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Abstract. The photosynthetic freshwater flagellate, Peridinium gatunense, uses both positive 
phototaxis and negative gravitaxis to move upwards in the water column. At higher fluence rates 
approaching those at the surface of their habitat, the cells tend to become unoriented and thus 
stop their upward movement. Orientation and motility ofPeridinium gatunense has been studied 
in the slow rotating centrifuge microscope (NIZEMI), which allows observation of swimming 
behavior during centrifugation acceleration between 1 g and 5g. The movement vectors were 
analyzed by real time image analysis capable of tracking many cells simultaneously. At 1 g the 
orientation was not very precise, but the degree of orientation increased significantly at higher 
acceleration forces up to about 3 g. Most cells were capable of swimming even against an 
acceleration vector of 3.8 g; at higher acceleration forces the cells were not able to cope with 
the centrifugal force. The linear velocity of cells swimming against 1 g was about 20% lower 
than that of cells moving in other directions. The velocity decreased even more in cells swimming 
against higher acceleration forces. 

The freshwater dinoflagellate, Peridinium gatu- 
nense, produces large populations in Lake Kinneret 
(Israel), while marine dinoflagellates form red tides 
in, e.g., the North and the Baltic Seas [65, 68]. The 
algal blooms appear in early spring and outcompete 
all other phytoplankton populations. They produce 
up to 300 g of biomass per square meter of surface 
water and represent 95% or more of the total biomass 
production in the lake [63]. The algal blooms disap- 
pear in summer; this may be partially owing to nutri- 
ent depletion or nonpermissive temperatures; an- 
other possible factor is increased UV-B radiation 
levels [38, 44], which have also been shown to affect 
other flagellate populations [33-35] and gliding mi- 
croorganisms [29, 40]. 

Many microorganisms orient in the water col- 
umn by using a number of external factors [32, 57, 
69] such as gravity [13, 47, 48], chemical [5, 53] and 
thermal [55, 58] gradients, or the magnetic field of 
the earth [18, 20]. Peridinium gatunense utilizes both 
light and gravity as major clues to optimize its posi- 
tion in the microhabitat. The cells possess two differ- 
ent phototactic strategies [52]: at low fluence rates 
the flagellates orient with a positive phototaxis, 
which brings the population closer to the surface. At 

irradiances above 20 klx the cells show a pronounced 
transversal phototaxis (diaphototaxis), which has 
also been observed in other flagellates [59, 60]. The 
action spectrum for phototaxis extends from 550 nm 
to beyond 700 nm, but the photoreceptor pigments 
have not been identified as yet. However,  the 
involvement of the photosynthetic pigments can be 
ruled out since there is no activity in the Soret band 
of the chlorophylls a and c. Furthermore, the inhibi- 
tors of the photosynthetic electron transport chain, 
DCMU and DBMIB, do not affect photoorientation 
in Peridinium gatunense. 

The second important external factor for orien- 
tation, gravitaxis, has the advantage of being avail- 
able also in the absence of light. It has been observed 
in microorganisms for more than a century [1, 46, 
62, 68]. In addition to a few other species [s. review 
4, 6-12, 15, 64, 71], mainly ciliates [19, 45, 66] and 
flagellates have been studied [16, 47, 48, 60]. Neither 
the gravireceptor organelle nor the sensory trans- 
duction chain for the stimulus transmission has been 
identified yet. It has been suggested that graviorien- 
ration in flagellates is passively brought about by an 
asymmetric mass distribution within the cell; the 
alternative is an active physiological perception [14, 
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49 ,  67] .  R o b e r t s  [61] a s s u m e s  a h y d r o d y n a m i c  i n t e r -  

a c t i o n  b e t w e e n  t h e  m e d i u m  a n d  t h e  ce l l  t o  b e  t h e  

r e a s o n  f o r  g r a v i t a c t i c  o r i e n t a t i o n  i n  t h e  c i l i a t e  Para-  
m e c i u m ,  w h i l e  a m o d e l  b y  W i n e t  a n d  J a h n  [70] t r i e s  

t o  e x p l a i n  g r a v i t a x i s  b y  a n o n e q u i l i b r i u m  r a t i o  b e -  

t w e e n  s e d i m e n t a t i o n  a n d  r o t a t i o n  d u r i n g  f o r w a r d  

m o v e m e n t .  H o w e v e r ,  b u o y a n c y ,  w h i c h  h a s  b e e n  

a s s u m e d  b y  F u k u i  a n d  A s a i  [24] t o  b e  t h e  m e c h a n i s m  

f o r  n e g a t i v e  g r a v i t a x i s ,  c o u l d  b e  r u l e d  o u t  b y  T a n e d a  

e t  al .  [67] ,  w h o  a l s o  e x c l u d e d  a n  e f f e c t  o f  t h e  h y d r o -  

s t a t i c  p r e s s u r e  [66].  T h e  e x p e r i m e n t a l  a n a l y s i s  o f  

g r a v i t a c t i c  o r i e n t a t i o n  h a s  b e e n  h i n d e r e d  b y  t h e  d i f -  

f i c u l t y  t o  a c c e s s  t h e  r a n g e s  b o t h  a b o v e  a n d  b e l o w  1 

g .  T h e  a i m  o f  t h i s  p a p e r  is t o  q u a n t i f y  a n d  c h a r a c t e r -  

i ze  t h e  o r i e n t a t i o n  a n d  v e l o c i t y  d i s t r i b u t i o n  d u r i n g  1 

g a n d  h y p e r g r a v i t y  c o n d i t i o n s  in  t h e  f r e s h w a t e r  a l g a ,  

Per id in ium  g a t u n e n s e .  

Materia ls  and M e t h o d s  

Organisms and experiment preparation. The freshwater dinoflag- 
ellate, Peridinium gatunense Nygaard (formerly P. cincture fa. 
westii), was obtained from Dr. Lindsm3m and originally isolated 
from Lake Kinneret [51]. It was grown in a medium described 
recently [50], in a temperature-controlled room under mixed fluo- 
rescent lamps (14 W m -2) in standing cultures. 

For experiments, aliquots of a culture in logarithmic growth 
were inoculated into 40 ml of fresh medium contained in 
100-ml Erlenmeyer flasks. Samples were harvested after 20 
days of growth, and all experiments were carried out with the 
cells in their original growth medium. Cell suspensions were 
transferred into a rotor compressor microchamber (developed 
by Dr. Briegleb, DLR, K61n, Germany), which was mounted 
on the object stage of the microscope within the NIZEMI (see 
below). 

Construction of the NIZEMI. The slow rotating centrifuge micro- 
scope (NIZEMI) was developed and constructed by Dornier 
(Friedrichshafen, Germany) on behalf of the Deutsche Versuchs- 
anstalt fiir Luft- und Raumfahrt (DLR, K61n) and the Federal 
Minister for Research and Technology (BMFT, Bonn, Germany). 
The NIZEMI consists of a Zeiss (Oberkochen, Germany) Axi- 
oplan light microscope accommodated horizontally on a circular 
rotating table driven by an electric motor (Fig. 1). In order to 
balance the load during operation, to minimize the excess heat 
production from the lamp and to manipulate the movement of 
the specimen on the object stage by remote control via a 
joystick, considerable modifications were necessary. The image 
of the moving organisms was recorded by a CCD camera (Aqua 
TV HR 600, Aqua TV, Kempten, Germany) and displayed on 
a video screen (AVT-1220, AVT Horn, Aalen, Germany). The 
additional macro unit, which allows the analysis of larger 
objects under increased acceleration forces, was not used for 
this purpose. 

Image analysis of organism tracks. The video sequence from the 
NIZEMI was either analyzed on-line during the experiment or 
recorded on a VHS video recorder (Mitsubishi HS 3600 E). The 

Fig. 1. Principal schematic diagram of the NIZEMI showing the 
main components of the micro and macro observation unit. 1 = 
microscope; 2 = micro CCD camera; 3 = objective holder; 4 = 
micro stage; 5 = macro stage; 6 = macro CCD camera. 

image was digitized at a spatial resolution of 512 z 512 pixels 
with 256 possible gray levels each using a Matrox digitizer card 
(PIP-1024, Quebec, Canada), plugged into an IBM AT compatible 
microcomputer (Tatung 7000, Taipei, Taiwan). The digitized im- 
age was manipulated by on board look-up tables (LUTs, [31]) 
before being stored in a dedicated video memory. 

The computer had access to the video memory and could 
manipulate and analyze pixels on a random basis. The image was 
displayed on an analog monitor in pseudocolor graphics with a 
second set of LUTs. The tracking program was developed in the 
computer language C which handles the input and output routines 
as well as the mathematical analysis of the data [39]. All time- 
consuming procedures such as manipulation of image pixels were 
written in 80286 ASSEMBLY language. The algorithm starts by 
taking four snapshots from the video sequence at 80-ms intervals. 
Then the first image is scanned sequentially line by line until an 
object is found that differs by a predefined threshold from the 
background. 

The outline of the cell is analyzed with the chain code algo- 
rithm [21], which is very fast and allows a drastic reduction in the 
amount of information. Further procedures have been developed 
to estimate the circumference, area, and centroid [22, 23]. The 
centroids and areas of all organisms found in the first frame are 
stored in an array. Subsequently, the positions of all organisms 
are determined in the next frame (80 ms later) with the stored 
centroids as starting points. This process is repeated for the third 
and fourth digitized image, writing the centroids into a second 
array. When two organisms meet, the direction of movement is 
no longer defined; consequently, a 50% increase in the area is 
used as an indication to discard an organism, Upper and lower 
limits for the area allow cells to be distinguished from debris or 
noise in the image. The system analyzes up to 500 movement 
vectors per minute and stores the deviation angles from the stimu- 
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Fig. 2. Circular h is tograms of the m o v e m e n t  vectors  (a) and velocity distribution (b) of  Peridinium gatunense in a vertical cuvet te  in 
darkness ;  1000 tracks have been analyzed.  

lation direction, the gravity,  or  accelerat ion vector  (defined as 
0 °) in a disk file. The individual speed o f  m o v e m e n t  of  the 
organisms can be calculated,  since the d is tances  they have moved  
are known as well as the t ime elapsed between the first and final 
frame. 

From these raw data, circular histograms of the direction 
distribution as well as the velocity distribution are calculated 
by subsequent programs written in a higher level language 
(Turbo Pascal, Borland) [27]. In addition, Rayleigh tests are 
performed to determine the directedness of the moving organ- 
isms [2, 3, 54], and the direction of movement is calculated by 
Fast Fourier Analysis, which also allows smoothing of the 
histograms [38]. 

Results  

The gravitactic orientation of  Peridinium gatunense 
was studied at 1 g in a vertical cuvet te  with 50 x 
50 x 1 mm 3 inner dimensions (Fig. 2a). The 
organisms showed a moderate  gravitactic orienta- 
tion with an r-value of  about 0,19. The velocity 
histogram indicates that cells swimming against the 
gravity vector  swam about 20% more slowly than 
those swimming in any other  direction (Fig. 2b). 
When the organisms were exposed to supplemen- 
tary white light from above while swimming in the 
vertical cuvet te ,  the degree of  orientation increased 
even at moderate  fluence rates. At 250 Ix the r- 
value was 0.34, and 70% of  all cells swam in the 
upward direction deviating less than -+90 ° from 
the vertical axis (Fig. 3a). At 1 klx more than 72% 
of all ceils oriented in the upper  two quadrants,  
and the r-value amounted to 0.39 (Fig. 3b). Further  
increase of  the white light irradiance increased the 

directedness as the phototact ic  orientat ion in- 
creased (Fig. 3c). This trend cont inued until about  
10 klx. Above this value up to about  70 klx, the 
cells showed a moderate  orientat ion in the upward 
direction with r-values around 0.39, and about  76% 
of  the cells moved in the top two quadrants  (Fig. 
3d). Higher fluence rates drastically decreased the 
degree of  orientation and the percentage of  cells 
in the top two quadrants (Fig. 3e). This effect is 
due to an increasing number  of  cells swimming 
perpendicular to the impinging light beam. 

Compared with the 1 g control ,  the gravitactic 
orientation was significantly enhanced by accelerat-  
ing the cells to 2 g (Fig. 4a). The velocity difference 
between those cells swimming against the accelera- 
tion vector  and those swimming in the direction of 
the vector  was even more p ronounced  than that 
at 1 g (Fig, 4b). The opt imum of  gravitactic orienta- 
tion was reached at 3 g (Fig. 4c). Increasing the 
acceleration further  strongly impaired the degree 
of orientation. At 3.6 g the orientat ion was even 
lower than at the 1 g control  (Fig. 4d), and the 
velocity histogram indicates that cells moving 
against the acceleration vector  were much slower 
and in fact many cells were literally centrifuged 
by the accelerat ion force (Fig. 4e). Plotting the 
degree of  gravitactic orientat ion (r-value) in depen- 
dence of the accelerat ion force indicates an in- 
crease in the directedness of  movement  up to about  
3 g followed by a drastic decline in orientat ion at 
higher forces (Fig. 5). Likewise,  the percentage of 
cells moving in the two quadrants  pointing upward 
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Fig. 3. Circular histograms of the movement vectors of Peridinium gattmense in a vertical cuvette under the simultaneous irradiation 
from above at fluence rates of (a) 250 Ix, (b) 1 klx, (c) 5 klx, (d) 60 klx, and (e) 100 klx; 1000 tracks have been analyzed for each 
histogram. 

increased up to 3 g and then declined; at 3.8 g 
almost the same percentage of cells swam upward 
and downward (Fig. 6). The dependence of the 
average linear velocity on the increasing accelera- 
tion force indicates a steady decline (Fig. 7). A 
linear regression curve through the data points cuts 
the abscissa at about 5 g. 

Discussion 
Peridinium, like the unicellular flagellate Eugtena 
[30], shows an exclusive negative gravitaxis, which 

takes the organisms to the surface of the water col- 
umn. Thus, the negative gravitaxis supports the pos- 
itive phototaxis and helps the cells to accumulate in 
a band of suitable light conditions for growth and 
survival. The precision of orientation reaches an 
optimum at about 10 klx. At higher fluence rates 
approaching those measured at the surface of the 
natural habitat of Peridinium gatunense, the degree 
of orientation drastically declines, which stops the 
upward movement. 

This behavior is certainly ecologically meaning- 
ful for photosynthetic microorganisms since the cells 
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are easily killed by the solar radiation close to the 
surface and the cellular chromoproteins are photo- 
bleached by the too bright light intensity [17, 41, 42, 
56, 59, 60]. In addition, the UV-B component in 
solar radiation has been found to impair both photo- 
orientation and motility in Peridinium [43, 44] as 
well as in Euglena [26, 28, 33, 34] and other photo- 
synthetic and nonphotosynthetic microorganisms 
[25, 29, 35-37, 40]. 

In the NIZEMI the cells are capable of swim- 
ming against acceleration forces up to 3.8 g. The 
degree of orientation even increases up to an opti- 
mum of 3 g, which is interesting since under natural 
conditions the cells have never been subjected to 
such acceleration forces during their evolution on 
earth. This result, however, does not clarify the 
question whether gravitactic orientation in flagel- 
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Fig. 5. Dependence  o f  the degree o f  or ientat ion (r-value) of  Peridi- 
niurn gatunense  in dependence  o f  the accelera t ion force in the  
NIZEMI.  
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Fig. 7. Linear velocity of Peridinium gatunense moving against 
the acceleration vector in dependence of the acceleration force. 

lates is owing to an active physiological process in- 
volving a specific (unknown) receptor or owing to a 
passive physical process such as an asymmetric 
mass distribution within the cell, since both mecha- 
nisms would be enhanced by higher acceleration 
forces. 

The dependence of the cells' velocity on the 
acceleration force can be utilized for an estimation 
of the energy requirements for locomotion. The cells 
encounter a frictional component during forward 
propulsion. Furthermore, the cells have to provide 
additional energy to swim against the acceleration 
vector. The latter component depends on the accel- 
eration force. An extrapolation of the velocity curve 
to zero suggests that the total energy requirement of 
movement equals that necessary to overcome an 
acceleration force of 5 g. 
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