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R E V I E W  A R T I C L E  

Impact of Aging on Gastrointestinal 
Mucosal Immunity 

DOUGLAS L. SCHMUCKER, PhD, MARTIN F. HEYWORTH, MD, ROBERT L. OWEN, MD, and 
CHRISTOPHER K. DANIELS, PhD 

There is considerable evidence that the mucosal or secretory immune response in the 
gastrointestinal tract is compromised by aging. The generation of a mucosal immune response 
is an extremely complex process that involves antigenic stimulation of a specific subpopula- 
tion of immunologically competent cells in the Peyer's patches, differentiation and migration 
of these cells to the small intestinal lamina propria, initiation and regulation of local antibody 
production in the intestinal wall, and mucosal epithelial cell receptor-mediated transport of 
antibodies to the intestinal lumen. Available data suggest that gastrointestinal mucosal 
immunosenescence reflects deficits in: (1) the differentiation and/or migration (homing) of 
immunoglobulin A immunoblasts to the intestinal lamina propria, and (2) the initiation 
and/or regulation of local antibody production. The significant age-related increases in the 
incidence and severity of gastrointestinal infectious diseases, coupled with the potential for 
immunopharmacologic manipulation of the mucosal immune compartment, substantiate the 
merit of studies designed to resolve the etiology of mucosal immunodeficiency in the elderly. 
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An extensive data base suggests that aging is associ- 
ated with systemic immunodeficiency. The evidence 
points towards age-related dysfunctions of B and T 
lymphocytes and age-related impairments in the reg- 
ulation of the immune response by cytokines and 
other factors (see refs. 1 and 2 for reviews). Mucosal 
surfaces are anatomically associated with a discrete 
compartment of the immune system, which is auton- 
omous from the systemic system by virtue of: (1) a 
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different major immunoglobulin isotype, (2) a unique 
process for initiating an immune response, and (3) 
independent lymphocyte populations. Among mam- 
malian organ systems with a mucosal surface, the 
gastrointestinal tract represents the largest single im- 
munological organ, contains >70% of the organism's 
immunoglobulin-producing cells, and produces more 
immunoglobulin A (IgA) than the organism's total 
production of immunoglobulin G (IgG). Despite the 
facts that mucosal surfaces are directly exposed to 
potential pathogens and constitute the first line of 
immune defense, the question of age-related pertur- 
bation of the mucosal or secretory immune system 
has not been studied extensively (see ref. 3 for a 
review). Furthermore, much of the data concerning 
mucosal immunity in old animals and old humans is 
contradictory. The gastrointestinal tract in the elderly 
is particularly susceptible to infectious and inflamma- 
tory diseases, suggesting that mucosal immune de- 
fenses are compromised (4, 5, see ref. 6 for a review). 
For example, statistics from the World Health Orga- 
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nization demonstrate a 400-fold increase in mortality 
attributed to gastrointestinal infections in the elderly 
in comparison to young adult populations (see ref. 2 
for a review). 

The medical problems of the elderly and the asso- 
ciated health care costs should encourage research on 
mucosal immunodeficiency in this age group, as well 
as on its relationship to the incidence, prevalence, and 
severity of age-associated diseases. Such research ef- 
forts have merit since the mucosal immune compart- 
ment is accessible to manipulation by immunophar- 
macological agents that enhance the secretory 
immune response. 

EVIDENCE FOR GASTROINTESTINAL 
MUCOSAL IMMUNODEFICIENCY IN THE 

ELDERLY 

Infectious diseases are the fourth leading cause of 
death and constitute a significant cause of morbidity 
in the elderly. This aged subpopulation is more sus- 
ceptible to gastrointestinal infection and exhibits con- 
siderably higher rates of progression of infections 
than do younger age groups. Furthermore, the effi- 
cacy of certain vaccines, such as those directed against 
influenza viruses and pneumococcae infections, is 
markedly diminished in elderly individuals (see ref. 6 
for a review; 7-9). Strassburg et al have shown that 
elderly subjects exhibit a 70% efficacy for influenza 
vaccine in mortality reduction, but only a 30% efficacy 
in preventing the clinically defined disease (10). Epi- 
demiological studies have suggested that the rate of 
progression of HIV/AIDS is greater in elderly per- 
sons than in younger subjects (11-15). Many elderly 
individuals are afflicted with debilitating diseases that 
compound their immunosenescent state and may fur- 
ther influence their responses to vaccines or patho- 
gens (16). Geriatric populations destined for study 
should be characterized with respect to health and 
nutritional status, because both of these variables 
have been shown to influence immune responsiveness 
(17-19). 

Despite evidence of mucosal immunodeficiency, 
several studies have reported increased serum IgA 
levels in old animals and humans compared with 
corresponding levels in younger individuals. Ebersole 
et al reported an eightfold increase in serum IgA in 
rats between i and 20 months of age (20). It should be 
noted, however, that 20-month-old rats are usually 
not beyond the 50% survivorship level and, thus, 
should not be considered senescent. Amman et al 
measured human serum IgA levels and found that 
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these were 50% higher in older (>57 years) than in 
younger (<42 years) subjects (21). Other clinical 
studies have reported similar increases or no change 
in serum IgA levels as a function of aging (22-24). 

The total IgA level in intestinal lavage fluid in- 
creased approximately twofold in nonimmune rats 
between 4 and 20 months of age (20). Arranz et al 
found no age-related differences in total or secretory 
IgA levels in intestinal lavage samples of young and 
elderly human subjects and concluded that the intes- 
tinal IgA response is unaffected by age (24). Although 
serum and intestinal lavage IgA levels increase or 
remain unchanged with age in rodents, monkeys, and 
humans, other studies suggest that nonspecific immu- 
noglobulin levels in intestinal secretions are poor 
indicators of mucosal immunity and that specific an- 
tibody titers represent a more critical measure of 
mucosal immune responsiveness (20, 25-28). Fur- 
thermore, Senda et al suggested that age-enhanced 
IgA levels in the intestinal lavage reflect monomeric 
IgA rather than the polymeric form, which undergoes 
receptor-mediated epithelial transport to mucosal 
surfaces (29). Steffen and Ebersole reported that the 
avidity of IgA antibodies for Mycoplasma puhnonis 
antigen actually increased with age in mice (30). 
However, it should be noted that the oldest mice 
examined in this study were only 16 months of age 
and, thus, were not senescent. 

Several groups of investigators have measured in- 
testinal IgA antibody titers in response to selected 
antigens as a function of age. For example, it has been 
shown that the intestinal IgA antibody response to 
intraduodenal cholera toxin diminishes with in- 
creased age in rats and mice (31, 32) (Figure 1). 
Intraduodenal immunization of rhesus macaques with 
cholera toxin elicited a substantial intestinal anti- 
cholera toxin IgA response in young, but not in old, 
animals (25). In contrast, such immunization led to 
increased serum IgA antitoxin titers in young and old 
macaques. Anti-cholera toxin immunoglobulins G 
(IgG) and M (IgM) antibody titers in the intestinal 
secretions were higher in old than in young macaques, 
perhaps indicative of a compensatory response to the 
failure of IgA production or abnormal immunoregu- 
lation (25, 33). 

Although several clinical studies have documented 
an age-related decline in specific mucosal IgA anti- 
body responses, there have been conflicting reports. 
Amman et al, as well as other groups of investigators, 
observed age-related deficits in the IgA antibody re- 
sponses to various antigens in human subjects (see 
refs. 6 and 7 for reviews, 21). Despite an age-related 
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Fig 1. The ratio of anti-cholera toxin IgA antibody titers in cholera 
toxin immunized and nonimmune young, mature, and old rats. 
Animals were immunized intraduodenally with 50 ~g of cholera 
toxin in PBS with 2% gelatin or sham-immunized with 2% gelatin 
in PBS alone, on days 0 (primary) and 14 (boost), killed on day 19, 
and the antibody titers measured in bile, intestinal secretions (gut 
lavage), and serum by capture ELISA. The ratio of anti-cholera 
toxin IgA antibody titers in immunized rats to those in naive 
animals in all three samples declined significantly during aging (*P 
< 0.01 compared with young animals). Each bar represents the 
mean +- SEM of data from three to five animals. (Data derived from 
Ref. 30.) 

decline in antibody titers in the lung lavage of mice 
orally immunized with influenza virus, Waldman et al 
reported that the antibody responses in the nasal 
lavages of immunized young and old humans were 
similar (8). Similarly, Ganguly et al measured equiv- 
alent nonspecific IgA titers in the saliva of nonimmu- 
nized young (33 years) and elderly (72 years) volun- 
teers (9). However, most studies to date suggest that 
the mucosal immune response is compromised in the 
geriatric population. Major issues that remain to be 
resolved include: (1) how aging impairs the secretory 
immune response, (2) whether or not immunosenes- 
cence predisposes the elderly to infectious diseases, 
and (3) whether immunodeficiency associated with 
aging might be reversible. 

EVIDENCE FOR AGE-RELATED SHIFTS IN 
COMPOSITION OF GUT-ASSOCIATED 

LYMPHOID TISSUE (GALT) 

The mucosal immune system depends on the coop- 
eration of lymphoid and epithelial cell components to 
initiate and maintain an immunological response. An 
effective response in the gastrointestinal tract in- 
volves: (1) antigen uptake at the mucosal surface via 
specialized epithelial cells (M cells), which overlie 
nodules of the Peyer's patches; (2) transport of anti- 

gen across M cells, and its presentation to immuno- 
logically competent cells in the Peyer's patches; (3) 
differentiation and migration (homing) of antigen- 
stimulated Peyer's patch IgA B immunoblasts to the 
intestinal lamina propria; (4) regulation of antibody 
production by mature IgA plasma cells in the lamina 
propria, and (5) transport of polymeric IgA and IgM 
antibodies across the intestinal epithelium to the mu- 
cosal surface (Figure 2). These secretory antibodies 
neutralize toxins on the mucosal surface, block the 
adherence of bacteria to the epithelium, and reduce 
the penetration of antigens across the mucosa. Di- 
minished intestinal IgA antibody titers in elderly sub- 
jects might, theoretically, reflect age-associated dim- 
inutions in: (1) uptake and transport of luminal 
antigens by M cells, (2) maturation and migration of 
Peyer's patch B immunoblasts to the intestinal lamina 
propria, (3) local antibody production, or (4) epithe- 
lial transport of polymeric immunoglobulins from the 
lamina propria to the intestinal lumen. Individually or 
collectively, diminished activity of these processes 
might impair the intestinal IgA response to antigens. 
The following is a summary of current knowledge of 
the effects of aging on the sequential steps involved in 
the initiation of an intestinal mucosal immune re- 
sponse. 

We are unaware of any qualitative or quantitative 
evidence of an age-related impairment in the uptake 
and/or transport of antigens by M cells; most studies 
have focused on steps subsequent to antigen presen- 
tation. Kawanishi and Kiely reported that the number 
and distribution of mouse Peyer's patches remain 
unchanged, but that the follicle weight and yield of 
Peyer's patch lymphocytes decline substantially in ag- 
ing mice (34). Furthermore, studies from our labora- 
tory demonstrated that aging does not influence the 
number of Peyer's patches per small intestine in rats 
or the yield of lymphocytes per patch (31). In the 
1960s, Comes reported that the number of Peyer's 
patches in the human small intestine decreases with 
age (35). The interpretation of this early work is 
tempered by the fact that Peyer's patches are ex- 
tremely difficult to visualize in fresh human or mon- 
key tissue. 

Several investigators have suggested that losses in 
specific B- and/or T-lymphocyte subpopulations, as 
well as shifts in the distributions of lymphocyte sub- 
sets, in gut-associated lymphoid tissue (GALT) may 
contribute to an age-related decline in mucosal im- 
mune competence (34, 36-39). For example, Kawan- 
ishi and Kiely observed a decline in the Tsuppressor / 
cytotoxic cell subpopulation in Peyer's patches of old 
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mice (34, 40). Ebersole et al did not detect any 
changes in mature T-lymphocyte subpopulations, but 
reported that the Peyer's patches of old mice con- 
tained fewer immature and IgA + cells than those of 
young mice (41). Quantitative studies from our labo- 
ratory, involving flow cytometry, did not reveal any 
age-related shift in the relative proportion of Peyer's 
patch Tsuppressor/cytotoxi c (CD8 +) cells in rats (42). 
However, subsequent immunohistochemical staining 
revealed age-related differences in the anatomical 
distribution of CD8 ÷ lymphocytes in rat Peyer's 
patches. In young rats, discrete zones of densely 
stained CD8 ÷ cells were seen in the interfollicular 
areas, and weakly stained cells were present within 
the follicles of the patches. In old rats, the frequency 
of intensely stained CD8 ÷ lymphocytes between the 
follicles was markedly reduced, and cells of this phe- 
notype were evenly distributed throughout the 
patches. Interestingly, the frequency of CD8 ÷ lym- 
phocytes in the intestinal lamina propria of the rats in 
this study increased 2.5-fold between 3 and 29 months 
of age. However, the relative percentages of Peyer's 
patch and mesenteric lymph node total T iymphocytes 
(W3/13 +) and Thelper/induccr (W3/25 +) cells were 
found to remain stable during aging (42). These data 
suggest that suppressor/cytotoxic T-cell distribution in 
the inductive and effector sites of the GALT exhibits 
an age-related shift, and they clarify the apparent 
contradiction between immunohistochemical and 
flow cytometric data concerning the effect of aging on 
the relative abundance of CD8 ÷ T lymphocytes in 
rodent Peyer's patches (34, 40, 41, 43). 

The proliferative capacity of GALT T lymphocytes 
from young and old animals has been studied fairly 
extensively and, in general, has not exhibited an age- 
related decline. Concanavalin A elicited a greater 
proliferative response in Peyer's patch T lymphocytes 
isolated from old mice than in similar cells from 

young animals (44). However, these data must be 
tempered by those of Kawanishi and Kiely, which 
indicate that concanavalin A-induced proliferation of 
Peyer's patch Tsuppressor/cytotoxi c lymphocytes is mark- 
edly impaired in old mice (40). Systemic lymphocytes 
undergo well-documented age-related declines in 
their proliferative response to a variety of mitogens, 
but this response is postponed or less evident in cells 
isolated from the mesenteric lymph nodes of old 
mice, especially those expressing the Thc~p~r pheno- 
type (45, 46). 

All surface immunoglobulin-positive isotypes and 
IgA ÷ cells account for 60-70% and 6-17%, respec- 
tively, of Peyer's patch cells in all age groups of naive 
and immunized rats (42). Ebersole et al reported a 
decline in the number of IgA + cells in rat Peyer's 
patches and salivary glands during aging and sug- 
gested that the maturation of B immunoblasts into 
surface IgA-bearing cells is compromised in old ani- 
mals (20). Again, the oldest rats examined were only 
20 months of age, ie, not truly senescent. Haaijman et 
al observed that the number of cytoplasmic immuno- 
globulin-containing cells in GALT declined with age 
in mice but that there was no significant shift in the 
number of surface immunogtobulin-positive lympho- 
cytes (39). These data appear to suggest that there is 
an age-related impairment in the differentiation of 
surface IgA-bearing immunoblasts into mature anti- 
body-secreting plasma cells. Kawanishi and Kiely re- 
ported that old mice are characterized by a decline in 
the total number of IgA ÷ cells in Peyer's patches and 
mesenteric lymph nodes (34). Studies from our labo- 
ratory have shown that the total population of surface 
immunoglobulin positive lymphocytes in GALT re- 
mains unchanged in rats during aging but that there is 
a concomitant twofold increase in IgA + cells in the 
Peyer's patches (31). The increase in Peyer's patch 
IgA + cells, coupled with quantitative immunohisto- 

Fig 2. (A) Schematic diagram of the gastrointestinal mucosal immune system. Secretion across the acinar cells of the salivary glands 
represents an important route for entry of IgA into the oral cavity and proximal gastrointestinal tract. In certain rodents, the hepatobiliary 
pathway accounts for much of the IgA that enters the intestinal lumen, whereas in most other species examined, including humans and 
primates, the major transport of this immunoglobulin occurs across the intestinal epithelium. Surveillance of the intestinal lumen for 
antigens, and initiation and regulation of the secretory immune response, involve the Peyer's patches. Specialized epithelial cells (M cells) 
on the dome of the Peyer's patch transport antigens to underlying macrophages and lymphocytes. The precursors of IgA-seereting plasma 
cells, presumably lgM+-IgD ÷ double-positive lymphocytes in the Peyer's patches, undergo isotype switching to IgA expression, migrate to 
the mesenteric lymph nodes for further T-lymphocyte-dependent maturation, and "home" to the lamina propria of the intestine via the 
systemic circulation. In the intestinal lamina propria, mature plasma cells serve as the primary source of IgA antibodies. (B) Schematic 
diagram of receptor and vesicle-mediated translocation of IgA across hepatocytes and small intestinal enterocytes. In rats and other rodents, 
polymeric IgA (pIgA) binds to the polymeric immunoglobulin receptor (plgR) on the sinusoidal membranes of hepatocytes, and the entire 
complex (plgR + plgA) is endocytosed into vesicles and transported to the bile canaliculus via a microtubule-dependent mechanism. 
During this transit, the plgR is cleaved and the portion of the receptor (secretory component) complexed to plgA is secreted into the bile, 
along with the attached plgA. This molecular complex of secretory component and plgA is termed secretory IgA. Free secretory component 
(without attached plgA) is also secreted into the bile; the plgR is not recycled. The subcellular pathway in enterocytes is similar, except that 
plgA is endocytosed at the basolateral membrane and transported to the apical surface, where the secretory IgA is released into the 
intestinal lumen. (Revised from Ref. 2.) 
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chemical evidence of an age-related decline in this 
surface isotype in the intestinal lamina propria, sup- 
ports the hypothesis that aging compromises the mat- 
uration of Peyer's patch IgA ÷ immunoblasts and/or 
their migration to the intestinal lamina propria. 

EFFECT OF AGE ON MIGRATION OF IgA 
IMMUNOBLASTS TO INTESTINAL LAMINA 

PROPRIA 

There is evidence that aging perturbs the differen- 
tiation of Peyer's patch IgA + immunoblasts and their 
migration to the intestinal lamina propria, with con- 
sequent diminution in local antibody production. Sev- 
eral groups of investigators have reported a loss or no 
change in the number of IgA + cells in the intestinal 
lamina propria during aging in rodents (30, 36, 47, 
48). The loss of IgA + plasma cells in the intestinal 
wall of old animals coincides with reduction in the 
titer of IgA antibodies in the intestinal secretions (30, 
34, 36). Bianchi et al reported a fivefold decline in the 
population density of IgA + cells in the intestinal 
lamina propria of nonimmune mice between 12 and 
20 months of age (36). Quantitative immunohisto- 
chemical analysis of B-cell isotypes, following in- 
traduodenal immunization of young, mature, and old 
rats with cholera toxin, revealed significant age- 
related reductions in the numbers of IgA + (>60%) 
and cholera toxin-positive (>50%), ie, antibody- 
containing, cells in the intestinal lamina propria (31) 
(Figure 3). In cholera toxin-immunized mice, Green- 
Johnson et ai reported that the number of antibody- 
containing cells in the intestinal wall was significantly 
lower in old than in young animals (32). In contrast, 
there is no evidence for an age-related loss of anti- 
body-synthesizing cells in the mesenteric lymph nodes 
of mice immunized orally with trinitrophenylated bo- 
vine 3' globulin, or of rats immunized intraduodenally 
with cholera toxin (31, 49). 

In the only relevant human study to date, Arranz et 
al reported that there were twice the number of IgA + 
cells in the intestinal lamina propria of elderly versus 
young subjects (24). These data conflict with the 
majority of those obtained in rodents. In a study from 
our laboratory, flow cytometry was used to quantify 
cholera toxin-positive and IgA ÷ cells in the periph- 
eral blood of  nonimmune and cholera toxin- 
immunized rhesus macaques (25). It was assumed 
that the relative numbers of these two cell phenotypes 
would serve as an index of antigen-stimulated IgA 
immunoblast migration. The work showed that both 
populations of mononuclear cells were reduced three 
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Fig 3. Numbers of IgA + (A) and anti-cholera toxin antibody- 
containing cells (B) in the lamina propria of the small intestines of 
young, mature, and old cholera toxin immunized (CTx) and non- 
immune (control) rats, measured by quantitative immunohisto- 
chemistry. (A) With the exception of the ileums of old cholera 
toxin-immunized animals, the number of IgA + cells in the lamina 
propria declined significantly as a function of increasing age (P < 
0.01). (B) No anti-cholera toxin antibody-contaiping cells were 
detected in the lamina propria of the jejunum or ileum of the 
nonimmunized rats regardless of age. Although the response to 
cholera toxin was similar in young and mature rats, the intestinal 
lamina propria of old cholera toxin-immunized animals contained 
significantly fewer antibody-containing cells than that of corre- 
sponding young animals (*P < 0.01). The values are expressed as 
the mean number of cells per square millimeter of lamina propria 
+__ SEM. (Data derived from Ref. 30.) 

to fourfold in the blood of immunized old macaques, 
in comparison to young animals (Figure 4). This 
observation, coupled with a decline in the number of 
cholera toxin-positive plasma cells in the intestinal 
lamina propria, suggests that the homing of IgA im- 
munoblasts to the intestinal wall is compromised in 
old animals and that this contributes to reductions in 
antibody-secreting plasma cells, local antibody pro- 
duction, and mucosal immune responsiveness. 
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Fig 4. Relative percentages of IgA + (A) and cholera toxin-positive 
(B) cells in the mononuclear cell population in the peripheral 
blood of young and old rhesus macaques, before (day 0) and after 
primary immunization (day 14) and boosting (days 21 and 28) with 
cholera toxin. Blood samples were collected on day 0, the animals 
were immunized intraduodenally with 500 ~g of a mixture of 
cholera toxin and toxoid on days 0, 14, and 21, and blood samples 
were collected on days 14, 21, and 28. Mononuclear cells were 
prbpared from heparinized blood by Ficoll density gradient cen- 
trifugation, the GMI ganglioside receptor for cholera toxin was 
blocked, and the cells were incubated with fiuorescein-conjugated 
cholera toxin plus biotinylated rabbit anti-monkey IgA, followed by 
streptavidin-phycoerythrin. The relative number of each cell pop- 
ulation was then determined by flow cytometry. (A) The number of 
IgA + cells increased significantly in young, but not old macaques, 
during the course of the study. (B) No cholera toxin-positive celts 
were detected in the preimmune samples, and the number of cells 
expressing this surface phenotype was significantly greater in young 
versus old animals at each subsequent time point. The values 
represent the mean percentage of ceils stained -+ sD, for five to six 
animals (*P < 0.01). (Data derived from Ref. 24.) 

EFFECT OF AGE ON LOCAL ANTIBODY 
PRODUCTION IN THE INTESTINE 

The age-associated decrease in titers of intestinal 
IgA antibody might, theoretically, reflect deficits in- 
trinsic to plasma cells, or alterations in the immediate 
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environment of these cells. Kawanishi and Kiely re- 
ported a 40-70% decline in T-cell-dependent immu- 
noglobulin production by Peyer's patch and mesen- 
teric lymph node B cells from old mice in comparison 
to young or mature animals (34). In contrast, Rivier 
et al observed an age-related increase in the produc- 
tion of anti-a Dextran B1355 IgA antibodies by 
mouse mesenteric lymph node cells (50). Daniels et al 
measured antibody production by lymphocytes iso- 
lated from young and old rats following intraduode- 
nal immunization with cholera toxin (51). Five days 
after primary immunization, antitoxin production by 
spleen and mesenteric lymph node lymphocytes was 
greater in the case of young rats than of old animals. 
Peyer's patch cells from toxin-primed old rats pro- 
duced significantly more IgA, IgG, and IgM antibod- 
ies than did corresponding cells from young animals; 
suggesting an age-related delay in the egress of anti- 
gen-stimulated B lymphocytes from the Peyer's 
patches. Finally, lymphocytes isolated from the 
spleens, mesenteric lymph nodes, and Peyer's patches 
of toxin-boosted rats produced similar or smaller 
amounts of antibody in the case of young than of old 
animals. These data suggest that while the intestinal 
antibody response to intraduodenal cholera toxin is 
impaired in senescent rats, this impairment does not 
result from any inability to initiate a response. 
Rather, the apparent impairment of intestinal anti- 
body production in old animals might reflect: (1) 
reduced numbers of plasma cells in the lamina pro- 
pria, (2) suppression of local antibody synthesis, or 
(3) impairment in epithelial cell transport of antibod- 
ies to the intestinal lumen. 

The differentiation of IgA + B lymphocytes is reg- 
ulated by cytokines, for example, IL-1 and IL-6, and 
local IgA production in the intestinal lamina propria 
appears to be under the regulation of IL-6, CD4 ÷ 
T-cells, Tsuppressor/cytotoxi c cells, and gastrointestinal 
neuropeptides, eg, vasoactive intestinal peptide (VIP) 
and substance P (32, 52-56; see refs. 57 and 58 for 
reviews). A recent review contains the suggestion that 
serum IL-6 levels rise with increasing age, as part of 
an "inflammatory response" (59). Conceivably, nu- 
merical reduction in IgA plasma cells in the intestinal 
lamina propria of old animals might reflect impaired 
B-lymphocyte differentiation consequent to reduced 
sensitivity of these cells to IL-6 (53). Alternatively, or 
in addition, the increased population of Tsuppressor / 
cytotoxic lymphocytes (OX8 +) in the intestinal lamina 
propria of old rats might impair terminal differentia- 
tion of B lymphocytes or suppress local antibody 
production (42). 
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EFFECT OF AGE ON EPITHELIAL CELL 
TRANSPORT OF IgA TO INTESTINAL LUMEN 

Polymeric immunoglobulin A and M (plgA, plgM) 
antibodies produced by plasma cells in the small 
intestinal lamina propria are transported from the 
basal to the luminal surface of intestinal enterocytes 
by a receptor-mediated vesicular translocation mech- 
anism (see ref. 60 for a review). Practically all muco- 
sal epithelial cells, including salivary and respiratory 
epithelial cells, express the polymeric immunoglobu- 
lin receptor (plgR) on their basolateral surfaces. Fur- 
thermore, in several mammalian species, including 
rats, mice, and rabbits, plgR is expressed on the 
sinusoidal surfaces of hepatocytes and is responsible 
for transporting plgA from the blood to the bile. The 
hepatobiliary pathway is a major route for the secre- 
tion of IgA antibodies into the intestinal lumen in 
these species, but seems to be relatively unimportant 
in humans (61). However, since the expression of 
plgR in hepatocytes is highly regulated, and the hep- 
atocellular transport of plgA is identical to that in 
enterocytes, the hepatocyte can serve as a model for 
plgR-dependent plgA transport (62, 63). The plgR is 
synthesized on the rough-surfaced endoplasmic retic- 
ulum, where its molecular mass is 105 kDa, and is 
translocated to the Golgi where it undergoes terminal 
glycosylation to the transmembrane form (116 kDa). 
After phosphorylation of the serine at position 664 in 
the tail region (120 kDa), and binding of IgA, the 
plgR-plgA complex is internalized via endocytic ves- 
icles and transcytosed to the bile canalicular mem- 
brane (64-66). The plgA binding portion of the plgR 
is cleaved, and the resulting molecular complex (plgA 
and the binding domain of the plgR) is secreted as 
secretory IgA (67, 68) (Figure 2B). 

Much of the research on the effects of aging on 
plgR expression and plgA transport in the liver and 
intestine has been performed in the authors' labora- 
tories. Approximately 10 years ago, we observed a 
four to sixfold decline in the transport of plgA from 
blood to bile in rats between the ages of 3 and 25 
months (69). A quantitative autoradiographic analysis 
of the distribution of radiolabeled plgA in the hepa- 
tocytes suggested that the vesicular translocation of 
the ligand-receptor complex from the sinusoidal 
membrane to the bile canaliculus was impaired in old 
animals. The vectorial movement of plgA-containing 
vesicles, as well as the transport of nascent plgR to 
the canalicular membrane, is dependent on the integ- 
rity of the microtubule system (70). Recent work from 
our laboratory demonstrated a 70% decline in the 

concentration of polymerized a and/3 tubulin by 12 
months of age, and a 50% loss of total tubulin by 24 
months, in rat liver (71). These shifts in critical cy- 
toskeletal elements raise the possibilities that there is 
a decrease in the number or length of microtubules 
and that the microtubule-dependent translocation of 
pIgA is compromised during aging. We are unaware 
of any data concerning the effect of aging on the 
vesicular translocation of pIgA in small intestinal 
enterocytes. 

Studies using ligand binding assays and Scatchard 
analysis demonstrated that the number of hepatic 
plgA receptors declined three to fourfold between 3 
and 25 months of age in rats, whereas the binding 
affinity remained unchanged (72). This age-related 
loss of hepatic receptor expression has been demon- 
strated in vivo and in vitro (72, 73). Compared to 
hepatocytes isolated from young rats, the binding and 
uptake of 125I-labeled plgA by cultured hepatocytes 
from old animals was found to be reduced approxi- 
mately 2.5-fold (73). The plgR mRNA steady-state 
level declines only 20% during the same age span and, 
thus, does not correlate with the three to fourfold loss 
of receptors from the hepatocyte surface (74). In vitro 
studies using cultured rat hepatocytes revealed an 
age-dependent lag in the incorporation of [35S]cys- 
teine into newly synthesized plgR, suggesting that 
aging may affect this receptor posttranscriptionally 
(73). Furthermore, there is evidence for an age- 
related decline in the secretion of plgR by cultured 
rat hepatocytes (73). In summary, the age-related 
decline in the hepatobiliary transport of plgA in rats 
may reflect diminished synthesis of plgR molecules 
and impaired intracellular translocation of the recep- 
tor-ligand complex. 

Several years ago, work in our laboratory demon- 
strated that human and rhesus macaque hepatocytes 
do not express plgR on their surfaces; this finding 
supports the concept that hepatobiliary secretion of 
plgA is minimal or nonexistent in primates (61). Very 
little is known about the possible effects of aging on 
plgR expression by small intestinal enterocytes. Ba- 
solateral plasma membranes of rat enterocytes bind 
plgA, with binding characteristics identical to those of 
the rat liver plgR (75). Membranes from rat small 
intestinal crypt cells exhibit greater plgA binding (320 
fmol/mg protein) than membranes isolated from vil- 
lus tip enterocytes (105 fmol). This crypt-to-villus tip 
gradient of plgA binding is identical in young and old 
rats, and a similar pattern is seen in rhesus macaques 
(25, 76). The fact that plgR functional activity in the 
small intestinal epithelium correlates with cellular 
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rather  than donor  age suggests that  diminished intes- 
tinal ant ibody titers in old animals reflect a deficit 
proximal to the terminal  steps o f  the intestinal im- 
mune  response,  ie, pr ior  to p l g R - p l g A  t ranspor t  and 
secretion. 

C O N C L U S I O N S  

Current ly  available data  suggest that  the intestinal 
immune  response is compromised  in old animals and 
elderly humans.  In fo rmat ion  concerning  the possible 
effects o f  aging on  the initial steps in this response,  ie, 
ant igen up take  and presen ta t ion ,  is nonexis tent .  
There  is some evidence of  shifts in the relative distri- 
butions o f  certain G A L T  B- and T- lymphocyte  sub- 
populat ions  during aging in rodents.  Fur thermore ,  
the relative abundance  o f  certain lymphocyte  subsets, 

for example,  Tsuppressor/~ytotoxic lymphocytes,  or  pre- 
cursors o f  I gA  plasma cells may influence subsequent  
steps, such as the p roduc t ion  o f  intestinal antibody. 
A l though  a marked  decline in the expression of  the 
p I g R  contr ibutes  to age-related reduct ion in trans- 
por t  o f  p l g A  across rat  hepatocytes ,  the absence o f  a 
similar correla t ion be tween d o n o r  age and receptor  
expression in small intestinal enterocytes  suggests 
that  this deficit is hepatocyte-specific.  Intest inal  anti- 
body  produc t ion  may be sensitive to age-rela ted shifts 
in T-cell distr ibution o r  to changes  in the levels o f  (or  
plasma cell sensitivity to) critical cytokines (6). Fu ture  
studies may help to answer the quest ion o f  whe ther  
aging influences the intestinal mucosal  immune  re- 
sponse independent ly  o f  any age-related per turba t ion  
of  systemic immunity.  
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