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1. Introduction 

We consider the quadratic assignment problem (QAP) in the Koopmans and 
Beckmann form [18]. Given a positive integer n and two n x n matrices A = (aij) and 
B = (bij), the problem is to find a permutation p of  the set { 1,2 . . . .  , n } that minimizes 

,q ?1 

2 ~aijbp(i)p(j). 
i=1 j = l  

The QAP belongs to a class of  combinatorial optimization problems with 
many practical applications. However,  only small instances (n < 15) of  QAP have 
been solved to optimality in practice. The QAP, of  which the traveling salesman 
problem is a special case, is NP-complete [35]. Furthermore, unless P = NP, there 
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is no polynomial algorithm guaranteed to find an e-approximate solution [13]. In 
this paper, we denote the QAP associated with matrices A and B by QAP(A, B). 

In the framework of the facility location problem, there are n facilities (locations), 
the matrix A = (a U) corresponds to the flow matrix, where aij represents the flow of 
material from facility i to facility j for i, j = 1 . . . . .  n, the matrix B = (bij) is the 
distance matrix, with bij representing the distance from location i to location j for 
i, j = 1 . . . . .  n. The objective function, to be minimized, is the cost associated with 
the assignment of the n facilities to the n locations (Koopmans and Beckmann [18]). 
In addition to its application in the facility location problem, the QAP has been 
found useful in scheduling, backboard wiring in electronics, and other applications. 
Applications of the QAP can be found in [3,7, 18,19]. 

The QAP may be formulated in many equivalent forms. On can formulate it 
as a quadratic 0 -1  programming problem, a global concave minimization problem 
[29,30], or an integer program. 

Extensive research has been done on the quadratic assignment problem, focusing 
on both heuristic solutions (see [4-  6, 24, 37, 38]) and exact solutions (see [2, 23, 28]). 
Recently, there has been work on generating test problems with known optimal 
solutions for the quadratic assignment problem (see [22,27]). 

In this paper, we are concerned with lower bounds for the QAP. In section 2, 
we review existing lower bounds for the QAP. In section 3, we discuss the difficulty 
in improving the classical Gilmore-Lawler bound. In section 4, we present new 
lower bounds for the QAP. In section 5, we report computational results. 

2. Previous lower bounds for the QAP 

Lower bounds are key to the success of a branch-and-bound algorithm in 
combinatorial optimization. The ideal lower bounds should be sharp and should be 
fast to compute. 

For the QAP, there are three categories of lower bounds. The first category 
includes the classical Gilmore-Lawler bound (GLB) [14,20] and related bounds. 
The second category includes the eigenvalue-based bounds [11, 16,17, 31]. The rest 
of the bounds are mostly based on reformulations of the QAP and generally involve 
solving a number of linear assignment problems (e.g. [1,8-10,12]).  In the following, 
we briefly discuss the three categories of lower bounds. The new lower bounds we 
propose belong to the first category. 

2.1. GILMORE-LAWLER BOUND 

We define the following minimal and maximal vector products 

(x,y)_ = rrfin(x, Py), (x,y)+ = max(x, Py), 
P~l'I P~l'I 
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where the set Fl denotes the set of all n x n permutation matrices and x, y E R n. 
Since there is a one-to-one correspondence between the set of permutations of 
{ 1 . . . . .  n} and the set of n x n permutation matrices, we denote both sets by YI. 

For a given QAP(A, B), we denote the Gilmore-Lawler  bound by GLB(A,B). 
The bound is based on the minimal scalar products defined as follows: 

Let ai, bi, i = 1 . . . . .  n represent the row vectors of matrices A, B, respectively. 
Let ai be the vector consisting of the ( n -  1) components of ai, not including aii. Let 
/~i be the vector consisting of the (n - 1) components of b i not including bii Define 
a matrix L = (Iu) as follows 

^ ^ 

lij = aiibjj + (a i ,b j )_ ,  i , j  = 1 . . . . .  n. 

Then GLB(A,B) is defined to be the solution to the linear assignment problem 
(LAP) with cost matrix L, i.e. 

n 

min GLB(A, B) = pen ~ lip(i). 

The GLB is the most widely used lower bound for the QAP (see [28, 23]). However, 
the GLB deteriorates fast as the size of the QAP increases. For example, for the 
Nugent test problem set [25], the GLB for the problem of size 6 is about 5 percent 
below the optimal and the GLB for the problem of size 30 is about 25 percent below 
the best known value. 

Due to this reason, there have been efforts in improving these lower bounds 
by means of reduction (see [2, 11,33,34]). The rationale is to shift out as much 
information as possible from the quadratic term. In particular, one lower bound 
studied in Finke et al. [11] is obtained by subtracting from each column the minimum 
entry (we denote it by MCCR). However, the reduction techniques used in the 
literature have not consistently outperformed GLB, as indicated by the results in [11]. 

2.2. EIGENVALUE BOUNDS (EVB) 

Bounds based on eigenvalues of the flow and distance matrices A and B 
have been proposed in a series of papers by Finke et al. [I 1], Hadley et al. [16,17], 
and Rendl and Wolkowicz [31]. Those bounds are based on the following theorem 
(see [11]). 

THEOREM 2.1 

Let A and B be symmetric matrices, 21 < 22 • • • < 2n be the eigenvalues of A, 
and #i < ~ • • • < / ~  be those of B. For any p E 1I, we have 

n n n n 
J~i[2n-i+l <-- ~ ~ aijbp(op(J) < ~ 1~i~i. 

i=l i = 1  j = l  ill 
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Theorem 2.1 gives us a lower bound based on eigenvalues of A and B, 

n 

EVB( A, B) : ~_~ l~i~tn_i + l . 
i=1 

Certain reductions of the original matrices have to be performed before using the 
eigenvalues to obtain lower bounds for the QAP. Two such bounds, EVB1 and 
EVB2, were developed in [11]. Two other bounds, EVB3 and IVB, were developed 
in [16]. Rendl and Wolkowicz [31] recently proposed the MEVB lower bound, 
based on eigenvalue decomposition in conjunction with a steepest ascent algorithm. 
The bound is obtained iteratively, each iteration taking O(n 3) time. Note that the 
above eigenvalue based bounds are applicable only to symmetric quadratic assignment 
problems for which the flow and distance matrices are symmetric. An extension to 
the asymmetric QAP was done in Hadley et al. [16]. However, no computational 
results were reported. 

Although this class of bounds can be computed in time comparable to that 
of the GLB computations, they are sharper than GLB only in a few limited cases. 
For example, for the Nugent test problem, the GLB is better for n = 6,8, 12, 15. In 
some cases, the eigenvalue bounds can even be negative. 

2.3. OTHER LOWER BOUNDS 

Assad and Xu [1] proposed the AX bound for a class of quadratic 0 -1  
programs, including the QAP. The bound is obtained iteratively, where n 2 + 1 assignment 
of size n are solved in each iteration. Hence, the running time to compute is O(kn 5) 
where k is the number of iterations. 

Christofides and Gerrard [9] proposed the XG lower bound by solving O(n 4) 
linear assignment problems, corresponding to pairs of assignments, resulting in a 
O(n 7) procedure. 

Frieze and Yadegar [ 12] obtained two lower bounds by solving the Lagrangian 
relaxation of a related linear integer formulation of QAP. The bounds are denoted 
by FY1 and FY2. 

Finally, Carraresi and Malucelli [8] proposed a new lower bound (CM) for 
the QAP through an iterative process. In each iteration, at most O(n 2) linear assignment 
problems related to an equivalent reformulation of the QAP are solved. Hence, the 
procedure has a time complexity of O(kn 5) where k is the number of iterations used. 
One disadvantage with this category of lower bounds is that, they are not computed 
efficiently, and thus are not effective for branch-and-bound type algorithms. 

3. Improving GLB is nontrivial 

In this section, we present some evidence of the difficulty of improving GLB. 
We begin by stating the following theorem. 
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THEOREM 3.1 

Let f,~.s be the unknown optimal objective function value for QAP(A,B). It 
is NP-complete to check if GLB(A, B) = f,~,s. 

Proof  

This problem is in NP, since a linear assignment problem must be solved to 
compute GLB and since QAP is in NP. Now we transform the Hamiltonian Circuit 
problem (HC) to this problem. Given an instance of HC, an undirected, connected 
graph G = (V,E),  with n vertices V = { 1 . . . . .  n}, we construct the following QAP, 
where the flow and distance matrices A and B are of size n x n. A is defined as follows: 

i fori  = 1 . . . . .  n - l ,  
ai j= for i = n, j = l ,  

otherwise. 

j = i + l ,  

A is the adjacency matrix of a cycle of length n. The distance matrix B is defined 
to be 

0 f o r j = i ,  i e V ,  

b•= 1 for( i , j )  e E ,  

2 otherwise. 

First, GLB(A, B) = n due to the fact that all ordered products are equal to 1. Second, 
we show that there is a Hamiltonian Circuit in the graph G if and only iff,~,s = n. 

If there is a Hamiltonian Circuit in G, then the circuit can be regarded as a 
permutation p = (il,i2 . . . . .  i~), where ik, k = 1 . . . . .  n, are the vertices of the tour 
in the order specified by p. Let fA,B(p) be the objective function of QAP(A,B) for 
permutation p. Then 

fA,B(P) = n. 

Since GLB(A,B) = n, we have fA,S(q) > n for any permutation q. Hence 

f,~,s = GLB(A, B). 

Conversely, if f/~,B = GLB(A,B), let p be the optimal permutation. Then the tour 
defined by the permutation p is a Hamiltonian Circuit. [] 

From the above theorem, we have the following corollary, that answers 
positively the question raised in Li and Pardalos [22] about the complexity of the 
class of quadratic assignment problems whose GLBs are equal to their optimal 
objective function values. 
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COROLLARY 3.1 

If P ~ NP, then there is no polynomial algorithm to find an optimal permutation 
for a QAP whose GLB is equal to the optimal objective function value. 

We next show that by splitting the flow and distance matrices, it is impossible 
to improve the GLB of QAP. The following lemmas are useful in proving the 
theorem. 

LEMMA 3.1 

Given the two vectors xbx2 such that x = xl + x2, then 

(x,y)_ > (xl,y)_ + (x2,y)_, 
for all vectors y. 

Proof 

Let P be the permutation such that (x,y)_ = (x, Py). Since 

(x, Py) = (Xl, Py) + (x2, Py) > (xl, y)_ + (x2, y)_ , 

we have that 
(x,y)_ > (xl,y)_ + (x2,y)_. [] 

COROLLARY 3.2 

Given four vectors xbx2,YbY2 such that x = x~ + x2 and y = Yl + Y2, then 

(x, y)_ > (Xl, Yl )- + (x2, Yl )- + (Xl, Y2 )- + (x2, Y2 )-. 

THEOREM 3.2 

Given a QAP(A,B) and two matrices Al and A2 such that A = Al + A2. Then 

GLB(A,B) > GLB(AI,B) + GLB(A2,B) 

for any distance matrix B. 

Proof 

This can be regarded as a generalization of  lemma 3.1. Let al . . . . .  an and 
bl . . . . .  bn be the rows of  A and B, respectively. Furthermore, let a~ 1) . . . . .  a(n D and 
a~ 2) . . . . . .  a(n 2) be the rows of  AI and A2, respectively. Let p be the optimal permutation 
of  the linear assignment problem associated with Gi lmore -Lawle r  bound. Let qi, 
i = 1 . . . . .  n, be a permutation such that 



Y. Li et al., Lower  bounds f o r  the quadratic assignment  problem 393 

(ai, Qi bp(i)) = (ai, Qi bp(i) )_ ,  

where Qi is the permutation matrix for qi. Then, following lemma 3.1, we have 

n 

GLB(A, B) = ~ (a i ,  Qi bp(i) ) 
i=1 

n /1 

(a (D = - i , Qi bp(i))_ + ~ (a} 2), Qi bp(i) )_ 
i=1 i=1 

> GLB(AI, B) + GLB(A2, B). [] 

COROLLARY 3.3 

Given a QAP(A,B) and matrices At,A2,BI,B2 such that A =A1 +A2, and 
B = BI + B2, then 

GLB(A, B) > GLB(A1,BI) + GLB(A2, B2) + GLB(AI, B 2) + GLB(A2,BI). 

This corollary shows that one cannot improve GLB by splitting the flow or 
distance matrices. The complexity result on the GLB implies that given a QAP(A, B) 
and its corresponding GLB(A, B), it is NP-complete to decide if the optimal solution 
is strictly greater than the lower bound. Therefore, it appears to be nontrivial to 
improve the GLB. These two results, together with the efficient computation of 
GLB, help to explain why GLB remains the most widely used lower bound for a 
branch-and-bound type algorithm for the QAP. 

4. The new lower bounds 

In this section, we propose new lower bounds based on optimal reduction 
schemes for the QAP. The schemes we propose can be regarded as extensions of 
the reduction techniques in the literature [2,1 I, 33, 34]. 

For convenience of discussion, let us clarify some notation to be used. For 
0)~ an a given QAP(A,B), consider a partition of A into two matrices Am = (a 0 , d 

A2 = (a (2)) such that A =Am +A2 and partition of B into two matrices B1 = (b/~ 1)) 
and B 2 --  (b (2)) such that B = B 1 -I- B 2. For each pair ( i , j )  = 1 . . . . .  n, consider the 
following minimization problem 

n n n n 

*&'~"a(1)a(l) +~a~2i )b "k'" + ~'aki b(?) '  ~'a(2)b(2) , Z~ ik Ujp(k) z_., p[ )y z.., p( )j -- ILJ ki p(k)j 
k=l k=l k=l k=l 

(4.1) 

where p ~ H and p(i) = j. Define an n x n matrix L = (l O) where lij is the optimal 
objective function value of (4.1). Now, we can define a new lower bound based on 
the following theorem. 
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THEOREM 4.1 

Let the matrix L be defined as above. Then the solution of the linear assignment 
problem with cost matrix L is a lower bound for the corresponding QAP. 

Proof 

Let p ~ YI. Then 

/I n 

fA,B(P) = Z Z aqbp(i)p(J) 
i=1 j=l 

/I /1 

=ZZ 
i=1 j=l 

n --Z 
i = I  

aO) . ~ . . , ( 2 )  ~[/.~(1) h ( 2 )  '[ 
- '.'.ij ]~Up(i)p(j) + ~p( i )p ( j ) ]  

/'1 /1 n 
Z ,~(l)h(l) ,~(2)/~(1) 

 p(i)p(j) + -ij   p(i)p(j) 
j=l i=I j=l 

11 n n n 
+ Z Z ..,(1)/.,(2) + Z Z _(2)/..(2) . "ij  " pCi)p(j) t~ij ~'p(i)p(j) 

i=l j=l i=l j=l  

~ ~ , , ( 1 ) / , ( I ) + ( ~  ~ , , ( 2 ) h ( 1 ) + ~  ~a(2)b(2)  3 
: "ij  "p( i )p( j )  ~ij "p ( i )p ( j )  ij p( i )p( j )  

i=l j=l  i=1 j=l  i=l j=l 

+ 
'~ij "p( i )p( j )  "ij " p(i)p(j)  - -  

i=i j=1 i=1 j=l 

n n 

Z Z a(2)b(2) ij p( i )p( j )  
i=1 i=i 

,.,(1)/.,(1) y. _(2) r_ 
= ~ij ~'p(i)p(j) u j i  Vp(j)p(i)  

i=1 j=l j=l 

rt n 
-I- Z (2) ,,y(2)/~ (2) 

a j ibp( j )p ( i )  - Z ~ji  ~" p(j)p(i)  
j=l j=l 

n 

> Z lip(i)" 
i=1 

Hence the result holds. [] 

It is the primary objective of this paper to study the class of lower bounds 
derived from the above theorem. The classical Gilmore-Lawler bound is a special 
case in which both matrices A and B are not partitioned. Different ways of partitioning 
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the matrices A and B (we also refer to this as reduction) yield different lower 
bounds. The common reduction techniques used in the literature choose A2 and B 2 
with constant column sums (which we call constant columns). We refer to such 
techniques as constant column reductions. There are two important questions here: 

(A) How should the matrices be partitioned such that the resulting lower bound 
is maximized. 

(B) How can one solve (4.1) efficiently. 

In the remainder of this section, we try to answer these two questions and introduce 
the new lower bounds. 

4.1. OPTIMAL REDUCTION OF FLOW AND DISTANCE MATRICES 

In the literature, the column reduction techniques are restricted to the case 
in which the partition of matrices A and B is done in such a way that A2 and B2 
have constant columns. Here, we consider the general case in which the matrices 
A2 and B2 may not have constant columns. Problem A is an unconstrained nonconvex 
optimization problem, and the optimal solutions are intractable. We derive a partitioning 
scheme that results in an approximate solution of A. 

Let M = (m U) be a matrix in R m × n. We treat a row vector mi, 1 < i < m, of M 
as a 1 x n matrix and a column vector mr, 1 <j < n as a n x 1 matrix. For convenience 
of discussion, we use the following notations of average ~(M), variance V(M), and 
total variance T(M, 3,) for M: 

m n 
1 

y( M) = ~ ~ ~_~ m o, 
i=1 j=l 

m n 

V(M) = ~_, ~ (y(M) - mij)2, 
i = l  j = l  

rtl 

T(M, Z) = 3" ~ V(mi) + (1 - 3')V(M), 
i = 1  

for 0 < 3 ' < 1 .  

We were motivated by the following observation: for QAP(A,B), the smaller 
the variances of A and B are, the tighter the GLB is. Furthermore, if the row 
variances of A and B are zero, then GLB is equal to the optimal objective function 
value. In addition to the above observations, from the definition of liy, we also desire 
small variances in the rows and columns of the partitional matrices. Hence, we 
consider the following problems: 

(Cl) Find a matrix AA and partition A as A I and A 2, where A l = A + AA and 
A2 = -AA, such that the variances of A1 and A2, the sum of variances of the 
rows of At, and the sum of variances of the rows of A2 are minimized. 
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(C2) Find a matrix AB and partition B as B l and B2, where BI = B + As and 
B2 = -An,  such that the variances of  B 1 and B2, the sum of  variances of  the 
rows of  B], and the sum of  variances of  the rows of  B 2 are minimized. 

Problems C1 and C2 share the same solution procedure and we consider 
solving C1 in the remaining part of  this section. We can formulate problem C1 as 
the following minimization problem in terms of  the total variances of  matrices 
A + AA and --AAT and the parameter 0, 0 < 0 < 1: 

min 

where 

OT(A + A A , )L) + (1 - 0 ) T ( - A A r  ) 

A A E ~nxn 
(4.2) 

The above problem involves minimizing certain weighted sum of variances of  n 
vectors and the variance of  an n × n matrix. To solve C1, let us consider the 
problem of  finding the partition D = (D + A) - A of a m x n matrix D = (dij) such 
that the variance of D + A is minimized. Let A = (t$ij). 

In fact, the variance of  the matrix D + A is 

m n 

v(o+ A)= E Z, (r(D+ A)-(d U 
i=l j=] 

(4.3) 

To minimize V(D + A), we need to find a A satisfying the following constraints: 

a V ( D + A )  
=0 ,  i = 1  . . . . .  m, j = l  . . . . .  n. (4.4) 

Although there are m x n equations, the following analysis reveals that we can have 
closed form solution of the system of equation: 

I n  n 

~ OtijDkl t~kl = f ig ,  i=  1 . . . . .  m j = 1 . . . . .  n, (4.5) 
k=l l= l  

where D D tZij,k l, fl~j , i, k = 1 . . . .  , m, j ,  l = 1 . . . . .  n, are computed according to 

19 = ~ ( m n - 1 ) l m n  if (k ,1)=( i , j ) ,  D 
aij'kl t - l l m n ,  i f  ( k , l ) ~ ( i , j ) ,  fl~j = 7 ( D ) - d q "  

L E M M A  4.1 

Systems (4.4) and (4.5) are equivalent and the solution is 

t S i j=dmn-d i j+Smn,  i = 1  . . . . .  m, j = l  . . . . .  n. (4.6) 
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Proof 

Systems (4.4) is equivalent to 

Note that 

I ~ V ( D + A ) = 0 ,  i=1  . . . . .  m, j = l  . . . . .  n. 
2 3t~ 0 

n 1 n n 
_ 1 ~ ~.,(dkl+t~kl ) and - ~ ,  E (y (D) -d la )=O.  y(D + A) - 

k = l  1--1 k= l  1=1 

Denote the term y(D + A) - (d o + 80) by Tip then 

1 0 V ( D + A )  ( 1 ) I 
Otto ' = ~---ff-1 T/j+-~--ff ~ T t l  , i=1  . . . . .  m, j = l  . . . . .  n. 

(k,l)~(i,j) 

Hence, the system of  linear equations is equivalent to 

where 

m n 

k = l  l = l  

i=1  . . . . .  m j = l  . . . . .  n, 

mn an 
(r,s)~(i,j) 

)2 ran-1 -1 
: - 1  +~._.~.mn_~. i = m ~  , 

a..,k t - + mn 
(r,s)~(i,j) or (k,l) 

_ 1 if (k, 1) ~ (i, j), mn ' 

n n 

m----~ ~-~ ~ - I  

1 ~., (yCD) - d~ ) 
m n  

(k,t)~(i.j) 

I ~ ~.~ O'(D) - dta ) + (?'(D) - dij ) = y(D) - d 0 . mn 
k=l /=I 

(4.7) 

By direct computation, one can verify that the solution satisfies the system of  linear 
equations and yields a minimum of  0 for the related minimization problem. [] 

Note that Sin,, in (4.6) can take any value. We set S,r,n = 0 in the computational 
experiments. 

With the above results, we can minimize the total variance T(A + A, ~,). To 
do that we solve 
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n 
n'fin 2L~, V(ai + t~i) + (1 - &)V(A + A), 

i--1 

where A E N n x n .  
(4.8) 

Following the discussion on minimizing the variance, we solve the following 
system of linear equations in order to solve the problem (4.8), 

or equivalently, 

OV(ai+6i) ~-(1-~)OV(A+A)=0, i , j = l  . . . . .  n, (4.9) 

n n 11 

E aij,klf~kl = ~'fliJ i -I- (1 -- ,~l,)fli:, (4.10) 
I= l  k = l  l = l  

a i ,~a i A A . • where ctij,il,Pi j ,Ctij.kl,fl[ j , t , j , k , l  = I, . . . .  n, are computed as follows: 

ai = ~(n- 1)tn, i f  t = j ,  
aiJ'a [ -1 /n ,  if l ~ j ,  ~ i  =y(ai)_aij;  (4.11) 

A I (n2-1 ) /n  2, if (k , l )=(i , j ) ,  fl~ =y(A)_ai : .  
aiJ'a = [ - 1 / n  2, if (k,/) ~ (i,j), 

(4.12) 

T H E O R E M  4.2 

Systems (4.9) and (4.10) are equivalent. Furthermore, the solution is 

~ij = ann -a i j  + t~nn, i , j  = 1 . . . . .  n. (4.13) 

Proof 
The equivalence of the systems follows from lemma (4.1). One can substitute 

the solution in the system (4.10) to verify correctness. [] 

Note that the above is independent of the value of ~. When we consider the 
constant column reduction technique, we solve the above system of linear equations 
with additional constraints imposing that the columns in matrix A are constant. The 
resulting A gives us an optimal reduction of the original matrix. The new system 
of equations can be written as follows: 

[ /1 /1 /1 

ctij.i t + (1 Obij,klt~ld 
i=1 ~, /=1 k = l  /--1 

tl 

i = I  

j = 1 . . . . .  n. (4.14) 
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T H E O R E M  4.3 

The solution of (4.14) is 

~/j = ~ ( a T ) - ~ ( ~ ) +  ~nn, i , j = l  . . . . .  n, 

where a/r, i = 1 . . . . .  n, are the columns of matrix A. 

(4.15) 

Proof  

Let xj = ~ij, i , j  = 1 . . . . .  n. We can rewrite the system (4.14) as follows: 

n 

hox I = ej ,  j = l . . . . .  n, 
l = l  

where the coefficients h 0 and constants ej can be derived from (4.14). In fact, using 
the formulae in (4.11) and (4.12), we have 

n n n 

ai + ( 1 - 2 ) ~  ~ a hlj t~ Z Ogij,il = OCij,ld, 
i=1 i=1 k = l  

l , j = l  . . . . .  n. 

If  l = j, then 

n n n 1 

htj = Z Z  n - 1  ( 1 - Z )  Z Z n 2 
i=1  i=1  k = l , k ~ i  

+ ( 1 - ~ , ) ~  ~ n 2 - 1  

i=1 k=i -R2 

If  l C j, then 

= ~(n - 1) + (1 - ~)(n - 1) = n - 1. 

ho=Z --+(1-z)y_. E 
i=1  i = I  k = l  

- 1 .  

Finally, for j = 1 . . . . .  n, we have 

n 

ej = ~_~ (~.fl~j' + ( 1 - ~ ) f l  a )  
i = l  

n n 

=~_~ (y(ai)-aij)+(1-,~,)~_~ (Z(A) -a i j )  
i=1 i=1 

= n y ( A ) -  ny(aT). 

Similar to the case of  lemma 4.1, one can derive the desired solution. [] 
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After the above discussion, we can consider the solution of (4.2). Unfortunately, 
we do not have a closed form solution for (4.2). Observe that if the addition term 
of T(-A T, ~.) is replaced by T(-A, ~), the resulting solution is exactly the scaling of 
the solutions in (4.13) and (4.15). Hence, we provide the following approximate 
reduction schemes R1 and 112. 

(R1) if A is not restricted, then let 

8ij = O(a,~ - aij) + 6nn, i, j = 1 . . . . .  n. 

(R2) if A is restricted to have constant columns, let 

t~q=O(r(aT)--~(aT))+~nn,  i , j = l  . . . . .  n. 

4.2. COMPUTING MATRIX L 

Now, let us consider problem B, where one must compute lij i , j  = 1 , . . . ,  n. 
If we use constant column reduction, matrices A2 and B2 have constant columns and 
the problem is easy to solve. One can compute lij as follows: 

[~(1) /~(1) ,.,(2) 
lij = , u  i ,uj )_ + , l i  

n /I 

Z bkj +b~ 2) Z a ~ - ( n  ,,,,(2),(2) - '~" l i  "qj +aiibjj. i , j  = l ..... n. 
k=l,kC:j k=l,k~i 

For the general case, A 2 and B 2 may not have constant columns. Before we proceed 
to the details of computing lij, we need some notation. 

Given two sets of vectors (Xl . . . . .  x,) and (Yl . . . . .  Yn) in R m. Let xi = 
(x~ i) . . . . .  x~ )) and Yi = (y~i) . . . . .  y~)), i= 1 . . . . .  n. Let us first consider the following 
minimization of multidimensional vector product (MVP) problem: 

PI 

min ~ (xk,Yp(k)) 
k=l 

where p E F l ,  xk E N  m, Yk E s m ,  k = l , . . . , n .  

(4.16) 

Then, computing lij is essentially a special case of MVP with m = 4 and 

_/,.,(1) e,(2) ~ ~(2)~ 
xk -~" i k  ,"ki ,"ki,--Uki ], 

Yk -- I~'jk , Ukj, Ukj ,--Ukj J, 

k = l  . . . . .  n, k g i ,  

k = l  . . . . .  n, k ~ j .  

Hence, lij can be computed by the following methods: 

(M1) Compute lij by solving a linear assignment problem with cost matrix H where 
hij = (xi, Yj), i , j  = 1 . . . . .  n. 

(M2) Compute lij as the sum of four independent minimal vector products. 
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Method M1 is time consuming since one needs to solve n 2 linear assignment 
problems of  size n each in order to compute L, resulting in an O(n 5) procedure. 
Method M2 is fast but the solution quality may not be as good as that of  method 
M1. In our computational tests, lq is computed based on method M2 when we do 
not apply constant column reduction. However, one can do a better job when using 
method M2. A closer look at the problem (4.1) reveals that the problem can be 
reduced to a 3-dimensional MVP with 

Xk = ~ i k  ' t~ki ' t"ki ]' 

Yk = ~?'j~ ,"kj,"kj 1' 

k=l,...,n, 

k=l ..... n. 

Furthermore, we can give an alternative way of  computing lower bounds to 
the solution of  (4.1) quickly. Consider the 2-dimensional MVP: 

Let 

ll  

rain ~ (xk,Yp(k)) 
k = l  

where pEl-[,x k E N  2,  Yk ER2, k ~ l ,  . . .~n.  

. . . . .  x : ) ,  . . . . .  

ul = (y~D . . . . .  y~n)), u2 = (y(1) . . . . .  y(2n)). 

Define the following four vectors 

(4.17) 

V 1 = t 1 + t 2 , 

W 1 = U  I + U  2 ,  

We have the following lemma. 

19 2 = t  I - - t  2 ,  

w 2 = U 1 - -  U 2 . 

L E M M A  4 . 2  

Given two sets of  vectors xl . . . . .  xn and Yl . . . . .  Yn in R 2, define vl, 1)2, wl, w2 
as above. Let p be a permutation, then 

n 

~_~ (xk,Yp(k)) > ½((Vl,Wl)_+(V2,W2)_) • 
k=1 

Proof 

then 
Let p be any permutation and P be the corresponding permutation matrix, 
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(191, Wl )_ + (1)2, w2 ) -  <- (1)l, PWl ) + (1)2, Pw2 ) 

= (tl + t2, e(ul + u2)} + (tl + t2, P(Ul - u2)> 
n 

= 2(( t  1 , Pu 1 ) + (t 2 , Pu 2 )) = 2 ~., (x k , Yp(k) )" 
i = 1  

[] 

Consequent ly ,  we can use vectors vi, v2, wl, w2 to provide a lower  bound  for  
the 2-dimensional  MVP.  Similarly,  for  the 3-dimensional  MVP: 

Let  

n 

rffln ~ (xk,Yp(k) > 
k=l 

where p ~ I I ,  Xk ~R3, Yk ~R3, 

. . . . .  x : ) ,  

u , _ - ( :  . . . . .  y : ) ,  

. . . . .  x : ) .  

u 2 :(y(21) . . . . .  y(2n)), 

k = l  . . . . .  n .  

,3 , x : ) ,  

U3 : (y~') . . . .  ,y~n)). 

(4.18) 

Define the fo l lowing six vectors: 

1)1 = t l  + t 2 ,  1)2 = t l  + t 3 ,  

W 1 = U 1 + U 2 -- U 3 ,  W2 = U 1 -- U 2 + U 3 ,  

W e  c a n  s t a t e  t h e  f o l l o w i n g  l e m m a .  

1) 3 = t 2 + t 3 , 

W 3 ------Ul + U  2 + U  3. 

LEMMA 4.3 

For  two given sets o f  vectors  xl . . . . .  xn and Yl . . . . .  yn in R 3, def ine  
D1, l)2,1)3,w1,w2,w 3 as above. Le t  p be a permutat ion,  then 

n 

<x~,y.~)> >_ 1(<1). w~>_ + <~2,w2>_ +<~3, w3>_). 
k=I 

Proof  

Let  p be any permutat ion and P be the corresponding permutat ion  matrix,  
then 

<vl,wl>_ +<o2,wz>_ +(v3,w3>_ 

< (vl, Pwl > + (v2, Pw2 > + (v3, Pw3 ) 

= (t I +t2,P(u I +u 2 -U3)) + (t I +t3,P(u 1 - u  2 +U3) ) 
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+ (t2 + t3, P(-ul + u2 + U3)) 
n 

= 2((tl,PUl)+(t2,Pu2)+(t3,Pu3}) = 2 x (xk,Yp(k)). 
i=l 

[] 

The above lemma provides an alternative lower estimate for the solution 
of (4.1). This lower bound may be better than directly computing the minimal 
vector products in some cases. Hence, one can compute both and take the larger 
bound. 

4.3. TWO NEW LOWER BOUNDS 

One new lower bound that we propose in this paper is to use the reduction 
scheme R1. We denote this lower bound by LBI(0). The other new lower bound 
that we propose is to use the reduction scheme R2. This lower bound is denoted 
LB2(0). Both new lower bounds are dependent on the parameter 0 in (4.2). Note 
that LBI(0.0) = GLB(A,B) and LBI(1.0) = GLB(A'r,B'r). 

For LBI(0), we found in our computational experiments that 0=  0.5 is a 
good choice. For LB2(0), we used 0 = 1.0. The latter was expected since the column 
variance of the matrix A is already zero when computing LB2(0). 

The new lower bounds can be computed quite efficiently. Computing the 
matrix A to partition matrices A and B takes only O(n 2) time. By presorting the rows 
of the flow and distance matrices A and B, one can compute lij, i, j = 1 . . . . .  n, in 
O(n 3) running time using method M2. Hence, the total running time is O(n3), which 
is the same as that for computing GLB. Furthermore, the constant factor is small. 

5. Computational results 

We report the computational results on the new lower bounds, LBI(0) and 
LB2(0), and compare the new bounds with existing lower bounds. As we stated in 
the previous section, we choose 0 = 0.5 for LBI(0) and 0 = 1.0 for LB2(0). In the 
tables for reporting computational results, we simply use LB1 and LB2 to denote 
LBI(0,5) and LB2(1.0). The new lower bounding procedure was implemented in 
FORTRAN and the computational experiments were concluded on a Sun Sparcstation II. 
One of the eigenvalue bounds (EVB1) was also implemented for the purpose of 
comparison. In addition to the existing lower bounds discussed earlier and the new 
lower bounds, we also implemented the trivial lower bounds obtained by fixing k 
facilities, for k = 1,2,3. The corresponding lower bounds are denoted by TB(k), 
k =  1,2,3. 

The test problems used include the following classes of problems 

I. Nugent test problems [25]: 6 problems of sizes 6, 8, 12, 15, 20, 30. The problems 
are symmetric. 
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II. Random symmetric problems with uniform distribution. 

III. Random symmetric problems with hyperexponential distribution. 

IV. Random asymmetric problems with uniform distribution. 

V. Random asymmetric problems with hyperexponential distribution. 

The uniform random number generator was taken from [26]. The hyperexponentiaI 
random number generator made use of the uniform random number generator described 
in [36] and used exponential distributions in parallel [ 15]. The computational results 
are summarized in tables 1 to 3. 

Table 1 contains the performance of the existing bounds and the new lower 
bounds on the Nugent test problems. Since the number of bounds is large, the table 
is split into two parts. The last line of the table contains the computational complexity 
of the lower bounds. Note, that the procedure to compute EVB3 is iterative. According 
to Hadley et al. [16], EVB3 took 20 to 30 iterations before outperforming IVB. 

The bounds in part 1 of table 1 are considered inexpensive since the computa- 
tional complexities of those bounds are the same as that for GLB. For those bounds, 
there is no clear trend as to which one is the best for the Nugent test problems. How- 
ever, we note that LB 1 and LB2 (as well as MCCR) outperforms GLB for n = 30. 

We consider the bounds in part 2 of  table 1 as expensive since the complexity 
of  the bounding procedure is at least O(/14). Note, here we listed MEVB in part 2 
because the maximum number of iterations used in [31] was large (k = 200). We 
observe that for the bounds in part 2 of table 1, TB(3) and TB(2) are clearly the 
best. Hence, we are more interested in comparing the bounds in part 1 of  table 1. 

In the next two tables, we focus on the comparison of  the inexpensive lower 
bounds. In particular, we compare GLB, MCCR, and EVB 1 with the new bounds 
LB1 and LB2. Table 2shows the resultson 16 problems in classes II, III, IV, and V. 
Four problems are taken from each class, one for each size of  5, 10, 20, 40. Note 
that EVB1 is valid only for symmetric QAPs. 

Table 1 

Part 1. Comparison of bounds on Nugent test problems. 

n BKV GLB MCCR EVB1 EVB2 EVB3 IVB LB1 LB2 

6 86 82 82 70 73 70 69 82 82 

8 214 186 186 160 164 174 167 186 186 

12 578 493 493 446 448 495 472 493 493 

15 1150 963 963 927 934 989 973 963 963 

20 2570  2057  2057 2075 2085  2229  2 1 9 6  2057  2057 

30 6124  4539  4558 4982 5005  5349  5265  4558  4558 

O(n 3) O(n 3) O(n 3) O(n 3) O(n 3) O(n 3) O(n 3) O(n 3) 
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Table I 

Part 2. Comparison of bounds on Nugent test problems. 

n MEVB CM(k) AX(k) CG FYI FY2 TB(1) TB(2) TB(3) 

6 70 82(3) 82(1) 82 86 82 82 82 86 
8 174 188(6) 188(3) 190 194 187 186 190 195 

12 495 496(7) 495(3) 500 - - 494 498 503 
15 989 972(6) 972(6) - - - 964 976 984 
20 2229 2067(8) 2071(4) - - - 2062 2092 2120 
30 5349 . . . . .  4554 4599 4671 

O(n 3) O(kn 5) O(kn 5) O(n 7) - _ O(!i 4) O(n 5) O(n 6) 

The  resul ts  in table  2 indica te  that  L B 2  is the overa l l  bes t  bound.  I t  is be t te r  

than  EVB1  excep t  fo r  n = 10 in c lass  II.  I t  is be t te r  than G L B  excep t  for  n = 10 in 

c lass  I I  and  n = 5 in c lass  V. I t  is be t te r  than  LB1 excep t  for  n = 10 in c lass  I I  and  

n = 40  in c lass  IV.  I t  is a l ways  be t te r  than M C C R .  LB 1 is the second  bes t  bound .  
In table  3, we  p r o v i d e  the c o m p a r i s o n  o f  G L B ,  M C C R ,  E V B  1, and  the n e w  

lower  b o u n d s  o v e r  40  r a n d o m l y  genera ted  p r o b l e m s  in each  o f  the c lasses  II ,  I I I ,  

IV,  and V. Fo r  each  class ,  10 p r o b l e m s  were  genera ted  for  each  size o f  5, 10, 20, 

and  40. The  bounds  were  repor ted  re la t ive  to the G L B .  To  revea l  the p e r f o r m a n c e  
o f  the l ower  bounds  in detai ls ,  we  have  three par ts  for  the table.  

Table 2 

Comparison of bounds on random test problems. 

5 424 373 426 424 436 
10 1260 1212 1251 1260 1245 

II 20 25636 25135 25429 25636 25708 
40 402455 3 9 9 1 6 1  400409 402455 402620 

5 326 322 322 326 330 
10 1310 1200 1287 1310 1310 

III 20 25829 25450 2 5 6 1 1  25829 25845 
40 399562 3 9 7 0 4 1  397542 399562 399699 

5 184 202 - 212 220 
10 1452 1423 - 1470 1478 

IV 20 24585 23945 - 24678 24723 
40 409879 405602 - 411376 410798 

5 219 203 - 208 216 
10 1508 1427 - 1491 1513 

V 20 28381 28085 - 28382 28464 
40 428244 424572 - 429283 429750 

Class n GLB MCCR EVB 1 LB 1 LB2 
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Table 3 

Part 1. Min imum ratio over  GLB. 

Class n GLB MCCR EVB 1 LB 1 LB2 

5 1.000 0.880 0.939 1.000 0,997 

10 1.000 0.924 0.959 1.000 0,988 
II 

20 1.000 0.969 0.989 1.000 1.000 

40 1.000 0.992 0.995 1.000 1.000 

5 1.000 0.857 0.887 1.000 0.948 

10 1.000 0.906 0.970 1.000 0.995 
III 

20 1.000 0.970 0.989 1.000 0.997 

40 1.000 0.989 0.995 1.000 1.000 

5 1.000 0.927 - 0.981 1.000 

10 1.000 0.915 - 0.994 1.006 
IV 

20 1.000 0.972 - 1.000 1.003 

40 1.000 0.990 - 1.001 1.002 

5 1.000 0.887 - 0.936 0.961 

10 1.000 0.888 - 0.997 1.001 
V 

20 1.000 0.974 - 1.001 1.006 

40 1.000 0.990 - 1.002 1.002 

Table 3 

Part 2. Average ratio over GLB. 

Class n GLB MCCR EVB I LB 1 LB2 

5 1.000 0.982 1.010 1.000 1.039 

I0 1.000 0.943 0.981 1.000 1.000 
II 

20 1.000 0.983 0.992 1.000 1.002 

40 1.000 0.995 0.995 t .000 1.001 

5 1.000 0.954 0.969 1.000 1.005 

10 1.000 0,948 0.987 1.000 1,007 
III 

20 1.000 0.981 0.991 1.000 1,001 

40 1.000 0.994 0.996 1.000 1.001 

5 1.000 1.015 - 1.044 1.066 

10 1.000 0.961 - 1.008 1.018 
IV 

20 1.000 0.982 - 1.005 1.008 

40 1.000 0.992 - 1.003 1.004 

5 1.000 0.996 - 0.997 1.034 

10 1.000 0.963 - 1.014 1.025 
V 

20 1.000 0.983 - 1.004 1.008 

40 1.000 0,993 - 1.002 1.003 
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Table 3 

Part 3. Maximum ratio over GLB. 

Class n GLB MCCR EVB 1 LB 1 LB2 

5 1.000 1.100 1.088 1,000 1.090 
10 1.000 0.962 0.998 1,000 1.023 

II 20 1.000 0.996 0.995 1,000 1.005 
40 1,000 0.997 0.997 1.000 1.002 

5 1.000 1.037 1.045 1.000 1,057 
10 1,000 1.001 1.003 1.000 1.024 

III 20 1.000 0.991 0.993 1.000 1.005 
40 1.000 0.996 0.997 1.000 1.001 

5 1.000 1.I 16 - 1.152 1.196 
10 1.000 1.018 - 1.047 1.062 

IV 20 1.000 0.992 - t.009 1.013 
40 1,000 0.997 - 1.004 1.004 

5 1.000 1.058 - 1.078 1.116 
10 1.000 1.022 - 1,050 1.061 

V 20 1.000 0.994 - 1.008 1.012 
40 1.000 0,996 - 1.003 1.005 

In part 1 of  table 3, the entry for a lower bound for problems of a fixed size 
contains the minimum of the ratio of this bound over the GLB for the 10 problems. 
In part 2 of  table 3, the entry contains the average of  the ratios for the 10 problems. 
In part 3 of  table 3, the entry contains the maximum of the ratios for the 10 
problems. 

Part 1 of  table 3 indicates that LB2 is again the best bound among all the 
bounds in comparison. In particular, LB2 is better than MCCR and EVB in all 
cases. LB2 is better than GLB for the asymmetric problems (classes IV and V, 
however, it is worse than GLB for the symmetric problems (classes II and III). LB 1 
and GLB are tied on the second best. However, part 1 of  table 3 is not very 
conclusive since only the worst case among 10 problems of  a fixed size in a class 
is considered. Now, let us look at the other parts of  table 3. 

In parts 2 - 3  of table 3, the results clearly indicated that LB2 and LB1 are 
the best bounds in all cases. In comparison with EVB1, LB2 is in general about 
0 . 5 - 1  percent above EVB 1 on the average. In some cases, LB2 is better than GLB 
for more than 2 percent. For all classes and sizes, LB2 is slightly better than GLB 
on the average. With respect to MCCR, one can see that it is worse than GLB on 
the average and worse than LB 1 and LB2. EVB 1 also failed in this competition with 
GLB in the average sense. 
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6. Concluding remarks 

The computational results in the previous section indicate that the new lower 
bounds are better than GLB, EVB1, MCCR on the random problems, and are 
competitive on the Nugent test problems. Since the new bounds are very fast to 
compute, they should be incorporated in a branch-and-bound type algorithm for the 
QAP. 

It is interesting to observe that the new bounds are consistently better than 
all other bounds tested for the random problems with hyperexponential distribution 
(problem classes III and V). Hyperexponential distributions are characterized by a 
coefficient of  variation greater than 1. Thus, the variance in the flow and distance 
matrices are high for problems in classes III and V, where all random problem 
instances tested had coefficients of  variation in the range 1 to 5. Since the basic 
tenet embodied in our bounds is based on variance reduction, the results indicate 
that our bounds should perform better than the others tested if the coefficient of  
variation is higher, say, in the 100's. We report on results for instances with high 
variances in [21], where we present a branch and bound implementation using these 
new bounds. 

Some questions still remain. The reduction schemes proposed are more effective 
when the variances of the flow and distance matrices are large. When the variances 
of  the matrices are small, the proposed lower bounds degenerate to GLB. Hence, 
one question is how to design reduction schemes which can be effective when the 
variances of matrices are small. Another question is, for QAPs with certain structures, 
how to provide better reduction schemes than those proposed in this paper. For 
example, the proposed bounds tie with GLB on the Nugent test problems of  sizes 
n < 20. We know that the distance matrices for the Nugent test problems are derived 
from grid graphs. There may exist better reduction schemes than those proposed 
here. 
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