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Infili Sampling Criteria to Locate Extremes ~ 

Alan G. Watson 2 and Randal  J. Barnes 3 

Three prablem-dependent meanings for engineering "'extremes" are motivated, established, and 
translated into formal geostatistical Onodel-based) criteria for designing infill sample networks. (1) 
Locate an area within the domain of interest where a specified threshold is exceeded, if such areas 
exist. (2) Locate the maximum value in the domain of interest. (3) Minimize the chance of areas 
where values are significantly different from predicted values. An example application on a simulated 
dataset demonstrates how such purposive design criteria might affect practice. 
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INTRODUCTION 

Consider a road cut along which a new highway is planned. When the cut was 
considered originally, soil and rock samples were taken at irregular intervals 
along the alignment; sample locations were determined subjectively by an on- 
site specialist. The results of these initial samples indicated that there might be 
problems in the construction of the road owing to a few especially weak zones; 
but, it is not clear just how pervasive these zones are. The road contractors 
require a more intensive survey before they are prepared to bid for the construc- 
tion job, as those portions of the highway which traverse the weak materials 
require special treatment at considerably greater cost than the rest of the align- 
ment. 

The problem faced by the highway authority is one of infill sampling to 
characterize extreme values. In this particular application, an extreme value is 
defined by a geomechanical threshold value, but an engineer's use of the term 
"ext reme"  implies different things depending on the application. The objective 
of this paper is to establish some problem-dependent meanings for "ex t reme,"  
and to translate these meanings into formal criteria for designing infill obser- 
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vation networks, recognizing the inherent spatial correlation of geologic data 
(i.e., measurements taken close together tend to be more similar than measure- 
ments taken farther apart). 

This paper addresses the following general problem. Based upon a set of 
existing observations in and around the area of interest, and a statistical model 
describing the spatial variation of  these observations, select a set of new sample 
locations to achieve a stated purpose. This problem is known by the clumsy 
title: model-based infill sample network design. For brevity, this problem title 
will be shortened to infill design in this paper. 

B A C K G R O U N D  

With a formalized theoretical basis and a record of relative success, geo- 
statistics has been embraced by many fields. The geostatistical formulation of 
infill design, which is applied in this paper, provides a common vocabulary, a 
framework for stochastically modeling the unknown values between the existing 
observations, and a mathematically consistent mechanism for incorporating new 
information in the model as it becomes available. 

During the past 25 years a significant quantity of work has been published 
on infill design using a geostatistical framework. For example, Davis and Dvor- 
anchik (1971), Duckstein and Kisiel (1971), Rodrfguez-Iturbe and Mejia (1974), 
Bras and Rodn'guez-lturbe (1976a, 1976b), Bras and Colon (1978), Attanasi 
and Karlinger (1979), Davis, Duckstein, and Krysztofowicz (1979), Dawdy 
(1979), Gershon (1983), Rouhani (1985), Barnes (1989), and Cressie (1991, 
section 5.6) all discuss sample network design using a geostatistical framework. 
More recently, Thompson (1992) devotes an entire book to spatial sampling and 
estimation, in which the geostatistical framework is important. 

To the exclusion of almost all other criteria, these recent scholarly publi- 
cations on infill design have concentrated on minimizing the estimation variance 
of the areal mean. Nonetheless, in geological engineering settings (and many 
others as well), estimation of the areal mean is rarely the objective of  infill 
sampling. Geological engineering designs usually are governed by the extraor- 
dinary, rather than mean values: for example, extreme values and extreme de- 
viation from expectations. 

In the following three sections, three different meanings for "ex t reme"  are 
identified and motivated. In each situation a purposive sampling strategy is 
constructed, and the infill design implications of these definitions are investi- 
gated. The consequences of various simplifications (e.g., distributional assump- 
tions) also are considered. Because the problem at hand is infill sampling random 
and random stratified sampling are not appropriate. 
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NOTATION 

The following notation will be used consistently throughout this presenta- 
tion. Whenever a stochastic model is implied (e.g., an expected value is com- 
puted), the geostatistical model as defined by Cressie (1991, section 2.1) is 
adopted. 

A is the area of interest. 
z(x) is the observed value at location x. 
S is the set of n existing samples, {z(y~) . . . . .  z(y,,)}, taken at 

locations {Yl . . . . .  y,,} in and around A. 
Z(x) is the random variable representing the unobserved value at lo- 

cation x. 
~(x) is the modeled (i.e., predicted) value at location x. 
F( ) is the cumulative distribution function of the identified random 

variable or variables; usually the specified distribution function 
will be multivariate and conditional, as indicated by the index and 
arguments. 

Pr[ ] is the probability of the identified event. 
E [ ]  is the expected value of the identified event. 
Var[ ] is the variance of the identified event. 

Using this notation, infill design can be described as follows. The design 
starts with a predefined area of interest, A, and a set of n existing observations, 
S =- {z(yO . . . . .  z(y,,)}, taken at locations {Yl . . . . .  y,,} in and around A. 
The objective is to determine an appropriate configuration of locations. {xt . . . .  
, x,,}, at which to take m new observations. These m new observation may be 
taken as a single batch of size m or as a sequential progression of smaller batches. 
even individuals. 

LOCATING THRESHOLD-BOUNDED EXTREMES 

Consider the following geological engineering problem, and the qualitative 
engineering objective that it suggests. 

Example Problem. A potentially contaminated site has been identified as 
a possible health hazard as a result of purported toxic contamination. Legal 
recourse is available if a regulatory health and safety threshold is exceeded on 
the property. 

Engineering Objective. Locate an area within the domain of interest where 
a specified threshold is exceeded, if such an area exists. 

This example problem and the associated engineering objective suggest the 
first problem-dependent meaning for "extreme." 
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Definition. A threshold-bounded extreme is a value, z(x), that exceeds a 
specified threshold value, T. 

The threshold, T, typically is a function of external considerations (e.g., 
maximum safe concentrations of  contaminants as defined by regulation or min- 
imum economic ore grades). The problem is not one of locating the contours 
surrounding areas which exceed the threshold, a question that was considered 
by Veneziano and Kitanidis (1982) and Aspie and Barnes (1990). Rather, the 
question is: "Is  the threshold exceeded anywhere within the area of interest?" 
Implicit in this question is the assumption that none of the existing observations 
exceeds the threshold, for otherwise the question already is answered in the 
affirmative and the sampling objective would switch from identification to char- 
acterization. 

An appropriate, nonzero, sample support also is implicit in this definition. 
If the physical sample support were allowed to shrink to an arbitrary infinitesimal 
size, any concentration is possible as long as there is one molecule of the target 
compound present. The following discussion presumes that the support for the 
collected samples is appropriate and commensurate with the support used in 
defining the specified threshold. 

Using the geostatistical model, the sampling objective can be posed as the 
following stochastic optimization problem. 

Sampling Objective. Given the set o f n  existing observations, S =- {z(Yl, 
. . . .  z(y,,)}, take a set of m new observations, {Z(xl) . . . . .  Z(x,,,)}, at those 
locations within the area of interest, {x~ . . . . .  Xm}, which maximize the prob- 
ability that at least one of the new observations exceeds the specified threshold 
value, T. 

This objective may be written formally as: 

max {Pr[At least one Z(x,) > T I S ] }  
X I X . t  q A 

= max 
x I �9 x . I  (~ .4 

----- m a x  

X I �9 �9 �9 X o ~  E A 

which is equivalent to 

{1 - Pr[AII Z(xi) _< TISI} 

{I - Fzt,,,.Z,x,,,~ls(T . . . . .  T)} 

min {Fzlx , ,  zlx,,,,l~(T . . . . .  T)} (1) 
x I .  � 9  x m  E .4 

where F( ) is the appropriate multivariate conditional cumulative distribution 
function. 

Equation ( l)  presents a general mathematical objective for locating thresh- 
old-bounded extremes. It captures the essence of the sampling goal, is applicable 
for any number new samples, and is correct tbr any multivariate distribution. 
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Simpl i fy ing the Model 

To exercise the objective and investigate the resulting sampling strategy in 
a simple setting consider the case where the batch size is one (i.e. m = 1). 
Then the sampling objective [Eq. (1)] may be restated as: 

min {Fztx~ls(T)} 
xEA 

If, in addition, a homogeneous Gaussian random field model is embraced, then 
the marginal conditional distribution may be parameterized in terms of the con- 
ditional mean and the conditional variance: 

ttz~x,ls = E[Z(x)IS l 

Oz, x,ls = Var [Z(x)IS ] 

A normalized "z-score'" then may be defined for the specified threshold as 

T -  iZm~,,~l S 
g'(x) = 

r 

Because the standard Gaussian cumulative distribution function is a strictly 
increasing function of its argument, it suffices to take a new observation, {Z(x)}, 
at that location, x, which minimizes the z-score. Thus, the objective can be 
written 

min { ~-(x)} (2) 
xEA 

which is a remarkably simple formula, amenable to efficient application, quickly 
explained, and easily interpreted. 

Observations 

(I) Although, for the purposes of this discussion, a threshold-bounded 
extreme was defined to be a value that exceeds a specified upper thresh- 
old, it could well have been defined as a value that falls short of a 
specified lower threshold. 

(2) The popular nonparametric (indicator) kriging methods (e.g., Joumel, 
1983), and the distribution-free simulation based methods (e.g.,  Journel 
and Alabert 1988), cannot estimate the necessary conditional multi- 
variate probabilities [i.e., those required in Eq. (1)], because the thresh- 
old is greater than the largest sample value. 

(3) A multivariate distributional model is necessary for the implementation 
of this objective. Furthermore, it is necessary to embrace a distribu- 
tional model that can not be proven correct by the existing observations. 
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(4) 

(5) 

The multigaussian model (e.g., Verly, 1983) offers a simple, pragmatic 
heuristic method for assessing the necessary conditional multivariate 
probabilities. It is possible to develop a distributional model using one 
of the various forms of disjunctive kriging (e.g., Armstrong and Math- 
eron, 1986a, 1986b). 

When using the simple, one-sample, Gaussian model [i.e., Eq. (2)], 
it can be seen that the size of the threshold, T, determines whether 
infill sampling concentrates around existing large values, or around 
holes in the sampling. The objective balances between the chance of 
locating an extreme value by filling in the holes (locations with larger 
conditional variances), and the chance of locating an extreme value 
near the current known larger values (locations with larger conditional 
means). 

Equation (2) suggests a "quick-and-dirty" implementation of the 
threshold-bounded extreme objective. Apply a transformation to the 
available data so that the resulting univariate histogram is approxi- 
mately Gaussian. Use the ordinary kriging prediction and the ordinary 
kriging variance of the transformed data as estimates of the local con- 
ditional mean and variance. Apply Equation (2) and select the location 
with the minimum z-score. (Remember to transform the threshold, T, 
before computing the normalized z-scores.) 

LOCATING THE R E G I O N A L  EXTREME 

Consider the following geological engineering problem, and the qualitative 
sampling objective that it suggests. 

Example Problem. Suppose that hazardous concentrations of toxic con- 
tamination have been identified in a suburban district. The contaminant poses 
an immediate threat to the health of the residents, so it is important to prioritize 
the cleanup, starting with those areas where the concentration is highest. 

Engineering Objective. Locate the maximum concentrations in the dis- 
trict. 

This example and the associated engineering objective suggest the second 
problem-dependent meaning for "extreme." 

Definition. The location of the regional extreme is that subset of the area 
of interest where the highest value is achieved. 

Observe that this definition of the regional extreme permits the existence 
of multiple points, not necessarily contiguous, at which the realization may attain 
its maximum value. Except in special circumstances (e.g., an ordinal random 
process model), however, the regional maximum is attained at a single point. 
Consequently, the probability of placing a new observation at precisely that 
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location is zero. Nonetheless, the sense of the sampling objective, which can 
be achieved by taking point observations, is the maximization of the sample 
maximum order statistic. 

Sampling Objective. Given the set of n existing observations, S = {z(y~), 
. . . .  z(y,,)}, take a set of m new observations, {Z(x0 . . . . .  Z(x,,,)}+ at those 
locations, {x~ . . . . .  Xm}, which maximize the expected value of the largest 
observation after the new observations have been taken. 

This objective may be written formally as 

max {E[Z~ ...... ~IS]} (3) 
x l . . . X m E A  

where Z<,, +m~ is the maximum sample value out of the n existing samples and 
the m new samples; although the first n observations are known, Z~,, +,,u is as a 
random variable. 

Equation (3) presents a general mathematical objective for locating the 
regional extreme. It captures the essence of the sampling goal, is applicable for 
any number of new samples, and is correct for any multivariate distribution. 

S i m p l i f y i n g  the M o d e l  

To exercise the objective and investigate the resulting sampling strategy in 
a simple setting, consider the case where the batch size is one (i.e., rn = 1). 
The objective function [Eq. (3)] then may be restated as: 

max {E[Z,,,+ ~,IS]} = E[max [Z(x). z~,,,]IS] (4) 
xEA x~.4 

where z{,,> is the maximum existing sample value: z{,,~ is not a random variable. 
If, in addition, the generating random field is gaussian and homogeneous, then 
the marginal conditional distribution may be parameterized in terms of the con- 
ditional mean and the conditional variance: 

gz~x,IS = E[Z(x)[S] 

2 az~x~ls = Var [Z(x)[S] 

A local normalized "z-score"  for the current largest sample value may be de- 
fined as: 

Z(m - # Z l x l [ S  
~ ( x )  = 

UZ(x~IS 

Explicit incorporation of the standard normal density function into Equation (4), 
followed by integration and algebraic rearrangement yields a concise statement 
of the single-sample, Gaussian-based, objective function: 

E [ Z ~ , , + , , I S ]  = ~z~,>ts + W(~Cx))'Oz,,,,+s 
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where W( ) is the peculiar function 

W(~(x)) = ~(~(x)) + ~(x) �9 ,I,(~(x)) 

~b(~) represents the standard Gaussian density function, and cI,(~j) represents the 
standard Gaussian cumulative distribution function (see the Appendix for a 
derivation). Thus, the objective can be written: 

max {l~z~x~Ds + W(~j(x)) �9 aZ~xllS} (5) 
xEA 

which is a remarkably simple formula, amenable to efficient application, and 
easily interpreted. 

O b s e r v a t i o n s  

(1) Although, for the purposes of this discussion, a regional extreme was 
defined to be a regional maximum, it equally well could have been 
defined as a regional minimum. 

(2) As in the situation of the threshold-bounded extreme, the popular non- 
parametric (indicator) kriging methods (e.g., Journel, 1983), and the 
distribution-free simulation based methods (e.g., Joumel and Alabert 
1988), can not estimate the necessary conditional expectation [(i.e., 
Eq. (3)1. 

(3) A multivariate distributional model is necessary for the implementation 
of this objective. Again, the multigaussian model (e.g., Verly, 1983) 
offers a simple, pragmatic heuristic method for assessing the necessary 
probabilities [i.e., Eq. (3)]. A disjunctive kriging model could be ap- 
plied. 

(4) When using the simple, one-sample, Gaussian model, the function, 
W(~j(x)), provides a mechanism for balancing between sampling near 
the existing sample maximum (locations with larger conditional means), 
and sampling in holes in the current sample network (locations with 
larger conditional variances). When ~(x) is large W(~j(x)) is large and 
almost linear in ~(x). As ~(x) becomes small W(~j(x)) rapidly tends to 
zero. Consequently, when the area of interest is well covered and the 
existing sample maximum, z(,,~, is larger than the other observations, 
the new observation will be taken near to z(,,~; but, when no one ob- 
servation is larger than the others and the sample network has obvious 
holes, the new observation will be placed in one of those holes. 

(5) Equation (5) suggests a "quick-and-dirty," implementation of the ob- 
jective. Apply a transformation to the available data so that the resulting 
univariate histogram is approximately Gaussian. Use the ordinary krig- 
ing prediction and the ordinary kriging variance of  the transformed data 
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as estimates of  the local conditional mean and variance. Select the 
location that maximizes Equation (5). 

M I N I M I Z I N G  SURPRISES 

Consider the following geological engineering problem, and the qualitative 
sampling objective that it suggests: 

Example Problem. Although the average ore grade in a mine is an im- 
portant measure of the economic viability of  the mine, the local predictability 
of the ore grade may be as important in the generation of correct mine plans. 

Engineering Objective. Minimize the chance of encountering a region of 
ore whose grade is unexpectedly different from its predicted value. 

What the miners are concerned with here are "surpr ises":  locations where 
reality differs radically from the predictive model built to describe it. This ex- 
ample problem and associated engineering objective suggest the third problem- 
dependent meaning for "ex t reme"  (in this situation extreme discrepancies are 
of concern, not extreme values). 

Definition. A surprise is a true value that deviates significantly from its 
predicted value. 

"Significant deviation" is subjective and problem-dependent, yet it deter- 
mines how much and where additional sampling is required. A formulation that 
captures much of  the essence of this objective follows. 

Sampling Objective. Given the set o fn  existing observations, S -- {=(Yl), 
. . . .  z(Yn)}, take a set of m new observations, {Z(x 0 . . . . .  Z(x,,)}, at those 
locations, {x t . . . . .  Xm}, which minimize the maximum probability that a true 
value deviates significantly from its predicted value; where the predicted value 
is based upon the existing samples and the new observations. 

This objective may be written formally as 

min max { e r [ I Z ( v )  - ~(v)l > tlS]} (6) 
xl...xmE,4 YEA 

where v is a generic location within the area of interest, not necessarily a sample 
location, Z(v) is the random variable representing the unobserved value at lo- 
cation v, ~(v) is the modeled (i.e., predicted) value at location v, and t is a 
specified tolerance level defining "significant deviation." 

Evaluation of such an objective function requires a multivariate conditional 
distributional model and a quantification of "significant deviation" in terms of 
a tolerance, t. Furthermore, as this objective purports to minimize surprises (in 
some sense), the conditional distribution should include the uncertainty in se- 
lecting the geological, geochemical, and probabilistic models. Many surprises 
are the result of poor physical and probabilistic models: failure to recognize 
important subpopulations, inappropriate anisotropy in the variogram models, 
spatial patterns that are not captured by second-moment statistics, etc. 
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Equation (6) presents a general mathematical objective for minimizing sur- 
prises. It is applicable for any number new samples, and is correct for any 
multivariate distribution. 

S i m p l i f y i n g  the  M o d e l  

When the predicted value is the conditional expectation, Chebychev's in- 
equality gives an upper bound on the required probability [i.e., Eq. (6)] as an 
increasing function of the conditional variance, (e.g., Manoukian, 1986, p. 11). 
This suggests the use of the conditional variance as an approximate distribution- 
free surrogate for the probability: 

min max {Var [Z(v)]S and xl . . . x,,,]} (7) 
Xl. X , n E A  r E 4  

This simplified objective function for a candidate set of observation loca- 
tions, {x I . . . . .  x,,,}, is computed as the maximum conditional variance over 
the area of interest assuming that locations {x~ . . . . .  Xm} already have been 
observed. The set of locations thai results in the smallest expected posterior 
uncertainty (quantified by the maximum conditional variance) is selected as the 
batch of new locations. The goal is to select that set of locations that will 
minimize the worst chance of a subsequent surprise; this is a mini-max decision 
rule. 

O b s e r v a t i o n s  

(1) When using a multivariate Gaussian distribution model the objective 
function depends upon only the observation locations and the under- 
lying covariance structure. Thus, in this situation, the observed values 
do not enter into the evaluation (e.g., Joumel and Huijbregts, 1978, 
p. 308). 

(2) Minimization of the maximum kriging variance was proposed by Bur- 
gess, Webster, and McBratney (1981). The emphasis of their paper 
however is not on infill sampling, but on the design of new sampling 
programs: specifically, they were interested in the effect which obser- 
vation spacing has on the maximum variance for regular sampling pat- 
terns. 

(3) Suppose the underlying covariance structure is such that there exists a 
separation distance, r, beyond which any two points are uncorrelated 
(an example of such a correlation structure is a spherical variogram 
with range r). Then, if there exist m + 1 or more places in the area 
of interest which are not "covered" by the existing observations (i.e., 
there are no measurements within a distance r), and which cannot 
be covered simultaneously by a batch of m new observations, the ob- 
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(4) 

jective function is flat. In practice, thus the area of interest must be 
covered fully before any attempt is made to minimize surprises using 
this objective function. 

Equation (7) suggests a "quick-and-dir ty,"  implementation of this ob- 
jective. Apply a transformation to the available data so that the resulting 
univariate histogram is approximately gaussian. Use the ordinary krig- 
ing prediction and the ordinary kriging variance of the transformed data 
as estimates of the local conditional mean and variance. Select the 
location that minimizes the maximum posterior kriging variance of the 
transformed field. Although this approximation, in fact, may be crude 
for data that can not be modeled adequately as multivariate Gaussian 
random fields, the approximation offers an easily computed heuristic 
objective capturing the essential geometric details of the sampling pat- 
tern. Nonetheless, this "quick-and-dir ty" approach is less attractive 
than those given for the previous objectives, because the resulting ob- 
jective function does not incorporate information about the local con- 
ditional mean. Furthermore, the "significant deviation" used in iden- 
tifying surprises is in terms of the transformed data--which may be 
difficult to interpret, or simply inappropriate. 

AN E X A M P L E  

Each of the three sampling objectives discussed here was applied to a set 
of simulated data. These examples demonstrate that the choice of an appropriate 
infill design objective can be significant. The resulting sample configurations 
consistently are different from one another in visibly obvious ways. 

The computer experiments were performed on simulated data generated 
with the following parameters: 

�9 Distribution: multivariate lognormal 
�9 Log mean: 0.0 

�9 , og 
semi-, ratio- 3'(h) = 
gram: 1.2 

�9 Grid spacing: 1.0 x 1.0 
�9 Grid size: 25 x 25 

h 3 
if h < 12.5 

if h >_ 12.5 

The simulation was accomplished using the well-known method employing the 
decomposition of the variance/covariance matrix (e.g.,  Naylor and others, 1966, 
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p. 97-101).  Analysis of the exhaustive data (625 values) yields the following 
statistics: 

�9 Minimum: 0.073 
�9 Median: 1.024 
�9 Maximum: 11.74 
�9 Arithmetic average: 1.643 
�9 Standard deviation: 1.875 

Figure 1 shows a contour plot of  the exhaustive data: 625 observations on a 25 
x 25 grid. Figure 2 shows the equivalent contour plot of  the log-transformed 
exhaustive data. 

For each of the three sampling objectives, the demand was for an additional 
five observation locations given a set of  20 existing observations. The locations 
and values of the existing 20 observations are shown in Figure 3. The new 
observations were selected as the best batch of five from the 605 unsampled 
grid nodes. "Bes t "  was defined by Equations (1) and (3), not the "quick-and-  

Figure 1. Contours of exhaustive dataset: 625 observations on 25 x 25 grid. 
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Figure 2, Contours of log-transformed exhaustive data set: 625 observations on 
25 x 25 grid. 

dirty" surrogates, and Equation (6). The computational effort involved in such 
a search was reduced significantly using the techniques presented in Barnes and 
Watson (1992). 

This experiment was carried out in a congenial multigaussian setting, with 
all of the model-based assumptions known to be appropriate a priori. Because 
the data were simulated as a realization of a multivariate lognormal distribution, 
the three infill sampling objectives were applied to the log-transformed obser- 
vations. The spatial covariance function used in evaluating the various objectives 
was computed from the prespecified variogram and not estimated using the 20 
observations. 

L o c a t i n g  T h r e s h o l d  B o u n d e d  E x t r e m e s  

In this example, the operational objective is to maximize the probability of 
observing a value exceeding a threshold [Eq. (1)]. A value of 4.2 was selected 
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Figure 3. Locations and values of 20 existing observations. 

lbr the threshold (approximately equal to the 95 percentile of the exhaustive 
data). The results are shown in Figure 4. 

To interpret the observation placement for this objective physically, con- 
sider an estimated value grid overlaid with an estimation variance grid. Then, 
new observations will tend to be placed in two sorts of locations: (1) where the 
estimated value is large and the estimation variance is moderate; and, (2) where 
the estimated value is moderate, but the estimation variance is large. 

Locating the Regional Extreme 

In this example, the operational objective is to maximize the expected 
posterior sample maximum [Eq. (3)]. The results are shown in Figure 5. 

New observations are placed in the middle of the west edge (this is in the 
neighborhood of the maximum existing sample), and in the middle of the top 
edge (this is an area having few samples, but with the potential to be large). 

Minimizing Surprises 

In this example, the operational objective is to minimize the maximum 
local posterior estimation variance [Eq. (7)]. The results are shown in Figure 6. 

New observations tend to be placed in holes in the existing sample network. 
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Figure 4. Locations and values of five new observations placed using 
threshold bounded extreme objective: T = 42. Locations of existing 
20 observations also are shown. 

The locations are selected independently of the observed data, ignoring anom- 
alies which have been detected. Not surprisingly, the new observations are 
located on the border and in holes in the existing sampling pattern. 

C o m p a r i n g  the  O b j e c t i v e s  

These examples show that different objectives should lead to different sam- 
pling patterns. For the simulated (multivariate lognormal) grid, all three of the 
proposed objectives performed in heuristically satisfactory ways. 

A quantitative comparison of the objective function values is shown in 
Table 1. The largest observation using the regional extreme objective signifi- 
cantly exceeded the largest observation using the other two objectives. Further- 
more, despite the apparent similarity between the threshold bounded extreme 
objective and the regional maximum objective, the resulting infill designs are 
significantly different. 

W H Y  NOT C O N D I T I O N A L  S I M U L A T I O N ?  

Conditional simulation is a powerful tool for generating derived distribu- 
tions, especially when the random variable of interest is related to the random 
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611 

436 

�9 1 

978 

11 74 

8 58 

. . . .  O . . . . . . .  

Figure 5. Locations and values of" five new observations placed 
using regional extreme objective. Locations of existing 20 obser- 
vations also are shown. 

field via a complex nonlinear relationship (e.g.,  Deutsch and Journel, 1992). 
With the currently available software, conditional simulations are being applied 
in many fields. Why not then simply perform a series of conditional simulations 
and process the results with the appropriate objective to determine the additional 
sample locations? For example, using conditional simulation the minimizing 
surprises objective [Eq. (6)] could be considered explicitly instead of its sim- 
plification [Eq. (7)]. 

Conditional simulation offers a conceptually appealing approach for solving 
various infill design problems. In fact, conditional simulation can be used to 
evaluate the three objectives discussed in this paper. Unfortunately, such an 
approach is intractable computationally for many problems. Consider, it may 
take tens to hundreds of  conditional simulations, if not more, to estimate ade- 
quately the necessary derived distribution statistics. In the simple example pre- 
sented in the preceding section, the problem was to determine the best 5 locations 
out of 620 available candidate locations. There are 751,199,765,624 candidate 
combinations. Even if heuristic combinatorial search techniques are used, thou- 
sands of candidate combinations would have to be considered--and each com- 
bination could require tens to hundreds of  conditional simulations during the 
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Figure 6. Locations and values of five new observations placed using 
minimizing surprises objective (i.e,, minimizing maximum local con- 
ditional vanance). Locations of existing 20 observations also are shown. 

evaluation of the selected objective. With the current computer technology, and 
understand of conditional simulation, such a process could not be completed in 
a reasonable length of time. 

C O N C L U S I O N S  

Different problems and different questions engender different objectives. 
Using the geostatistical framework, it is possible to formulate and implement 

Table 1. Quantitative Comparison of Three Sampling Objectives 

Maximum posterior 
observation 

Maximum local posterior 
estimation variance of the 

log-transformed field 

Threshold bounded extreme 6.04 0,811 
Regional extreme I 1.74 1.09 l 
Minimizing surprises 5.73 0.788 
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va r ious  infill d e s i g n  s t r a t eg i e s  to c h a r a c t e r i z e  " e x t r e m e s . "  T h e  pa r t i cu l a r  ob-  

j e c t i ve  u s e d  s h o u l d  be s e l e c t ed  to fit bes t  the  c i r c u m s t a n c e s :  it c an  m a k e  a 

s ign i f i can t  d i f fe rence .  

W h e n  p r o b l e m - s p e c i f i c  ob j ec t i ve  f u n c t i o n s  can  be  f o r m u l a t e d  for  an  thrill 

s a m p l i n g  app l i ca t i on ,  p u r p o s i v e ,  m o d e l - b a s e d ,  s a m p l e  n e t w o r k  d e s i g n  can  be  a 

use fu l  po l icy .  

A C K N O W L E D G M E N T S  

T h e  initial d e v e l o p m e n t  o f  the  ideas  p r e s e n t e d  in th is  p a p e r  we re  f u n d e d ,  

in par t ,  by  a g r an t  f r om the  U n i t e d  S ta tes  Na t iona l  S c i e n c e  F o u n d a t i o n  Gran t  

No.  N S F / M S M - 8 7 1 0 5 6 8 .  T h e  c o m m e n t s  and  c o n s t r u c t i v e  c r i t i c i sm o f  the  ref- 

e r ees  s ign i f i can t ly  i m p r o v e d  the  readab i l i ty  o f  th is  pape r .  
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A P P E N D I X  

G i v e n  a k n o w n  c o n s t a n t / 3  and  a c o n t i n u o u s  r a n d o m  va r i ab l e  Z,  wi th  m e a n  

~: ,  d e n s i t y  f u n c t i o n  f=(z), and  c u m u l a t i v e  d i s t r i bu t ion  f u n c t i o n  F:(z) ,  we  can  

c o m p u t e  

E [ m a x ( Z ,  ~)]  

= I ~ =  m a x ( ~ ,  /J)f:(~) d~ 

f Sl = zf=(t) d t  + ~f=(t) dt  (A 1) 

= tf:(t) d t  - ~ ( t )  d t  + ~f:(t) d t  
o o  - o o  

S = t z :  - -  ~ ( t )  dt + /3F=(~) 

I f  r a n d o m  va r i ab l e  Z is G a u s s i a n ,  w i th  s t a n d a r d  d e v i a t i o n  o:, t h en  E q u a t i o n  

(A1)  can  be  s imp l i f i ed  fu r t he r  to 
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E [ m a x ( Z ,  /3)1 

= # ~ - I  r tf:(t) dt + f~/3fz( t )  dt 

z ~ z  - -  Ii S (t - i~:)fz(t) dt + (/3 - ixz)fz(t) dt (A2) 

~ ,  O .  oc O" z 

= ~,: + [~,I,{~) + ~ ) ] o ~  

where ~ is the normalized "z-score"  of [3 

/3 - U~ 

O- 

�9 (~) is the standard normal cumulative distribution function, and ~b(~) is the 
standard normal density function. The last step in Equation (A2) follows from 
a peculiar behavior of the standard normal density function: 

I~ tqb(t) dt = -4~(/3) 

which can be verified by integration. 


