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PERFECT DISTRIBUTION OF POINTS ON A SPHERE

by
L. FEJES TOTH (Budapest)

§ 1. Circles, dictators and fuel depots

We recall MEscHROWSKI's [1] interpretation of the problems of the
densest packing and the thinnest covering of the sphere by n congruent circles:
How should the residences of # inimical dictators, governing on a plan-
et, be distributed so as.to maximize the least distance between any two
of them? :
How should #» fuel depots be arranged on a planet so as to minimize
the greatest distance between a point of the planet and the nearest depot ?

The dictator problem may be interpreted by fuel depots and vice versa:

How should 7 fuel depots be arranged on a planet so that an accidental
explosion of one of them should least endanger the rest?

How should the residences of n allied dictators, governing on a planet
be placed so as to control the planet as well as possible [3]7

These problems have a rather vast literature (seee.g. [2], [3]). However,
the only values of n for which the solutions are known, are » =2,3,.. .,
9,12, 24 and » = 2, 3,...,7, 10, 12, 14, respectively.

There are some point systems which are solutions of both problems,
namely two. antipodal points, the vertices of a regular trigonal tessellation
{3, k} (k= 2, 3,4, 5) and the vertices and face-centers of {3, 2} (or {2, 3}).
So the numbers 2, 3, 4, 5, 6 and 12 are especially favorable for a set of allied
dictators not trusting each other, as well as for a set of fuel depots. The start-
ing point of the present investigation was a problem which I was not able
to solve: Are there any further such favorable numbers ? It may be conjectured
that the answer is “No”. We try to support this conjecture by proving a
weaker statement. '

§ 2. Perfect distribution of poeints

The problem of the densest circle-packing and the problem of the
thinnest circle-covering of the sphere may be united in a more general prob-
lem: How should the centers of n circles of given radius  be distributed on
the sphere so as to maximize the area covered by the circles. It may happen
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that a set of n points yields the solution of this problem for all values of r.
Then we say that the points are perfectly distributed or that the set is perfect.

A trivial example for a perfect set of points is given by a pair of anti-
podal points. Furthermore, it is known [4] that the vertices of a regular trigo-
nal tessellation are also perfectly distributed. We claim that this enumeration
is complete. This is expressed by the following

THEOREM. If n points are perfectly distributed on a sphere, then n — 2, 3,
4, 6 or 12 and the points are the vertices of the tessellation {2, 3}, {3, 2}, {8, 3},
{8,4} and {8, 5}, respectively.

The proof follows in §§ 3 and 4.

§ 3. Necessary conditions

Let U= {P,, ..., P, be a perfect set of n > 2 points, a the least
spherical distance between pairs of points and g the graph of U consisting
of the » points and all spherical segments of length ¢ which join pairs of points.
The graph ¢ has the obvious property

p. All angles included by adjacent edges of ¢ are greater than /3.

We now prove the following condition.

¢. The unit vectors issuing from a point of U in the direction of the
edges of g are in equilibrium.

Let the edges starting from P, end in P, P,, . . ., Py Let ¢;(r) be the
closed circular disc of radius » centered at P,. Since cn{a/2) is touched by
cfaf2), . . ., elaf2) without having a point in common with ¢;44(a/2), . . .,
¢n-1(a/2), we can choose r >>af2 so that ¢,(r) is intersected by c,(r), . . ., ()
in % disjoint ‘‘lenses” without being intersected by c,y1(r), . . ., ¢y_1(7). The
definition of U implies that the variation of the total area # of these lenses
. effectuated by a small variation of P, is never negative. '

We choose a. point 4 on the boundary of c,(r) and introduce polar
coordinates with the pole P, and the initial line P,A. Let the line P, 4 be
the equator, so that the point N = (#/2, #/2) is the north-pole.

Let B = (r,B) and C = (r, y) be two points on the boundary of c,(r).
The circular arc BC consists of the points we pass when traveling from B
to ¢ in a positive direction. For the moment we suppose that this arc lies on
the semicircle (r, —w/2) (r, /2). Letting b and ¢ be the distances of B and
C from N, we have cos b == sin v 8in # and cos ¢ = gin 7 gin y. Thus, rotating
ca(r) about N through 2w, the arc BC will sweep over a circular ring of area

27(1 — cos b) — 2m(1 — cos ¢) = 2z sin r(sin y — sin §) =
v—B cos biv
2 2

= 4 7 sin r sin
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This formula continues to hold for any position of B and C, if we choose
§ and y so that 0 <y — 8 < 2 and assign a negative value to the area swept
over by an arc (or the part of an arc) lying on the semicircle (r, #/2) (r, —n/2).
Thus the area swept over by the arcs cut off from the boundary of c,(r) by
c{r), - . -, ex{r) when sliding c,(r) along the equator P,4 through an infinitesi-
mal distance, is proportional to cosw; + ... cos wy, Wwhere o, ..., w
denote the polar angles of the midpoints of the arcs. Since this area is equal
to the variation of ¢, we have

cos ey + ... cosmwy = 0.

Replacing 4 = (r, 0) by the point (r, #/2), we obtain
sin o, + ... + sin w, = 0.

This complets the proof of c.
The number of edges issuing from a point is called the order of the point.
The condition ¢ immediately implies the following ones.
“¢.1. There is no point of order 1.
¢.2. The edges issuing from a point of order 2 are on one line.
¢.3. The edges issuing from a point of order 3 end at the vertices of a
regular triangle. :
c.4. The edges issuing from a point of order 4 are in a centrosymmetric
position.
We continue to prove condition
c.5. The edges issuing from a point of order 5 end at the vertices of g
regular pentagon. A . ;
Let the edges of g issuing from P, in their cyclic order be PP, ...
P.P;. Let PP, be a greatest side of the pentagon P, ... P;,. Let the angles
which the directions P,P,, ..., P, P; make with the half-line bisecting the
angle P,P.P, be —w, 0, w3, vy, oy (Fig. 1). We claim that 20 = < P.P.P, <

s
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p4 w
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< @/2. For, assuming that o > z/4, we have in view of p

2 cos w -+ cos wg + o8 w, + cos g < 2 cos 45° + 2 cos 105° + cos 165° =
= — 0,069 ...<0,
which contradicts c.

Let R be the least radius such that the boundary of ¢,(E) is completely
covered by ¢(R), . .., c5(&). As an immediate consequence of the inequality
X P PP, < n/2, observe that ¢,(R) has no point in common with ¢, (R), . . .,
¢,—1(R). This follows from the fact that all of the angles < P,P,P,, ...,
X P,P,P; are less than an angle of a regular quadrangle of side-length a:

Suppose that among <X P,P.P,, ... <X PP,P, there are exactly m
greatest angles. Let the half-lines bisecting these angles be Ay, ..., hy. Re-
place R by a smaller radius r so as to obtain on the boundary & of ¢,(r) m equal
open arcs not covered by ¢ir), . . ., ¢5{r), while the points of b not belonging
to these arcs or to their extremities are interior points of one of the circles
t(7), . . ., ¢5(r). Repeating the argument used in the proof of ¢, we see that
che unit vectors emanating from P, in the direction of %, ..., &y, are in
q.uilibrium. This implies, along with ¢ that m = 5. Thus the angles <t P, P, P,,
et ., <t PP, P; are equal and the pentagon P;...P;is regular.

§ 4. Admissible graphs

We say that an edge of ¢ is of fype (k) if it joins vertices of order k
and /. By ¢.1 and p we have 2 < k, [ < 5. We claim that if ¢ has an edge of
type (k) than all edges are of this type. We will show this by scrutinizing
the various types of edges in a special order.

22. Preserving the notations of the proof of ¢, we assume that k = 2.
Supposing that a < @2, the arc of the lenses ¢;(#) N} c,(r) and ¢y(r) N ca(r)
would decrease by sliding ¢,(r) perpendicularly to the segment P P, through
a small distance. Since this is impossible, we must have a > /2. If ¢ = =/2,
then P, and P, are antipodal points, say, the nort- and south-pole, and we
have exactly three further points P,, P,, P;, all lying on the equator. By ¢.3
the equatorial points must be the vertices of a regular triangle. Now we
can replace P, by another equatorial point without changing the total area 7'
covered by c¢(r), . . ., ¢5(r), but disturbing the condition of equilibrium in
P, and P,. Thus 7' could be increased by a small variation of P; or P, showing
that the original distribution of P, . . ., P5 could not be perfect. Consequently
we have @ > 7/2. This implies immediately that n = 3, so that we have three
edges of type (22). At the same time we see that g cannot contain edges of
type (23), (24) or (25).

‘ 45. We call a connected set of edges of g belonging to the boundary of
a convex polygon a conver arc. If 4 and B are adjacent vertices of order
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5 and 4, respectively, then g contains a convex arc X4 BY such that 4 =
= 4 XAB = 2a/5 and B = & ABY < #/2. Since the distance XY is clearly
less than @, X .and Y are identical points (Fig. 2). Therefore the image of
the edge BY = BX reflected in AB is an edge of ¢, which contradicts the
assumption that B is of order 4. This excludes the possibility of an edge of
type (45).

Fig. 2

55. If the edge 4B is of type (55), then the argument used in 45 shows
the existence of a point X of g such that ABX is an equilateral triangle.
By 22, 45 and ¢.3 the point X can only be of order 5. It follows that all points

~of g are of order 5. '

44. Let BC be an edge of type (44). Let 4 and D be the images of C
and B reflected in B and O, respectively. The edges other than 4B, BC and
CD issuing from B and C cannot lead to four points all different from one
another. Therefore there is a point £ such that BE and CE are edges of ¢
(Fig. 3). It follows that OF and FD are also edges of g, where F is the image

[S)

Fig. 3
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of £ reflected in C. Owing to 22, 45 and ¢.3 the points &, F and D are of order
4, showing that all edges are of type (44).

35. Let AB be an edge joining the point 4 of order 5 with the point B
of order 3. By c.5. there is another edge AC such that < BAC = 2a/5. By
22, 45-and 55 the point € is also of order 3. Therefore ¢ contains a convex
arc XBACY such that B =C = 2=/3 (Fig. 4).
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Fig. 4

Varying the angle 4 = < BAC under these conditions the distance
XY will vary too, and a simple computation shows that in case of 4 <{x =
= 60° - 2arccosec |12 ~~ 93°33" we have XY < a. Since for the original
arc XBACY we have 4 = 2xn/5 < «, the points X and Y must coincide.
Thus ABXC is a thombus of side-length @ and angles 2/5 and 2n(3, showing
that k
cos & = cos w/5.cot 73, 0~ 37°22".

We claim that X has order 5. Since ¢.3 rules out the possibility of the
order 3, we only have to investigate the case that X is of order 4. Then, by
c.4, the image XD of XC reflected in X is also an edge of g, and by 45 and
44 D is of order 3. Thus we have the convex arc ZDX BF with angles D = B =
= 273 and X = @ — 2x/5 = 3a/5. Because of the congruence of the trian-
gles XDE, XBF and 4BX we have & EXD = X FXB = af5, and conse-
quently < FXE = 2(54° — 36°) = 2 - 18°. Thus, with the notation XE =
= XF = 2b and EF = 2d, we have

gin b = sin ¢ sin 60°, sin d = sin 26 sin 18°,
whence
0 < 2d ~ 32° < a.
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This being impossible, we conclude that X is in fact of order 5, and so all
edges of g are of type (35).

34. Let AB be an edge joining the point 4 of order 4 with the point B
of order 3. Let AC be another edge of g such that < BAC < /2. In view
of 22, 44 and 45 the point C is also of order 3. Since < BAC < 90° < o A=
~~ 93°33', there are two edges BD and CD starting from B and C, respec-

Fig. 5

tively, and meeting in one point D other than 4. By 22, 85 and ¢.8 D is of
order 4. So we have a set of points of order 4 equally spaced on the “equator”

AD. The edges issuing from these points meet in points of order 3 from which

further edges start heading to the north- and south-pole, respectively (Fig. 5).

Thus we have a convex arc XCAEY such that € = K = 27/3 and /2 << 4 <
< 2m/3.

Suppose that the points X and Y do not coincide. If both X and ¥
are of order 3, we would have two edges issuing from X and ¥ crossing each
other. Since this is impossible, and since by 22 and 85 no point can be of
order 2 or 5, one of the points X and Y, say X, must be of order 4. This implies
the existence of a convex arc ZXCAEY such that /3 < X < 2x/3. It easily
follows that the distance ZY is less than @, 50 that Z = Y. Thus the segment
XY, as well as its image reflected in X are edges of g. But this is impossible
because together with X and Y there are further points of g equally spaced
on the parallel circle X Y. This confradiction shows that the points X, ¥, . ..
must coincide with the north- and south-pole, respectively.

If the poles were of order 3, we would have < CAE — 27(3, ie

<X BAC = #[3, which is impossible. Thus the poles are of order 4, showing
that all edges are of type (34).
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33. If ¢ contains an edge of type (33), then by 22, 34 and 35 all edges
are of type {(33). ‘

To recapitulate our results, we denote by »{p,q}, e{p, ¢} and f{p,q}
the set of the vertices, the set of the edge-midpoints and the set of the face-
centers of the tessellation {p,q}. Again, we write (v + f){p,q} for the union
of v{p,q} and f{p,g}. Note that v{p,q} =f{g,p}, e{p,q} =efg, p} and
(v 4+ Ni{p, ¢} = (v + f){g, p}. The following table gives the point-systems
compatible with our conditions for the various types of edges:

(22) v{3, 2}

(33) v{3,3} 0{4,3} »{5,3}
(34) (v + f){3, 4}

(35) (v + £){3, 5}

(44) e{8,3}  ¢{8,4} e{3,5}
{55) »{3, 5}.

Observe that the circles of radius a centered at the points of any of
these point systems cover the sphere completely. Therefore the graph g can-
not contain points of order 0.

To conclude the proof of our theorem we must only remark that v{4, 3}
v{5, 3}, (v+£){3, 4}, (v+ f){3,5}, e{3,4} and e{3,5} are not solutions
of the problem of 8, 20, 14, 32, 12 and 30 inimical diotators,‘ respectively. Thus
the only configurations coming into consideration as sets of perfectly distrib-
uted points are v{3, 2}, v{3,3}, ¢{3,3} = v{3,4} and v{3, 5}. The fact
that these sets of points are really perfectly distributed follows from a general
theorem referred to in §2.

§ 5. Remarks

An interesting problem is to enumerate the sets of perfectly distributed
points in the elliptic plane. Representing the points of the elliptic plane as
pairs of antipodal points on a sphere, the sets v{2, 8}, v{4, 2}, v{3, 4} and
v{8, 5} obviously represent sets of 1, 2, 3 and 6 perfectly distributed points.
Since the sets »{4, 8}, »{5, 3}, ¢{3, 4} and e{3, 5} can be easily ruled out by
counterexamples, the only further possibilities for sets of perfectly distributed
points are given by (v + f){3,4} and (v + f){3, 5}. Both sets have some
chances of representing perfect sets in the elliptic plane.

The notion of perfect sets may be extended to the FKuclidean or hyper-
bolic plane and also to spaces of higher dimension. Let S(») be a set of balls
with radius r having nowhere accumulating centers. Let s be a finite subset
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of § and V{(s, r) the volume of that part of the space which is covered by the
balls of s without being covered by the rest of the balls. If V{s, 7) cannot
be increased by rearranging the balls of sin any way, no matter how we choose
s and 7, then the centers are said to be perfectly distributed. It can be proved
[5] that the vertices of {3, 6}, {3, 7},... are perfectly distributed in the
Euclidean and hyperbolic plane, respectively. In.the Euclidean plane there
is no perfect set other than v{3,6}. As to the hyperbolic plane, it seems
likely that there are infinitely many semi-regular sets of perfectly distributed
points. The sets which have the best chance to be perfect, are (v + f){7, 3}
and (v + f){2¢ 4+ 1,9}, ¢ = 4,5, . ... Note that the Buclidean 3-space does
not admit a perfect distribution of points. For, here the problems of the
densest sphere-packing and the thinnest sphere-covering, though not solved
as yet, certainly lead to completely different sets of centers.
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