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C A L C U L A T I O N  O F  N O N A X I S Y M M E T R I C  T H E R M A L L Y  

STRESSED STATE OF DISCRETE HOMOGENEOUS 

BODIES O F  R E V O L U T I O N  W I T H  O R T H O T R O P I C  LA Y ERS  

V. G. Savchenko UDC 539.3:539.374 

The nonaxisymmetric thermally stressed state of laminar bodies of revolution made of isotropic and orthotropic 
materials is considered. The procedure used is based on the semi-analytical finite-element method and the 

method of successive approximations. The results from calculan'ons for the stressed state of a structural element 
are reported. The structure has layers of isotropic and orthotropic materials with principal axes of anisotropy 
that coincide with the directions of the axes of the cylindrical and Cartesian coordinate systems. 

In [2-4] we proposed procedures for investigating the nonaxisynunetric temperature fields and the stressed-strained 
state of laminar bodies of revolution consisting of inelastically deforming isotropic materials and elastic anisotropic materials 
under a heat and force load. As anisotropic materials we considered curvilinearly orthotropic materials [2] and rectilinearly 
orthotropic materials [3, 4]. In the anisotropic materials one principal direction of anisotropy of thermophysical and mechanical 
characteristics coincides with the circular coordinate ~,, and two mutually perpendicular directions lie in the plane of the 
meridional section of the body (the angle between those directions and the z and r axes of the cylindrical coordinate system 
varies in each layer, depending on its structural features). In the orthotropic materials [3, 4], one of the principal axes of 
anisotropy coincides with the axis of revolution of the body. 

As in the case of an isotropic material [5], the stress-strain relation for an orthotropic material is written in the form 
of Hooke's law for a homogeneous material with some additional terms, which takes into account the thermal strain, the 
temperature dependence of the elastic characteristics of the anisotropic materials, and their variation in the circumferential 
direction. Taking the temperature and components of the displacements to be the main unknowns, we construct the problem 
of determining the thermal and stressed state on the basis of the pertinent variational equations in the form of trigonometric 
series in the circular coordinate 
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With this approach, the initial three-dimensional problem reduces to the solution, in the meridional section of the body, 
of the ensemble of two-dimensional variational problems of each harmonic separately: 
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when solving the problem of determining the stressed-strained state 
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which are discretized in each approximation on the basis of the f'mite-element method, using triangular elements with linear 

variation of the desired coefficients in the series (1). 
In particular, we obtained the following recurrence formula for determining the coefficients Tm, i"m at nodes in the 

meridional section [2, 3]: 
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This formula can be used to calculate the values of the coefficients at a time t + At for a given distribution at the time t. 
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To determine the coefficients ~ m ,  ~-1 , (a = z , r ,  !o) at the vertices (i, j ,  k ) of triangular elements of  the meridional 

section of the body in trigonometric series (1) in each approximation we obtain a system of 3N linear algebraic equations 

? . . 

f m l  .~ 

where summation is carried out between the indicated limits over the repeating indices ~ and c. 

Expressions for the coefficients in (4) and (5) as well as the algorithms for the given procedure for solving specific 

problems on determining the temperature fields and stressed state in structural elements in the form of laminar bodies of 

revolution can be found in [2-5]. The reliability of the results obtained by using this procedure to solve the problem for bodies 

of revolution made of a rectilinear orthotropic material under a force load was checked on the example of  a revolving solid 
orthotropic disk, for which there is an analytic solution in the case of a plane stressed state [1]. 

The convergence of the algorithm for the problem for unevenly heated bodies of  revolution with orthotropic layers is 

demonstrated with the example of a thin rectangular orthotropic disk, whose temperature varies as 

T ( r )  ==T o + T t �9 r a / R  2, (6) 

where To is the initial temperature and R is the radius of the disk. 

In the case of a plane stressed state, when E x = Ey and CexxT = Ceyy T, an axisymmetric stressed state arises in the disk. 
In the cylindrical coordinate system the latter state is determined by [6] 
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where 
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The calculated results for the stressed state of a rectilinearly orthotropic thin disk for E x = Ey = E z, Gzx - Gzy = 

Gxy, axxT ---- ayy T = azz  T, Uxx ---- Uzy ---- Vxy ---- 0 .05 ,  and Ex/Gxy - 100 are shown in Fig. I. The solid lines represent the 

results obtained by the procedure described and the dashed lines, the analytical results. With this choice of  material for the disk, 
the coefficient (8) in the relations for the components of the stresses is 0.01794 in contrast to the isotropic case, when fl = (1 

- v)/4 = 0.2375, i.e., if the material is assumed to be isotropic the stress components are 13.2 times those given in Fig. I. 

Comparison shows that the results are in satisfactory agreement; this means that the procedure developed can be used to 

calculate the thermally stressed state of a specific structural element. 

As an example we give the results of calculation of the thermally stressed state of a structural element in the form of 

a three-layer body of revolution; half of its meridional section is shown in Fig. 2, where the z axis is the axis of revolution 

of the body. The part of  the body shown by cross-hatching was made of carbon-carbon composite [6], with a coating of 

isotropic material on its internal surface. The outer cylindrical shell was made of curvilinearly orthotropic material with 

principal axes of anisotropy in the directions of the cylindrical coordinate system. It was assumed in the calculations that the 
component parts of the body are fastened together without interference and they deform without slip and detachment. At the 

time t = 0 the body is heated by the ambient medium at the temperature 0. The part ADC of the surface of the body (Fig. 2) 
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is assumed to be thermally insulated. The coefficient (x of  heat transfer between the ambient and the coating material is 0.35 

W/cm z. 

The carbon-carbon composite has nonaxisymmetric mechanical properties since it is made by weaving a three- 

dimensional skeleton of mutually orthogonal carbon fibers and then saturating the space between them. The temperature fields 

formed during axisymmetric heating, therefore, cause a considerable three-dimensional stressed state in such a body. Moreover, 

taking the influence of the shear modulus in the xy plane into account in calculations for such bodies is extremely important, 

since such materials usually have small values of that modulus. In calculations for a given structural element we also assume 

that this material is homogeneous and rectilinearly orthotropic with the z, x, and y axes as the principal axes of anisotropy, thus 

ignoring its heterogeneous structure. 

The following thermophysical and mechanical characteristics of  the materials are assumed for the layers: 

- for an isotropic coating material the thermal conductivity h = 0.222 W/cm.K, the product of the heat capacity c 

and the density p of the material is c p = 2.75 J/cm3.K, Poisson's ratio v = 0.17, and the a - e diagram of the linear thermal 

expansion coefficient '~T for three values of the relative temperature T/O are given in Table 1: 

- for a rectilinearly orthotropic material 

E ffi 4,5.10 4 MPa, E = E ffi 3,1 �9 10' MPa , v u = v ---- v ffi 0,2.3, 

G =  = Gz, = 1,5 �9 10 3 MPa , G  = 2 "  101 MVa , a n  r ffi ar~ = arty = 0,12" 10 -s  1 / K ,  

Cp=~ J/cm3.K, ~.=,=~ =~.r/=O,O~7 W/cm,K; 

- for the material of the outer cylindrical shell 

E = e ,  f E  ffi 2,57.10' , .  f f i :  --,,, 

G=ffiG,ffiGffiS~22"lO' MPa , ar---arffia r =  ~ , ,  =0,4 �9 10 -s I / K ,  

2 =0,067 W/crn'K; ,1, =~p =0,0069 W/cm'K; cp=1,407 J/cm3.K 

In the calculations, the meridional section of the body was divided by 680 nodes into 1280 triangular elements and nine 

terms in the trigonometric series (1) were used for the sought temperature and the components of the displacements, i.e., in 

each approximation the problem came down to solving nine linear systems of algebraic equations of the 2040-th order. The 

stressed state was determined on the basis of the algorithm, when the system (5) was solved completely once in the first 

approximation, and in all subsequent approximations only the right sides were calculated and the reverse was done when the 
Gauss method was used. 

The results of the stressed state calculations for a body of revolution for z = 2.75 cm (section I in Fig. 2) and z = 

12.875 cm (section II) after heating for 2.5 see are shown in Figs. 3-5 (a and b, respectively). Figures 3 and 4 show the radial 

variation of the normal stresses a= and cry, for two values of the circular coordinate ~o = 0 (solid lines) and ~, = r /4  (dashed 

lines). The radial variation of the tangential stresses a~ and Or~ , for the circular coordinate ,# = r /8  (dash-dot  lines) are shown 

in Fig. 5. Analysis of the results shows that the variation of the mechanical characteristics in the circular direction in the 

carbon-carbon composite under axisymmetric heating leads to a nonaxisymmetric stress distribution in the body. The resulting 
tangential stresses a~, and a,~ reach about 10% of the normal stresses a= and a~,. 

In summary, the results reported here indicate that the method developed for solving three-dimensional thermoplasticity 

problems for laminar bodies of revolution from isotropic and orthotropic materials makes it possible to effectively study the 

kinetics of the stressed-strained state in crucial structural elements during high-temperature heating. 
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