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Abstract. The effects of ultraviolet radiation on the gravitactic orientation of the freshwater 
flagellate, Euglena gracilis, were determined by a real time image analysis system. Both artificial 
UV radiation and solar radiation in a temperature-controlled growth chamber were employed. 
Histograms of gravitaxis showed that the degree of orientation decreased with increasing expo- 
sure time; this can be quantified using the Rayleigh test and upper quadrant summation. The 
effects of artificial UV radiation on the orientation are considerably stronger than those of solar 
radiation, probably because the radiation source emits higher fluence rates below 300 nm than 
found in solar radiation. The effects of monochromatic ultraviolet radiation on motility have 
been determined, and an action spectrum has been calculated. 

Like many other motile microorganisms, the photo- 
synthetic unicellular flagellate, Euglena gracilis, ori- 
ents in its habitat by a number of external chemical 
and physical parameters [37, 59]. Some motile mi- 
croorganisms have been found to orient in the water 
column with the aid of chemical [5, 54] and thermal 
[57, 61] gradients, the magnetic field of the earth [24, 
26, 60], and even electrical currents [56]. Euglena 
mainly orients with respect to light [18, 20, 43, 45, 
53] and gravity [14, 34]. In addition to a weak photo- 
kinetic effect [76], both step-up and step-down pho- 
tophobic responses [21, 22, 67] were characterized. 
However, the most important light responses are 
positive and negative phototaxis in this organism 
[43, 56]. 

The antagonism between positive phototaxis 
(strongly enhanced by negative gravitaxis, described 
below) and negative phototaxis causes the cells to 
accumulate in a band of suitable light conditions 
[38]. This behavior has important ecological conse- 
quences, not only for photosynthetic microorgan- 
isms, since cellular pigments are easily bleached by 
the bright light intensity at the surface of the water 
column [46, 47, 58, 62, 63]. Furthermore, the UV-B 
component of solar radiation has been found to af- 
fect both motility and photoorientation in Euglena 
[32, 33, 39, 40] and other photosynthetic and non- 
photosynthetic microorganisms [31, 35, 41, 44]. 

Gravitaxis is the second important factor for 
orientation; it has the advantage of being available 
in the absence of light. Gravitactic orientation was 
observed more than a century ago [1, 49, 65, 73]. 
Recently, mainly ciliates [25, 48, 71] and flagellates 
have been studied [19, 50, 51, 63] in addition to a 
few other species [review in 4, 7-13, 17, 75]. 

Euglena shows an exclusive negative gravitaxis 
[34], which supports the less well pronounced posi- 
tive phototaxis and takes the organisms to the sur- 
face of the water column. In contrast to higher 
plants, neither the cellular receptor nor the sensory 
transduction chain of the gravitactic orientation has 
been identified. It is still an open question whether 
graviorientation in flagellates is brought about by an 
active physiological perception or a passive physical 
process such as an asymmetric mass distribution 
[14, 52, 72]. 

In the ciliate Paramecium, Roberts [64] assumes 
a hydrodynamic interaction between the medium 
and the specific cell form to be the mechanism of 
gravitactic orientation, while another model tries to 
explain gravitaxis by a non-equilibrium ratio be- 
tween sedimentation and rotation during propulsion 
[74]. Buoyancy is not the only source for negative 
gravitaxis [30], as has been shown by Taneda et al. 
[72], who also excluded an effect of the hydrostatic 
pressure [71]. The aim of this paper is to quantify 
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and characterize the effects of solar and artificial 
ultraviolet radiation on the gravitactic orientation 
and motility in the freshwater alga, Euglena gracilis, 
and to determine an action spectrum for the UV 
effects. 

Materials and Methods 

Organism and culture. All experiments described in this article 
were performed with the freshwater flagellate, Euglena gracilis, 
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Fig. 1. Circular histograms of the 
movement direction of Euglena gracilis 
in a vertical cuvette after 0 rain (a), 40 
min (b), 70 rain (c), and 130 min (d) of 
solar radiation. 1000 tracks were 
determined for each histogram and 
binned in 64 sectors. The arrows 
indicate the direction of the gravity 
vector. 

strain Z. The cells were inoculated into 40 ml of a medium 
described recently [ 16, 69] contained in 100-ml Erlenmeyer flasks 
and grown for about 6 weeks under continuous light of about 600 
lx (= 2.5 W m -~ from mixed cool white and warm-tone fluores- 
cent lamps) at about 23°C. All experiments were carried out with 
the cells in their original growth medium. Cell suspensions were 
removed from the cultures and subjected to either artificial UV 
or solar irradiation. 

Artificial UV irradiation. Ultraviolet irradiation was produced 
from a transilluminator (Bachofer, Reutlingen, FGR). The light 
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Fig. 2. Degree of gravitactic orientation (Rayleigh test, ordinate) 
of Euglena gracilis in a vertical cuvette in dependence on the 
exposure time to solar radiation (abscissa, min). 

source emits very little visible light, and the radiation is higher 
than solar radiation below 300 nm and lower than solar radiation 
above 300 rim. The algal suspension was irradiated in an open 
glass cuvette (50 × 50 × 18 mm) covered with a 13% UV-B- 
transmitting, neutral density filter when placed under the inverted 
transilluminator. The effect of monochromatic ultraviolet radia- 
tion on motility in the flagellates was studied with a 900-W XBO 
xenon arc light source (Schoeffel LH 151) in combination with 
an Ebert type monochromator (Kratos GM 250) equipped with 
entrance and exit slits of 4 mm to give a balfband width of 8.2 
nm. The grating had 1180 lines/mm blazed at 300 rim. 

Solar irradiation. Cell suspensions were irradiated in open plastic 
Petri dishes, placed in a temperature-controlled (20°C) growth 
chamber (Weiss, GiefAen, FRG) for solar exposure. The top of 
the growth chamber was made of Plexiglass, which transmitted 
>92% of the radiation between 280 nm and 700 nm. All experi- 
ments were carried out between 7. and 22. August, 1989, at a 
location south of Lissabon (Caparica, Portugal, 38 ° north) on 
sunny days between 10.30 h and 15.00 h local time. The fluence 
rates and spectral distributions were measured by Prof. Tevini 
and his coworkers (Karlsruhe, FRG) with a double monochroma- 
tor spectroradiometer (Optronics model 742, Orlando, Florida). 
The total daily fluence of solar radiation in the UV-B range was 
about 67 kJ m 2. At local noon the UV-B irradiation was about 
2.0 W m -2 outside the growth chamber and about 1.96 W m -2 
inside the growth chamber. Samples were taken at regular time 
intervals for gravitaxis measurements with the image analysis 
system. 

Image analysis of  motility and graviorientation. Gravitaxis of the 
flagellates was measured in darkness in a glass cuvette (75 × 8 × 
0.17 mm 3 inner dimensions) placed on the stage of a horizontally 
oriented microscope (Zeiss Standard, Oberkochen, FRG). The 
microscope light beam was filtered through an infrared cut-off 
filter (RG 715, Schott & Gen., Mainz, FRG) to avoid phototaxis 
and photosynthetic effects by the monitoring light. A dark-field 
condensor was used to enhance the contrast, and the image of 
the moving cells was recorded by a CCD b/w camera (Philips 
LHD 0600) mounted on top of the microscope [36]. The video 
signal was digitized in real time (Matrox, PIP 1024, Quebec, 
Canada) with a spatial resolution of 512 × 512 pixels at 256 
possible grey levels. An IBM AT compatible microcomputer (Ta- 
tung CS 8000, Taipei, Taiwan) had access to the image in memory. 
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Fig. 3. Degree of gravitactic orientation of Euglena gracilis in a 
vertical cuvette in dependence on the exposure time to solar 
radiation (abscissa, min), quantified by calculating the percentage 
of cells moving in the upper two quadrants. 

The software package was written in the computer language 
C [42], but time critical calculations such as the determination 
of the outline and position of each organism were developed in 
Assembly language with the chain code algorithm [27-29]. The 
movement vectors of the cells were stored in the form of deviation 
angles from the gravity vector. The velocity of the organisms 
was calculated from the distance they had moved in the time 
determined from the hardware clock of the computer. Subsequent 
programs were developed to allow statistical and mathematical 
analysis such as the Rayleigh values and quadrant summation, 
which quantified the precision of orientation. 

R e s u l t s  

In the absence of light, more than 75% of the cells 
of Euglena gracilis swam upwards to the top 
of the cuvette (Fig. la). The negative gravitactic 
orientation of the population was already slightly 
impaired after a short exposure (40 min) of the 
cells to solar radiation (Fig. la). After 70 rain of 
solar radiation a considerable percentage of the 
cells moved downward, and the degree of orienta- 
tion decreased significantly (Fig. lc). After 130 min 
the cells were highly unoriented, and many cells 
were immotile and sedimented passively (Fig. ld). 
Quantification of the degree of orientation using 
the Rayleigh test [2, 3, 55] indicated a drastic 
decrease even after short exposure times (Fig. 2). 
After about 70 min a residual value of about 0.15 
was reached. Most cells, however, were still motile 
for up to 200 min. Also the quadrant calculation 
indicated an early effect of solar radiation on the 
degree of orientation (Fig. 3). After about 100 min 
the cells were randomly oriented, and after about 
160 min a considerable fraction of all cells started 
to sediment passively. 

Artificial ultraviolet radiation had similar effects 
on gravitactic orientation of the cells as solar radia- 
tion. The initial precise orientation of the cells with 
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Fig. 4. Circular histograms of the 
movement direction of Euglena gracilis 
in a vertical cuvette after 0 min (a), 60 
min (b), and I00 rain (c) of artificial 
ultraviolet radiation. 1000 tracks were 
determined for each histogram and 
binned in 64 sectors. The arrows 
indicate the direction of the gravity 
vector, 

an r-value of about 0.73 (Fig. 4a) was impaired after 
short exposure times, and after 60 rain the degree of 
orientation had fallen to an r-value of 0.35 (Fig. 4b). 
After 100 rain of ultraviolet radiation the still motile 
cells were completely unoriented (Fig. 4c), indicated 
by an r-value of 0.10. This tendency and the even 
faster inhibition of gravitactic orientation is quanti- 

fled by plotting the r-values in dependence of the 
exposure time (Fig. 5), and also the quadrant calcula- 
tion confirms the fast effect of artificial ultraviolet 
radiation (Fig. 6). 

For an action spectrum of ultraviolet radiation 
on the motility of Euglena gracilis, the effects 
of monochromatic radiation were determined at 
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Fig. 5. Degree of gravitactic orientation (Rayleigh test, ordinate) 
of Euglena gracilis in a vertical cure!re in dependence on the 
exposure time to artificial ultraviolet radiation (abscissa, rain). 

wavelengths in the ultraviolet range (Fig. 7). The 
action spectrum calculated from these curves has 
a major maximum at about 270 nm, a shoulder at 
290 nm, and a secondary  maximum at about 305 
nm (Fig. 8). The  spectral distribution of  solar 
radiation has been calculated for a location at about 
50 ° north with a computer  simulation program [6]. 
Comparison of  the two curves indicates which 
parts of  the action spectrum are ecologically sig- 
nificant. 

Discussion 

Gravitaxis in Euglena gracilis is significantly im- 
paired by exposure  to solar radiation and artificial 
UV. The inhibition of  gravitactic orientation by arti- 
ficial UV irradiation supports the notion that the 
effects of  solar radiation are due mainly to the UV 
component  rather  than to visible light. Thermal ef- 
fects can be excluded for both solar and artificial 
radiation. However ,  an additional white light effect 
may be involved in solar radiation, because long- 
term white light irradiation at high fluence rates had 
been found to impair pigment composit ion and sur- 
vival of  Dinoflagellates and Cryp tophyceae  [23, 47]. 

The inhibition of  gravitaxis in Euglena gracilis is 
independent of  the decrease in motility; this finding 
supports the hypothesis  that the process of  gravi- 
orientation may be the result of  an active percept ion 
rather than a passive physical effect such as an asym- 
metric position of  the center  of  gravity. After a pro- 
longed exposure  to ultraviolet irradiation, many 
cells move downwards  in the water  column both by 
active swimming and by passive sedimentation. This 
may be an effective mechanism to escape from the 
detrimental UV irradiation at the surface. 
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Fig. 6. Degree of gravitactic orientation of Euglena gracilis in a 
vertical cuvette in dependence on the exposure time to artificial 
ultraviolet radiation (abscissa, rain), quantified by calculating the 
percentage of cells moving in the upper two quadrants. 

e 

:E 

3~5 

320 

70 -- 

O5 

270 0 

........ I ! ......... ! I "' ! ...... | 
0 ~ 1 ~  1 ~  200 2 ~  300 

Expoimi'e time [min] 

Fig. 7. Dependence of the percentage of motile cells in Euglena 
gracilis on the exposure time to monochromatic ultraviolet radia- 
tion (wavelengths indicated at the curves). 

The action spectrum of  ultraviolet irradiation 
effects on motility differs remarkably from those 
involving DNA as the primary UV target [66, 70]. It 
also differs from the generalized plant action spec- 
t rum for UV-B effects [15]. Damage of  DNA by 
ultraviolet irradiation has been excluded as a possi- 
ble mechanism for inhibition of motility in Euglena 
gracilis on the basis of  a lack of  photorepair  and 
the short effective exposure  times [39]; moreover ,  
photodynamic  responses  were excluded because 
specific quenchers  and scavengers of  singlet oxygen 
and free radicals were not effective [40]. The action 
spectrum supports the hypothesis  that an intrinsic 
component  of  the motor  apparatus,  such as a flagel- 
lar protein,  is the pr imary target of  detrimental ultra- 
violet irradiation. 
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Fig. 8. Action spectrum of the 
effects of ultraviolet radiation on 
the percentage of motile cells in 
Euglena gracilis. For 
comparison, the spectral 
distribution of solar radiation at 
a location 50 ° north (Erlangen) is 
inserted for June 27, local noon. 
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