. 
Then we say t h a t  th  e points are perfectly distributed or t h a t  the  set is perfect. 

A trivial  example for a perfect  s e t  of points  is given by a pair  of anti- 
podal  points.  Fur thermore ,  i t  is known [4] t h a t  the  vertices of a regular trigo- 
hal  tessellation are also perfect ly distr ibuted.  We claim t h a t  this enumerat ion  
is complete. This  is expressed by  the  following 

T ~ o ~ N .  I f  n points are perfectly distributed on a sphere, then n = 2, 3, 
4, 6 or 12 and the points are the vertices of the tessellation {2, 3}, {3, 2}, {3, 3}, 

4} {3, 5}, respectively 

The proof  follows in w167 3 and 4. 

w 3. Necessary conditions 

Let  U =  {P1 . . . . .  P~} be a perfect set of n > 2  points,  a the  least 
spherical distance between pairs of points and  g the  graph of U consisting 
of  the n points and  all spherical segments of  length a which join pairs of points.  
The graph g has the  obvious proper ty  

p. All angles included by adjacent  edges of g are greater  t han  u/3. 
We now" prove the  following condition. 
c. The uni t  vectors issuing from a point  of U in the  direction of the 

edges of g are in equilibrium. 
L e t  the  edges s ta r t ing  from Pn end in P1, P~ . . . . .  P~, Le t  c~(r) be the  

closed circular disc of  radius r centered a t  P~. Since c~(a]2) is touched  by 
c1(a/2),. .  ,, ck(a/2) without  having a point  in common with ct~+l(a/2) . . . . .  
c,~_1(a/2), we can choose r > a/2 so t ha t  cry(r) is intersected by  cl(r ) . . . . .  ck(r) 
in k disjoint  " lenses" wi thout  being intersected by  ck+l(r) , . . . ,  cn-l(r). The 
definit ion of  U implies t h a t  the  variat ion,  of the  to ta l  area t of these lenses 
effectuated by a small  var ia t ion of P~ is never  negative.  

We choose a point  A o n  the  boundary  of  ca(r) and introduce polar  
coordinates wi th  the  pole P,~ and  the  initial line PnA.  Let  the  line P~A be 
the  equator,  so t h a t  the  point  N -- (z/2, ~/2) is the  north-pole.  

Le t  B = (r,/~) and  C = (r, y) be two points on the  bounda ry  of %(r). 
The circular are BC consists of the  points we pass when travel ing f rom B 
to C in a posit ive direction. For  the  moment  we suppose t h a t  this arc lies on 
the semicircle ( r , - - z / 2 )  (r, ~2) .  Le t t ing  b and  c be the  distances of B and  
C from N, we have cos b -- sin r sin fl and  cos c = sin r sin y. Thus, ro t a t ing  
c~(r) about  N th rough  2u, the  arc  B C  will sweep over a circular ring of  area 

2u(1 -- cos b) -- 2~(I --  cos c) = 2.n sin r(sin y -- sin t~) = 

-= 4 ~r sin r sin -Y -- fl cos fl -?----ZY 
2 2 



FEJES TOT~: PERFECT DISTRIBUTION OF POINTS 27 

This fo rmula  continues to  hold for any  posi t ion of  B and  C, i f  we choose 

fi and  7 so t h a t  0 < 7 - -  ~ < 2~ and  assign a negat ive  value to  the  a rea  swept  
over  by  an are (or the  p a r t  of an arc) lying on the  semicircle (r, ~/2) (r, ~/2). 
Thus the  area swept  over  by  the  ares cut  off  f rom the  b o u n d a r y  of  c~(r) by 
cl(r ) . . . . .  ca(r ) when sliding cn(r) along the  equa to r  PnA t h rough  an infinitesi-  
ma l  distance,  is p ropor t iona l  to  cos ro 1 ~ - . . . - ~ - c o s  ~k, where ro 1 . . . .  , rok 
deno te  the  polar  angles of  the  midpoints  of  the  arcs. Since this area is equal  
to  the  var ia t ion  Of t, we have  

coso~ 1 + . . .  + c o s e % - -  0. 

Replacing A = (r, 0) by  the  point  (r, ~/2), we obta in  

sin co 1 J r . . . @ s i n e ) a - - 0 .  

This comple t s  the  proof  of  c. 

The  n u m b e r  o f  edges issuing f rom a poin t  is called the  order of  the  point .  
The  condi t ion  c immed ia t e ly  implies the  following ones. 

c.1. There  is no point  of  order  1. 

e.2. The  edges issuing f rom a point  of  order  2 are on one line. 
c.3. The  edges issuing f rom a poin t  of order  3 end at  the  vert ices of  a 

regular  t r iangle .  

c.4. T h e  edges issuing f rom a point  of  order  4 are in a cen t rosymmet r i e  
posit ion.  

W e  cont inue  to  p rove  condi t ion 

c.5. The  edges issuing f rom a point  of  order  5 end at  t he  vert ices of  a 
regular  pen tagon .  

Le t  t he  edges of  g issuing f rom P~ in the i r  cyclic order  be P~P1 . . . . .  
P,P~. L e t  PIP.z be  a greates t  side of  the  pentagon P~ . . .  Pz- Le t  the  angles 
which the  di rect ions  P,Px . . . . .  P,Pa m a k e - w i t h  the  half-lb~e bisecting the  
angle P1PnP~ be --m, ~o, ma, e%, m s (Fig. 1): We claim t h a t  2co =: <~ P1pnp2 < 

P~ 

Fig. I 



28 ~F~JJ~S ~O/'H; P~F~CT :DXST~IBUTION 0~' POII~TS 

< ~/2. For, assuming tha t  w > .~/4, we have i n  view of p 

2 cos co q- cos 093 q- cos ~4 q- cos r 5 _<< 2 cos 45 ~ q- 2 cos 105 ~ q- cos 165 ~ = 

: -- 0 , 0 6 9 . . . < 0 ,  
which contradicts c. 

Let  R be the least radius such tha t  the boundary of c~(R) is completely 
covered by e l ( R ) , . . . ,  %(R). As an immediate consequence of the inequality 
<Y- P~P~P2 < a/2, observe tha t  c~(R) has no point in common with %(R) . . . . .  
c~_l(R ). This follows from the fact tha t  ali of the angles <): P1PnP2 . . . . .  

PhP~P~ are less than  an angle of a regular quadrangle of side-length a. 
Suppose tha t  among <% P~P~P2 . . . . .  ~ PhP~P~ there are exactly m 

greatest angles. Let the half-lines bisecting these angles be h~ . . . .  l~,m. Re- 
place R by a smaller radius r so as to obtain on the boundary b of ca(r) m equal 
open arcs not covered by cl(r ) . . . . .  ch(r ), while the points of b not belonging 
t o these ares or to their extremities are interior point.s of one of the circles 
t~(r) . . . . .  ch(r ). Repeating the argument used in the proof of c, w e  see tha t  
che unit vectors emanating from P~ in the direction of h~ . . . . .  , hrn are in 
q.uilibrinm. This implies, along with c tha t  m =  5. Thus the angles 4; P~P,~pz, 
e t . ,  <% P5PnP 1 ~re equal and the�9 P1- . .  P z i s  regular. 

w 4. Admissible graphs 

We say tha t  an edge of g is of type (kl) if it �9 vertices of order k 
and 1. By c.1 and p we have 2 _<< k, l ~ 5. We Claim tha t  if g has an edge of 
type ( k l ) t han  all edges are of this type. We will show this by scrutinizing 
the various types of edges in a special order. 

92. Preserving the notations of the proof of  c, we assume tha t  k z 2. 
Supposing tha t  a < er/2, the  are of the lenses cl(r ) f3 cn(r) and c2(r ) N G(r} 
would decrease by sliding c,~(.r) perpendicularly to the segment P1Pz through 
a small distance. Since this is impossible, we m u s t  have a > ~/2. I f  a ~ ~/2, 
then P1 and Pz are antipodal points, say, the neff- and south,pole, and we 
have exactly three further points P3, P4, Ph, all lying on the equator. By c.3 
the equatorial points must be the vertices of a regular triangle. ~Tow we 
can replace P3 by another equatorial point without changing the total  area T 
covered by e l ( r ) , . . . ,  %(r), but disturbing the condition of equilibrium in 
Pi  and Pz- Thus T could he h~creased by a small variation of P1 or P2, showing 
that  the original distribution of P~ . . . . .  Ps could not be perfect. Consequently 
we have a > ~/2~ This implies immediately tha t  n ~- 3, so tha t  we have three 
edges of type (22). At the same time we see tha t  g cannot contain edges of 
type (23), (24) or (25). 

45. We call a connected set of edges of g belonghag to the boundary of 
a convex polygon ~ convex arc. I f  ~/ and B are adjacent vertices of order 
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5 and 4, respectively, then g contains a convex are X A B Y  such that  A 
-~ <): X A B  --~ 2n/5 and B -~ <Y. A B Y  ~ ~/2. Since the distance X Y  is clearly 
less than a, X a u d  Y are identical points (Fig. 2). Therefore the image of 
the edge . B Y  ~ B X  reflected in A , B  is an edge of  g, which contradicts the 
assumption that  B is of order 4. This excludes the possibility of an edge of 
type  (45). 

): Y 

B 

I I 

Fig. 2 

55. I f  the edge A B  is of type  (55), then the argument used in 45 shows 
the existence of a point X of g such that  A B X  is a n  equilateral triangle. 
By  22, 45 andc.3 the point X can only be of order 5. I t  follows that  all points 
of g are  of order 5, 

44. Let B C  be an edge of type  (44). Let  A and D be the images of C 
and B reflected in B and C, respectively. The edges other than A B ,  B C  and 
C D  issuing from B and C cannot lead to four points all different f rom one 
another. Therefore there is ~ point E such that  B E  and C E  are edges of g 
(Fig. 3), I t  follows that  C F  and F D  are also edges of g, where F is the image 

g 

Fig. 3 



30 FEJES T(~TtI: 1)EI~FECT DISTRIBUTION OF P0I~NTS 

o f / ~  re f lec ted  in C. Owh~g to  22, 45 and  c.3 the  points  E,  F and  2) are of  order  
4, showing t h a t  all edges are  of  t y p e  (44). 

35. L e t  A.B be  an edge joining the  po in t  A of  order  5 w i th  t he  po in t  B 
o f  order  3. B y  c.5. t he re  is ano t he r  edge A C  such t h a t  <): B A C  -= 2~/5. B y  

22~ 4 5  and  55 the  po in t  C is also of  o rder  3. There fore  g conta ins  a convex  
are X B A C Y  such ~hat  B = C = 2~/3 (Fig. 4). 

C 

/% 

/ i " . 2 o  \ 

\ 1  / "~ 
\ 1  1 I 

F 

Fig. 4 

V a r y i n g  the  angle A ~ ~ B A C  under  these  condi t ions the  d i s t a n c e  
X Y wilt v a r y  too,  a n d  a s imple  c o m p u t a t i o n  shows t h a t  in case of  A ~ g --~ 
= 60 ~ + 2arceosec g ~ ~ 93~ ' we h a v e  X Y  ~ a .  Since for  the  originM 

are  X B A C Y  we h a v e  A = 2:~/5 ~ ~, the  poin ts  X and  Y m u s t  coincide. 

Thus  A B X C  is a r h o m b u s  of  s ide- length  a a n d  angles 2,~/5 and  2~/3, showing 

t h a t  
cos a ~ cos ~/5 c o t  ~/3, a ~ 37~22 ' .  

W e  clMm t h a t  X has  order  5. Since c.3 rules out  the  possibi l i ty  o f  the  
order  3, we on ly  have  to  inves t iga te  the  case t h a t  X is of  order  4. Then ,  b y  

c.4, t he  image  X D  of  X C  re f lec ted  in X is aIso an  edge o f  g, a n d  by  45 and  
44 D is o f  o rder  ~. Thus  we h a v e  the  convex  are E D X ] 3 F  with angles D = B - -  
~-- 2~/3 a n d  X ~ ~ - -  2~/5 = 3~/5. Because  of  t he  congruence  of  t h e  t r i an-  
gles X D E ,  X B F  a n d  A B X  we h a v e  <~ E X D  = ~ F X B  = u/5, a n d  conse- 
quen t ly  <): F X E  = 2(54 ~ - -  36 ~ -= 2 18 ~ Thus ,  wi th  the  no t a t i on  X E  -= 

= X_F = 2b and  E F  = 2d, we h a v e  

whence 

sin b ~ sin a sin 60 ~ sin d = sin 2b sin !8 ~ 

0 ~ 2 d ~ 3 2  ~ ~ a .  
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This being impossible, we conclude tha t  X is in fact of order 5, and so all 
edges of g a r e  of type (35). 

a4. Let  AB be  an edge joining the point A of order 4 with the point B 
of  order 3. Let  AC be another edge of g such tha t  ~ S A C  ~ z~/2. In  view 
of 22, 44 and 45 the point C is also of order 3. Since <): BAC ~ 90 ~ < ~ 

93~ ', there are two edges BD and CD starting from B and C, respec= 

X 

Fig. 5 

Z 

Y 

tively, and meeting in one point D other than A. By 22, 35 and c.3 D is of 
order 4. So we have a set of points of order 4 equally spaced on the "equator"  
AD. The edges issuing from these points meet in points of order 3 from which 
further edges start  heading to the north- and south-pole, respectively (Fig. 5). 
Thus we have a convex are X C A E Y  such that  C -- E -- 2~/3 and zr/2 ~ dl 
< 2z/3. 

Suppose tha t  the points X and Y do not coincide. I f  both X a n d  Y 
are of order 3, we would have two edges issuing from X and Y crossing each 
other. Since this is impossible, and since by 22 and 35 no point can be of 
order 2 or 5, one of the points X and Y, say X, must be of order 4. This implies 
the existence of a convex arc Z X C A E  Y such that  ~ 3 ~ X ~ 2;~/3. ~[t easily 
follows tha t  the distance Z Y is less than a, so tha t  Z ~ Y. Thus the segment 
X Y, as well as its image reflected in X are edges of g. :But this is impossible 
because together with X and Y there are further points of g equally spaced 
on the parallel circle X Y. This contradiction shows tha t  the points X, I 7 . . . .  
must coincide with the north- and south-pole, respectively. 

I f  the poles were of order 3, we would have ~ CAE-=-2u/3, i.e 
S A C  -- ~/3, which is impossible. Thus the poles are of order 4, showing 

tha t  all edges are of ~ype (34). 
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38. If  g contains an edge of type (33), then by 22, 34 and 35 all edges 
are of type (33). 

To recapitulate our results, we denote by v{p, ~}, e{p, q} and f{p, q} 
the set of the vertices, the set of the edge-midpoints and the set of the face- 
centers of the tessellation {p, q}. again, we write (v + f){p, q} for the union 

(v -}-f){p, g} -~ (v +f){g, 19}. The following table gives the point-systems 
compatible with our conditions for the various types of edges: 

(~2) ~{3, 2} 

(33) ~{3, 3} v{4,3} 

(34) (v + f)(3, 4} 

(35) (v -}-f){3, 5} 

(44) ~(a, 3} ~{3,4} 

(as) ~{3, 5}. 

v{5; 3} 

~{3, 5} 

Observe that the circles of radius a centered at the points of any of 
these point systems cover the sphere completely. Therefore the graph g can- 
not contain points of Order O. 

To conclude the proof of our theorem we must only remark that v{4, 3} 
v{5, 3}, (v +f){3,  4}, (v +f ){3 ,  5}, e{3, 4} and e{3, 5 }  are not solutions 
of the problem of 8, 20, 14, 32, 12 and 30 inimical dictators, respectively. Thus 
the only configurations coming into consideration assets of perfectly distrib- 
uted points are v{3, 2}, v{3, 3}, e{3, 3} = v{3, 4} and v{3, 5}. T h e  fact 
that these sets of points are really perfectly distributed follows from a general 
theorem referred to in w 

w 5. Remarks 

An interesting problem is to enumerate the sets of perfeetIy distributed 
points ill the elliptic plane, l~epresenting the points of the elliptic plane as 
pairs of antipodal points on a sphere, the sets v{2, 3}, v{4, ~}, ~{3, 4} and 
v{3, 5} obviously represent sets of 1, 2, 3 and 6 perfectly distributed pointS. 
Since the ~ets ~{~, 3}, ~{5, ~}, ~{3, ~} ~nd ~{~, 5} can be easily ~uled out by 
counterexamples, the only further possibilities for sets of perfectly distributed 
points are given by (v +f){3 ,  4} and  (v §  5}. Both sets have some 
chances of representing perfect sets in the elliptic plane. 

The notion of perfect sets may be extended to the Euclidean or hyper- 
bolic plane and also to spaces of higher dimension. Let S(r) be a set of balls 
with radius r having nowhere a.eeumulating centers. Let s be a finite subset 
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of S and V(s, r) the volume of that  part  of the space which is covered by the 
balls of ~ without being covered b y  the rest of the balls. I f  V(s, r) cannot 
be increased by rearranging the balls of s in  any way, no matter  how we choose 
s and r, then the centers are said to be perfectly distributed. I t  can be proved 
[5] tha t  the vertices of {3, 6}, {3, 7} . . . .  are perfectly distributed in the  
Euclidean and hyperbolic plane, respectively. I n  the Euclidean plane there 
is no perfect set other than v(3, 6}. As to the hyperbolic plane, it seems 
likely t h a t  there are infinitely many semi-regular sets of perfectly distributed 
points. The sets ~vhich have the best chance to be perfect, are (v + f){7, 3} 
and (v -~f){2q ~= 1,q}, q = 4, 5 , . . . .  Note tha t  the Euclidean 3-space does 
not admit a perfect distribution of points.  For, here the problems of the 
densest sphere-packing and the thinnest sphere-covering, though not solved 
as ye~, certainly lead to Completely different sets of centers. 
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