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Abstract. We study certain language classes located between P and NP that 
are defined by polynomial-time machines with a bcunded amount of nondeter- 
minism. We observe that these classes have complete problems and find a 
characterization of the classes using robust machines with bounded access to 
the oracle, obtaining some other results in this direction. We also study 
questions related to the existence of complete tally sets in these classes and 
closure of the classes under different types of polynomial-time reducibilities. 

I. Introduction and Basic Definitions 

If P ~ NP, are there classes with "natural" complete problems between P and the 
class of NP-complete problems (NP-C)? It is well known that if P v~ NP there are 
sets of intermediate complexity, lying between P and NP-complete (ELI; see also 
Chapter 7 of FBDG]). As a matter of fact, several classes of sets have been 
proposed, which include the class P and do not seem to be complete for NP; among 
these classes we could mention the class UP of NP languages that can be accepted 
by nondeterministic polynomial-time machines with unique accepting paths IV], 
the class FewP of languages recognized by nondeterministic Turing machines with 
a bounded number of accepting paths [A1], [CH], [KSTT], the class R of 
languages accepted by polynomially clocked probabilistic machines which have 
zero error probability for inputs not in the language and error probability bounded 
by ~ < ½ for strings in the language I'G], and the class ZPP of languages which are 
recognized in polynomial time by Las-Vegas-type algorithms [(3] (see also 
Chapter 6 of [BDG]). A common characteristic of these classes is the fact that the 
existence of complete problems for any of them is not known [HH1]. 

* The research of this author was supported by CIRIT Grant EE87/2. 
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In this work we study complexity classes that have "natural"  complete 
problems and appear to be strictly between P and NP-complete. These classes arise 
when considering problems that can be solved in polynomial time using a small 
amount of nondeterminism: 

Definition. For any function f :  N ~ N let 

f l i =  {L c_E*I3A~P,  3caN ,  V x e Y , * : x a L  

,=-(3y, IYl < c . f ( i x l )  and ( x , y )  ~ A)}. 

Recall that from the classical characterization of NP in terms of quantifiers we 
have 

NP = {L c_ Z*I3A ~ P, 3k ~ I~, Vx ~ Z*: x ~ L 

,=,(3y, IYl < Ixl k and (x ,y> ~ A)}. 

The class fly is therefore the class of problems which can be recognized in 
polynomial time by a nondeterministic machine which for any input w uses at most 
an "O(f(lw[)) amount of nondeterminism." From the definition it follows imme- 
diately that P = fllog~n~ and NP = Uk:. 1 fl,k. 

Although every "reasonable" function f defines a complexity class ill, in this 
work we only consider the classes defined by the polylogarithmic functions 
f (n)  = logk(n). These classes satisfy certain basic closure properties (for example, 
closure under polynomial-time many-one reducibility), and define a hierarchy of 
complexity classes that seems to be strict. For succintness we abbreviate fllog~t,~ as 
fig for k _> 1. We also define flpolylog as the union of these classes, i.e., flpolrtog = 
Uk>_ 1 fig" We then have 

P = fll  c_ f12 c _ . . .  ~_ flk ~--"" C__ flpoJytog--"" ~ NP. 

The classes of bounded nondeterminism are not new. The classes in flpoiy~og 
appeared in [KF]  illustrating the issue of relativizations separating P from NP. In 
the article by Kintala and Fisher, some oracles separating every class in flpolylo~ are 
found. These classes are also briefly mentioned in [Ba], [SB], and [XDB]. 
However, none of the mentioned papers goes into a deep study of the classes 
themselves or the relations between them and some other structural classes placed 
in the "no man's land" between P and NP-complete. 

From the results in [KF-J the hierarchy of ilk-classes seems to be strict although 
the result is hard to prove since it implies P # NP. Using padding arguments we 
can see that a collapse in the hierarchy has consequences on other complexity 
classes. This result has been pointed to us by R. Beigel. 

Theorem 1. Let j and k be two natural numbers with j ~ k. I f  flj = ilk, then: 

(i) S A T  ~ D TIME(2n"'). 
(ii) NTIME(n)  ~_ DTIME(2n~/k). 

Proof. We show (i). Condition (ii) is analogous. Let L = {0m#xIx E S A T  and 
Ixl -- logk(m)}. Then L is in ilk, and by the hypothesis L is in fli" Simulating the 
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nondeterminism we have L e DTIME(21°SJ~'°) and S A T e  fl,,j/k, which implies 
SAT  ~ DTIME(2"J/k). [] 

In this article we show that all the/~k-classes have natural complete problems, 
which are obtained by a simple modification of certain complete problems for P, 
i.e., by adding nondeterminism. It is interesting to observe that by the complemen- 
tary process of restricting the nondeterminism in natural NP-complete problems, 
we do not seem to obtain complete problems for the il-classes. 

Although the complete problems for ilk are simple variations of complete 
problems for P, the classes seem to be much closer to NP than to P and many of the 
results obtained for the class NP can be translated to the classes lk" Nevertheless, 
not all of the results that hold for NP seem to be true for the/~-classes; for example, 
for every k, ilk is closed under disjunctive polynomial-time reducibility but does not 
seem to be closed under conjunctive polynomial-time reducibility. (In Section 3 we 
present a relativization under which ilk is not closed under conjunctive reducibi- 
lity.) 

We also obtain (Section 4) a characterization of the classes in flpolylog in terms of 
one-way robust Turing machines, showing that the small amount of nondetermin- 
ism defining the classes can be simulated by bounding the number of questions to 
the oracle of a deterministic robust machine. We observe an unusual phenomenon 
related to the il-classes and the robust machines, presenting a relativized world in 
which flk helps (in the sense of [K]) a class strictly bigger than ilk" 

2. Complete Problems in ~k 

Let us start by showing the existence of complete problems in ilk. In order to 
enumerate the machines recognizing languages in ilk, we define a machine model 
for this class. 

Definition. For every k, a ilk-machine is a nondeterministic polynomial-time 
machine equipped with a clock, that for a certain constant c > 0 works as follows: 

Given input x, the machine first writes nondeterministically c logk(Ixt) sym- 
bols on one of its working tapes. Thereafter, the machine works deterministically, 
and if it has to take a nondeterministic decision, the machine follows the path given 
by the written nondeterministic string. 

It should be clear that these machines recognize the languages in ilk, and that for 
every k there exists a recursive enumeration of the ilk-machines. We can assume 
that machine Mi with an input of length n can make i-1ogk(n) nondeterministic 
choices. From this enumeration we define in a canonical way the following 
ilk-complete language: 

Lk = {(i, x, 0")tM~ accepts x in n or less steps}, 

where, as we have said, M~ is a nondeterministic machine using i.logk(Ixl) 
nondeterministic choices. Observe that we can also enumerate all the machines 
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computing languages in//po~y~o, and obtain in the same way complete languages for 
this class. 

We now define more "natural"  complete problems for //-classes. These 
problems are found by introducing a certain amount of "controlled nondetermin- 
ism" into P-complete problems. Consider the following variation of the circuit 
value problem from [L], which is ~~k-complete. 

/ / :CVP 

Input. A pair ( x , y )  such that x ~ {0, 1}* and y encodes a boolean circuit with 
Ix1 + [-Iog(fxl)-] input gates. 

Question. Is there a string z ~ {0, 1}* of length ['log(fxl)-] such that the circuit 
encoded by y with input xz outputs a 1 ? 

Theorem2. For every k > 1, //k-CVP is ~~k-complete under logarithmic space 
many-one reducibility. 

The hardness proof is essentially the same as the one given by Ladner ELI, but 
using the//k-machine model defined in the previous section. The second stage of the 
//k-machine (when all the nondeterministic bits have been written) can be simulated 
by a boolean circuit, and the nondeterministic bits of the machine correspond to 
the input bits that are not fixed in the circuit. 

It is not hard to introduce nondeterminism in some other P-complete 
problems, like, for example, the generator problem from [JL], making it 
//k-complete. 

//k-GEN 
Input. A set X of elements; a binary operation o defined on X and explicitly given 
by a table and defined in such a way that in Iogk(IXI) cases the operation o can have 
two possible values; a subset S c X; and a distinguished element x of X. 

Question. Is there a way to define the o operation unambiguously such that x is 
contained in the smallest subset of X which contains S and is closed under the given 
operation o? 

Observe that the two problems above, as well as a small modification Of Lk, are 
self-reducible, a fact that is used in following sections. Another interesting point is 
that by restricting the amount of nondeterminism in NP-complete problems, we do 
not seem to obtain complete problems for ilk" For example, the satisfiability 
problem for formulas with only a polylogarithmic amount of variables is in 
ATIME(polyloo) [Bu], and therefore it may not even be hard for P. In spite of this 
fact, as we will see in the following sections, the fl-classes share many of the 
properties of the class NP. 

3. Closure Under Polynomial-Time Reducibilities 

The//-classes present interesting properties concerning their closure under polyno- 
mial-time reducibilities. It is easy to see that they are closed under many-one 
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polynomial-time reducibility, and they do not seem to be closed under polynomial- 
time Turing reducibility (it is not hard to find a relativization in which these classes 
are not closed under this reducibility; in fact the relativization presented in this 
section can be used for this purpose). So far these closure properties are the same as 
for the class NP; the interesting aspect arises when we consider polynomial-time 
truth-table reducibility, and more specifically disjunctive and conjunctive 
reducibilities. Recall that a set A is conjective reducible to a set B, if there is a 
function f ~ PF such that, for every string x, f ( x )  computes a list of strings 
Yl . . . . .  Yptlxl), and x ~ A if and only ifyi ~ B for each i, 1 < i < p(Ixl). Analogously, 
A is disjunctive reducible to B if there is a function f ~ PF computing a list 
Yl , . . . ,  Y~(Ixl), and x e A if and only ifyi ~ B for some i, 1 _< i < p(Ixl). The fl-classes 
are closed under disjunctive reducibility but do not seem to be closed under 
conjunctive reducibility. Again, this last remark implies P v ~ NP, and therefore we 
are only able to prove it in a relativized world. 

Theorem 3. For every k, the class flk is closed under polynomial-time disjunctive 
reducibility. 

Proof. Let B be a set in flk and let A be a set disjunctive reducible to B via a 
function f ~ PF bounded by a polynomial q. To decide if a string x belongs to A, 
compute the list of strings Yl . . . . .  Yp¢l:,lJ given by f (x) ,  choose one of the strings 
Yi (log(p(lxt)) nondeterministic bits), and then guess a string of length Iogk(q(tyil)) 
to witness the membership of y~ in B. The algorithm runs in polynomial time and 
uses an O(logk(n)) amount of nondeterminism. Therefore A is in ilk" 0 

Theorem 4. For every k >_ 2 there is a relativization in which the class flk is not 
closed under polynomial-time conjunctive reducibility. This also holds for flpolylog. 

Proof. We will find an oracle B and a language L such that L is conjunctive 
reducible to f12 n, but L is not in fl~lylog- For  every set B, consider the test language 

Ln = {0"lVu, lul = flog(n)-], 3v, Ivl = [-log2(n) -] and uv ~ B}. 

It is clear that for every B, Ln is conjunctive reducible to a set in fl2(B). As we will 
see, using counting arguments, a set B can be found such that n LB ~ flpolylos' 

Let M 1, M 2 . . . .  be an enumeration of flpolylog oracle machines, with the 
computation time of M e bounded by polynomial p~ and its nondeterminism 
bounded by s log s. We construct set B in stages: 

stage 0: B o = ~ ;  no = 0. 
stage s: Let n s be the smallest m such that m is a power of 2, log2(m) > pi(ni) for 
i < s, and 

21ogZ(m)m 
~>. 2 s logS(m). 

Let {x l , . . . ,  x,,} be the set of all strings of length log(ns). 
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If  0 n" e 
else 

1. 

L(Ms, B~_I), then B e = Be_ 1 

If there are ns strings wl . . . . .  w.. (not necessarily different) of length 
log2(ns) such that O~'¢L(Ms,  Bs_ 1 w {x lw  1 . . . . .  xn w J ) ,  then let Bs = 
Bs_  {xlwl . . . . .  XnsWn.}. 

2. If the condition in 1 is not true, then there is an integer r (r < ns) and r 
strings of length log2(ns), w 1 . . . . .  w, (not necessarily different), such that 
On'eL(Ms ,  Bs-~ w {x~w~ . . . . .  x,w,}).  Let B s = Be_ 1 w {x~w~ . . . . .  x ,w,}.  

end (of stage s) 

Let B = Us Be. Following similar arguments as in [BGS] it is not hard to 
check that B Le q~ flpo~y~og. It is only left to show that the assertion in 2 is true. 

Claim. For every ne, if for  every sequence o f  n e strings {w 1 . . . . .  w J  (not necessarily 
different) o f  length log2(ns), 0 n" e L ( M  e, B e_ 1 u {xl  w 1 . . . . .  xswn.}), then there is an 
integer r, r < he, and r strings {w 1 . . . . .  w,} (not necessarily different) o f  length 
logZ(n), such that On" e L ( M  s, B e_ 1 u {x l  w 1 . . . . .  x,wn.}). 

Proo f  o f  the claim. Given he, we call a string of s.log~(ne) bits a computation path 
of M e, since it forces the computation of Ms (for fixed input and a fixed oracle). 
Observe that there are at the most 2 e~°~(') computation paths, and that this is 
independent of the oracle we use. 

Suppose that the claim is not true. Then for every tuple of n e strings 
{w I . . . . .  w..} of length log2(ne), every accepting path of machine Ms with input 0"  
and oracle Be_ 1 ~; {XxW ~ . . . . .  xn wn. } must query all the strings x l w  1 . . . . .  Xn Wns 
and all the answers must be "yes." 

We say that a tuple of n s strings {w~ . . . . .  wn. } "is included" in a computation 
path if every element from the tuple {xtw I . . . . .  XeWn. } is queried by M s on that 
computation path with input 0 n" and oracle Be-1 u {xzwl  . . . . .  x s w J .  Observe that 
although in a computation path the range of oracle queries that can be made could 
be very big (the machines are nonadaptive), the number of tuples of n s strings 

"included" in a computation path is at the most ( P ~ s ) ) .  The explanation for this 

is that there are at the most as many tuples included in a computation path as there 
are sequences of pe(ne) oracle answers including exactly n e "yesses." 

But then for every tuple {wt . . . . .  wn, } there is an accepting path that contains 
exactly the mentioned strings answered "yes." 

From the above two facts it follows that the number of computation paths of 
M e that accept 0 ~ for some oracle B e_ t u {XlW 1 . . . . .  xewn.} is greater than or equal 
to the number of different tuples w 1 . . . . .  w,. (considering the order and with 
repetitions allowed) divided by the number of tuples that can be "included" in a 
computation path. But this number is 

21og2(ns)ns 

ns / 
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which is strictly greater than 2 s~°g'~n'), the number of possible computation paths 
of M s with input 0 n-. This is a contradiction, and therefore assertion 2 has to be 
true. D 

4. Robust Machines and the E-classes 

In this section we give a characterization of the i-classes using robust machines, 
i.e., oracle machines that recognize the same language independently from the 
oracle they use. These kind of machines were first introduced in [SII, and also 
studied in [K] and [HH2]. 

Definition. For any language L, L e Pl.help if and only if there is a deterministic 
polynomial-time-bounded machine M and an oracle A such that: 

(i) For every x ~ L, x ~ L(M,  A). 
(ii) For every oracle B and every x ~. L, x ~ L(M,  B). 

For a language class K, a language L is in X Pl-help if L e Pl-help and the oracle A 
satisfying condition (i) in the definition above is in the class K. 

By bounding the access to an N P  oracle, we can characterize the/-classes in 
terms of robust machines. We indicate within square brackets the amount of oracle 
queries allowed. 

Theorem 5. For every k >_ 2: 

pNPII°g k] ~ p#k[l°s k] 
( i )  --1-help 1-help = lk"  

(ii) lk - P{~-help. 

Proof. (Sketch) (i) The inclusions from left to right follows from the fact that an 
accepting computation path from a deterministic machine that makes log k 
questions to the oracle can be found by guessing log k bits; since the machine is 
robust, if a certain input is not in the language recognized by the machine, none of 
the possible paths that can be guessed for this input will be accepted. 

The first inclusion from right to left is straightforward. For the other inclusion, 
given a language L ~ l k  which for a certain polynomial-time predicate P satisfies 

L = {xl3y,  lYl <- log'(Ixl) and (x, y)  ~ P}, 

let 

Pref(L) = {(x, y) lqy ' ,  lY[ + lY'[ = logk(lxl) and (x ,  yy ' )  ~ P}. 

Clearly, Pref(L) is also in Elk" Any set L in lk can be semidecided following the usual 
methods by a deterministic robust machine doing binary search in oracle Pref(L). 
This also proves result (ii). [] 

Result (ii) only seems to hold in one direction; consider a language L in lk and 
the language L' = {(al ,  a z . . . .  , a n ) l a ~ L  for i = 1 . . .  n}. Clearly, L' is in PxPk-help 
since in order to check that a given string w is in L', the robust machine only needs 
to ask the oracle for the witnesses of all the substrings in w, and then check that 
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they are correct. This can be done in polynomial time with a "good"  oracle in//k- 
On the other hand, L' does not seem to be in flk since in order to check the validity 
of an input, n log k nondeterministic bits are needed. 

This is a strange phenomenon since all the classes that have appeared in the 
literature helping some other class in the sense of one-way robust machines, can 
only help themselves or some of their subclasses (Pl-helpm" = NP, Pl.hclpP = P, 
pn~'p c R [S1], [K'l), and//k seems to help a class strictly greater than itself. It 1-help 

would be very hard to prove that//k is strictly contained in P~-~etp since it would 
immediately imply P ~ NP, but we can still prove the result in a relativized world, 
in fact, for this we can use the relativization from Theorem 4. 

In order to do this we first have to define relativized robust machines. 

Definition. For  any language L and any oracle B, L ~ (P1_he~p) B if and only if there 
is a deterministic polynomial-time-bounded machine M and an oracle A such that: 

(i) For every x ~ L, x ~ L(M, A ~ B). 
(ii) For  every oracle D and every x ~ L, x ~ L(M, D ~9 B). 

Intuitively a relativized robust machine is just a deterministic machine with an 
oracle which is the join of two sets. Questions to one of the sets in the join are 
always answered correctly, but questions to the other set have to be verified by the 
machine. It is not hard to see, following the same techniques as in [S1] and I-K], 
that, for any oracle B, (Pl.he~p) B = NP a. 

As in the unrelativized case, we can define the case in which the helping oracle 
is in a certain complexity class. 

Definition. Let K be a language class that can be relativized. For any language L 
and any oracle B, L e (P~r.help)B if an,~ only if there is a deterministic polynomial- 
time-bounded machine M and an oracle A ~ K s such that: 

(i) For  every x ~ L, x ~ L(M, A ~ B). 
(ii) For  every oracle D and every x ~ L, x (~ L(M, D ~ B). 

Observe that in the above definition we also relativize the helping class. The 
motivation for this is that if we give more power to the robust machine by letting it 
access " two"  oracles, we also have to give more power to the helping class or it will 
not be able to help the machine. It is also easy to prove that, for any oracle B, 
(pN~ ~B NpB. 1-help/  ~--" 

Theorem 6. For any k >_ 2, there is an oracle B such that (P~_helv) ~ ~ flf. 

Proof. For  every set B, consider the test language 

LB = {0~lVu, lut = Flog(n)-], 3v, Ivl -- l'log2(n)-t and uv ~ B}. 

In Theorem 4 we showed that there is a set B such that, for every k, LB ~//k, 
therefore we just show that, for every set B, LB ~ (P~-~,lp) B- (This obviously implies 
Ls ~ (P~.help) a for every k > 2.) 
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Consider the set 

B' = {O"#x#u l l x t  = flog(n)7 and 3vlul + fvl = [-logZ(n) -] and xuv ~ B}. 

Clearly, B' ~ fl~ since in order to check that a given input is in the set, we only need 
to guess log z bits, at the most, and then make one query to B. 

Informally, we now describe a deterministic one-way robust machine that 
recognizes L B using oracle B': with input 0", cycle over all strings x of length 
['log(n)7, and for each one of them, doing binary search in the oracle, find a string w 
of length [-log2(n)7 in B. Finally, check that the string obtained, xw, is in B by 
directly asking oracle B. If this can be done for every string x of length Flog(n)-] 
then accept. [ ]  

5. Similarities Between il and N P  

Although we have seen that ilk-complete problems can be obtained with small 
modifications from P-complete problems, we will see in this section several results 
which indicate that the classes flk share many of the properties of the class NP. We 
begin by restating in terms of ilk an old result of Adleman lAd] which says that the 
difference between P and NP is the ability of the NP-machines to manufacture 
randomness. In the next theorem we prove that this difference also exists between P 
and ilk, which in a certain sense means that the ability to manufacture randomness 
is independent of the amount of nondeterminism used by the machine. Our proof 
directly follows a similar one in [HW]. We first introduce two definitions. 

Definition. Given a ilk-machine M and an input x, a certificate of M on x is an 
accepting path of M(x). 

Definition. Let My be a universal Turing machine, z ~ Z*, and f ,  g: ~ ~ N. 
Define the Kolmogorov complexity relative to string z as 

K[f(n) ,  9(n)lz] = {xt3y, lYl < f ( l x l )  ^ M u ( y # z )  prints x within g(x) steps}. 

We say that a string x is Kolgomorov simple relative to z if there is a constant c 
such that x ~ K[c log n, nClz]. 

Theorem 7. P = flk iff flk has Kolmooorov simple certificates relative to the input. 

Proof. If P = ilk, by using the self-reducibility of flk-CVP we can find certificates 
for any instance in the language. In the other direction, there are only polynomially 
many simple strings relative to the input and we can produce all of them in 
polynomial time, and check if at least one of them is a true certificate. []  

Besides this similarity between the sets accepted by machines using a poly- 
nomial amount of nondeterminism and a log k amount of nondeterminism, there 
are other common characteristics. One of them is that ilk cannot have complete 
tally sets unless P = ilk. This result is similar to the well-known result of Berman 
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about the nonexistence of NP-complete tally sets if P ~ NP. The result is given in 
the following theorem, whose proof is practically the same as the one given by 
Berman [Be], but using the set ilk-CVP, shown previously to be complete in ilk, and 
self-reducible. The details of the proof are left to the reader. 

Theorem 8. I f  there exists a co-sparse and ilk-complete set, then P = ilk. 

As a corollary to this last theorem we can state 

Corollary. I f  there exists a tally ilk-complete set, then P = ilk. 

It is an open question whether the result also holds for sparse sets. Mahaney's 
proof for sets in NP [M] cannot be carried over to il since it needs a massive use of 
nondeterminism. 

It is also interesting to compare the ability of ilk-machines to compress queries 
to an oracle in NP with the ability of NP-machines to do the same thing. It is well 
known that an NP-machine with access to an oracle in NP can be simulated by 
another machine that queries the oracle just once (NP m" = NPm't11). We present 
results in this line for the class ilk" Recall that we indicate within square brackets the 
number of oracle queries allowed. 

Theorem 9. For every k, and j > k: 

(i) il~evoV(,~l c il~y~21. 
(ii) il~eoo¢'(,,~l = ilNP[2] 

Proof. We sketch (i). Condition (ii) is a corollary. A ilk-machine M making log / 
queries to an oracle in NP can be simulated by another machine M' making just 
two queries to another NP oracle in the following way: M' guesses a computation 
path of M and a list of oracle answers from the oracle (O(logJ(n)) bits). With this 
information M' computes the list of oracle queries corresponding to the guessed 
answers and the guessed computation path, and needs just two queries to the new 
oracle to check that all the queries corresponding to a (guessed) positive answer are 
in the old oracle, and all the queries corresponding to a negative answer are not in 
the old oracle. Since NP is closed under disjunctive and conjunctive truth-table 
reducibilities, the new oracle is also in NP. [] 

6. Final Remarks 

We have presented a hierarchy of il-classes which are located between P and NP- 
complete and which have complete problems. We have characterized these classes 
in terms of robust machines, introducing the concept of a relativized robust 
machine. Under the hypothesis P ~ ilk, we obtained negative results about the 
existence of complete tally sets in the il-classes. 

The relationship between the il-classes and other complexity classes that lie 
between P and NP, like R or ZPP,  is an interesting open question since any result 
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in this direction will clarify the relationship between nondeterminism and probabil- 
ism. We do not know either whether the fl-classes lie within Sch6ning's Low or 
High hierarchies (see [$2]), but we conjecture that the classes are not included in 
either of them. 
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No te  added in proof. Ogiwara and Watanabe  (personal communication) have 
recently developed a technique which provides a new proof  for Mahaney's  theorem 
[M].  The new technique does not make too much use of nondeterminism and 
therefore it can be carried over to / / .  We can then state that, for every k, if there 
exists a sparse//k-complete set, then P = ilk, thus solving the question proposed 
after Theorem 8. 


