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Fitting Matrix-Valued Variogram Models by
Simultaneous Diagonalization (Part II: Application)’

Tailiang Xie?, Donald E. Myers’, and Andrew E. Long*

As an application, we demonsirate a proposed variogram modeling scheme using a spatial data
set. Because the scheme relies on a procedure for simultaneously diagonalizing several matrices,
we briefly describe the FG and least-squares algorithms. The model obtained by our scheme is used
to cokrige the data. In addition. the proposed scheme is compared to more iraditional methods.
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SIMULTANEOUS DIAGONALIZATION ALGORITHMS

Given k p X p symmetric matrices A,, ... . A;. there exist k& orthonormal
matrices By, ... . B, such that B/ A;B, = A, = diag(\\", ... . N))), fori = 1.
... .k, where N}" are eigenvalues of A;. It is well known that 4, ... . 4, can
be diagonalized simultancously it and only if 4, ... , 4, have a common
eigenvector space: in other words, if 4, ... , 4, are mutually commutative.
When the commutativity condition is not satisfied. we seek an orthonormal
matrix B such that the A,, ... A, are nearly diagonalized by B: that is, such

that the squares of off-diagonal elements of B'A;B are relatively small (in a
sense to be defined).
Two quantities may be used to measure simultaneous diagonalizability:
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where B = (b, ..., b,) is any p X p orthonormal matrix and n; (i = 1, 2,
... , k) are weights. Note that (a)  measures the relative deviation from
diagonality, whereas ¥ measures the absolute deviation from diagonality, (b) ¢
requires 4,, . . . , A, to be nonsingular, but ¥ does not, and (c) ® = 1 and ¥
= 0, with exact equality if and only if B simultaneously diagonalizes the A4,,

., A;. The goal is to determine an orthonormal matrix By such that & or ¥
is minimized.

Flury and others (Flury and Constantine, 1985; Flury and Gautschi, 1986)
developed a simultaneous diagonalization algorithm, termed the FG-algorithm,
by using (1) as the criterion for measuring the simultaneous diagonalizability.
De Leeuw and Pruzansky (1978) developed another simultaneous diagonaliza-
tion algorithm, termed the least-squares algorithm, by using (2) as the criterion
for simultaneous diagonalizability. The idea of the least-squares algorithm is to
apply Jacobi rotations (Press and others, 1992, p. 94), at each stage minimizing
the sum of squares of the k off-diagonal elements selected by a rotation pair
(Flury, 1988).

Because sample variograms may be singular, (2) will be used in this paper
for vanogram modeling. We briefly introduce this algorithm.

THE LEAST-SQUARES ALGORITHM

We denote by O(p) the group of all p X p orthonormal matrices; ‘<" as
assignment.

step L,. Select an initial approximation B = (b,, ... , b,) € O(p) to the
orthonormal matrix minimizing ¥, e.g., B + I, where [, is iden-
tity matrix; and set ¢, , a convergence tolerance.
[+— 0, A < B'AB
stepL,. B" « B, <[+ 1.
step L,. Forj = ltopand/ =, + 1top, do steps L,, and L,.:
step L,,. Define Q(], [, 8) = (g,,) as the identity except for g; = cos

9 = gy, gy = —q, = sin 6. The angle § is selected such

that the sum of off-diagonal elements of Q(j. . 6)" A4,0(},

[,6),...,00. 1 6" 4,0, I, 6) is minimized: that is,
VQU. L O A i =1.... Kk

is minimized. o -
step Lyy. A, < Q(j, 1. 0) 4,004, 1,6 B < BO(j. I 0).
step L. If [¥(B) — ¥(B")| < ¢, , then step: else goto L,.
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DIAGONALIZATION EFFICIENCY

If A, ..., A, are not all diagonal and B is an orthonormal matrix used to
diagonalize simultaneously the A, ... , A, we employ
_ YBlA;, ni=1,....k
8= V(|4 ni=1, ... K
to measure the diagonalization efficiency of B. We may say that B simulta-
neously diagonalizes A4,, . .. , A, with efficiency xz. From a practical point of
view we think of B’4,B, . . . , B'A, B as being in nearly simultaneously diagonal

form if kg = 90%.

Both Flury (Flury, 1988) and Clarkson (Clarkson. 1988) pointed out in
their work that, at the time, convergence of the least-squares algonithm had not
been demonstrated. Recently, this convergence problem was proven by Xie
(1994).

APPLICATION

In this section, we demonstrate the variogram modeling scheme proposed
in Part I of the paper (Xie and Myers, this issue) using a real spatial data set
from a recent study of nitrate pollution of water wells in an area around Phoenix,
Arizona. This data set contains 171 spatial locations (wells) which were sampled
for the three variables bicarbonate, calcium, and magnesium, circa 1977. In the
data set, easting and northing are the spatial coordinates and bicarbonate, cal-
cium, and magnesium values are given as log-transformed and scaled chemical
concentrations at corresponding locations.

We treated bicarbonate, calcium, and magnesium as components of a (spa-
tial) random vector function. Sample variogram matrices were computed at 50
lags. Because of symmetry, each sample lag matrix is determined fully as an
array of six components, composed of the sample variograms and cross-vario-
grams of the three variables:

(Y115 Y120 Y130 Y220 Y235 V33)

The least-squares algorithm was employed to perform simultaneous diagonal-
ization for the set of 50 sample variogram matrices. An orthonormal matrix B
was obtained:

0.4013 -0.9145 -0.0502
B =106194 03114 -0.7207 3)
0.6747  0.2581 0.6915
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Table 1. Simultancous Diagonalization (Before and After
Diagonalization)”

ssd S80 ssa
Before 124.265 83.873 208.138
After 206.640 1.498 208.138

“ssd: sum of squares of diagonal entries, sso: sum of squares of
off-diagonal entries, ssa: sum of squares of all entrics.

having a diagonalization efficiency of 98.2%. We omit the sample variogram
matrices (before and after diagonalization) because of space limitations (these
are available from the authors upon request, or see Xie, 1994).

Table 1 summarizes results from the simultaneous diagonalization. De-
scriptive statistics for the components of the sample variogram matrices before
and after diagonalization are given in the Table 2.

Figure 1 shows scatter plots of all six components (diagonal and off-di-
agonal) of the sample variogram matrices before and after diagonalization. Be-
fore diagonalization the six components are similar in shape and magnitude.

Traditionally, one would model the sample variograms and cross-vario-
grams of the original data (left, Fig. 1), and use these models in a cokriging
program. Although variogram modeling is relatively straightforward, cross-vari-
ogram modeling is not: and it is for this reason especially that we seek rather
to diagonalize the sample variogram matrices (right, Fig. 1). Nearly simulta-
neous diagonalization results in an increase in the spatial information carried by
the variograms (diagonal components), and a consequent reduction in the spatial
information carried by the cross-variograms (off-diagonal components).

Table 2. Descriptive Statistics for Off-Diagonal Components (Before and After Diagonalization)”

n meun std dev min max
s 50 0.2679 0.1127 0.055 0.519
Yi: 50 0.0049 0.1054 —0.401 0.208
¥ 50 0.3347 0.1366 0.080 0.784
T 50 0.0031 0.0542 -0.146 0.076
i 50 0.7721 0.1692 0.274 1.234
iy 50 0.0005 0.0344 -0.133 0.050

“4": before diagonalization, y*: after diagonalization.
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Figure 1. Scatter plots of components of sample variogram matrix. and components of nearly
diagonalized variogram matrix.

As shown in Figures 2-7, diagonalization results in a concentration of
spatial information in the first two diagonal components, and a reduction of all
off-diagonal and the third diagonal components. Based on this result, the original
data vectors Z were transformed linearly by the orthonormal matrix B, to give
the transformed data Y:

Yx) = B'Z(x) = (vi(0). ... w0’ (4)

We assumed that the off-diagonal elements were negligible., modeling them
as zeros, and modeled each of the three diagonal components using least-squares
methods and standard models. Assuming no spatial cross-correlation (zero cross-
variograms) indicates that cokriging is equivalent to separate kriging, which is
less computationally intensive than cokriging, and more stable. The diagonalized
data {¥(x)} thus were kriged, and the kriging estimates were retransformed by
B to obtain estimators of the original data.
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Figure 2. Sample variograms of v*, and v4,.
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Figure 3. Sample cross-variograms of v}, and v/,.
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Figure 4. Sample cross-variograms of %, and v9.
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Figure 5. Sample variograms of v%, and v4,.
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Figure 6. Sample cross-variograms of v, and v4:.

DISCUSSION

Table 3 summarizes cross-validation results of kriging the original data
directly, cokriging the original data directly, and cokriging indirectly (using the
diagonalized data). For all variables, the cross-validation statistics of the kriged
variable and the estimates obtained by transformation followed by kriging and
retransformation were extremely similar (note that the kriging vanance of the
diagonalized data could not be retransformed). In this example, we cannot claim
improvement using this method over separate kriging of the variables. only that
we did about as well using the diagonalized variables in place of the original
variables.

One advantage of the diagonalized variables is that the B matrix introduces
the potential for some interpretation of the composition of the diagonalized
variables: for example, the first transformed variable is **‘composed of " 0.4013
parts bicarbonate, 0.6194 parts calcium, and 0.6747 parts magnesium.” This

*From the equation ¥ = B'Z (4): the proportions are from the first column of B (3).
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Figure 7. Sample variograms of v5, and v4;.
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Table 3. Cross-Validation Statistics for Interpolation Results (Long, 1994) from Kriging, Cokriging All Threc
Variables, and All Subcokrigings”

ok —— 2 =¥ — -

N !ﬁi P <‘. h) s(l1)> ¥, 3 p(:*. z*(h) «.(h)) :
Statistic athy athy athy
Ideal: 0 0 1 | 0 4]
Bicarbonate 0.0113 0.5325 0.9238 0.6760 0.0523 0.5827
trans 0.0087 0.5325 N/A 0.6750 N/A N/A
bi + ca* 0.0058 0.5224 1.0060 0.6824 0.0065 0.5200
bi + mg 0.0060 0.5585 1.1004 0.6572 —0.0730 0.5034
bi + ca + mg 0.0050 0.7323 1.4915 0.5595 —0.2877 0.4948
Magnesium 0.0104 0.4128 0.7636 0.7603 0.0585 0.5544
trans 0.0076 0.4152 N/A 0.7582 N/A N/A
bi + ca* 0.0033 0.4116 0.8346 0.7599 0.0112 0.4986
ca + mg 0.0585 2.0629 5.0059 0.4292 —-0.6783 0.1619
bi + ca + mg mvakhid invalid invalid invalid invalid invalid
Calcium* 0.0018 0.4466 0.7627 0.7411 0.0640 0.6037
trans 0.0080 0.4610 N/A 0.7309 N/A N/A
bi + mg 0.0031 0.5037 0.9395 0.7009 —0.0527 0.5251
ca + mg 0.0324 0.6248 2.8418 0.7828 -0.5721 0.1528
bi + ca + mg 0.0018 0.5229 3.0511 0.7828 -0.4790 0.1510

“Sums’’ of variables represent cokrigings. Starred results were judged best for that vaniable. ““trans™ results
are obtained by kriging diagonalized (transformed) variables. then linearly retransforming to obtain estimates
for original variables. (N/A—"'Not Applicable’"—occurs in table for these estimates because variance-related
cross-validation statistics could not be retransformed. ““Invalid™ occurs in table because of negative cokriging
vanances.

may or may not indicate anything to a researcher. but at least the information
is available for study.

Note that cokriging the original variables actually gave poorer results in
certain situations, using cross-validation statistics as the judge: the models may
have been invalid, a danger which increases as the cross-variograms do.

Figures 8, 9, and 10 show the contour maps for cokriging the original data
and kriging of the transformed data. For bicarbonate (Fig. 8), it appears that
the transformed, kriged, and retransformed map is closer to the cokriged map,
whereas in the situation of calcium (Fig. 9) the kriged map of calcium itself
looks slightly more similar.

We have demonstrated modeling matrix-valued variogram by using the
simultaneous diagonalization technique described in Part I of this paper. The
advantages of this method are: (1) a simplified analysis and computation in
preparation for cokriging, and (2) a guarantee of the negative definiteness of
resulting variogram model. Our experience shows that the scheme works well
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in some situations of coregionalization, especially if there are not many com-
ponents in the vector random function (because efficiency of diagonalization
relies on the size of matrices).

A FORTRAN program for the simultaneous diagonalization scheme is
available upon request. A public domain UNIX version GeoEas package, de-
veloped by the third author, which used to perform the major computations can
be obtained anonymously through math.anzona.edu.
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