
Annals of Operations Research 50(1994)263-279 263

An efficient heuristic based on machine workload
for the flowshop scheduling problem

with setup and removal

Wenxue Han and Pierre Dejax

Laboratoire Productique et Logistique, Ecole Centrale Paris, Grande Voie des Vignes,
92295 Chdtenay-Malabry Cedex, France

We are concerned in this paper with solving an n jobs, M machines flowshop
scheduling problem where the objective function is the minimization of the makespan.
We take into account setup, processing and removal times separately. After drawing up
a synthesis of existing work which addresses this type of problems, we propose a new
heuristic algorithm which is based on the machine workload to find an efficient permutation
schedule. Computational experiences show that our algorithm yields excellent results,
particularly when bottleneck machines are present.

1. Introduction

Consider a static flowshop scheduling problem where n given jobs are to be
processed on M specified machines in the same technological order. The objective
function is the minimization of the makespan (also called the maximum flowtime)
defined as the total throughput time in which all jobs complete processing on all
machines. This problem was first formulated and solved by Johnson [20] as a two-
machine problem. In formulating this problem, several simplifying assumptions are
made by Gupta [15]. Specifically, it is assumed that changeover times (where
changeover time is defined as the time required to change from one job to another
at a given machine) are sequence independent and are either included in the processing
times or are negligible and can be ignored. However, in some practical situations,
changeover times of a job are separable and may depend on the immediately preceding
job. As an illustration, consider the scheduling problem in a group technology
environment. For each family of parts, a long setup time is required to initiate
family parts, after which a short changeover time is required to initiate family parts,
after which a short changeover time is required which may depend on the sequence
of jobs preceding a particular family part (job) being processed [17]. In such cases,
one has to consider these changeover times explicitly in the identification of an
optimal schedule.

When the changeover times are separable and sequence dependent, and infinite
storage space is supposed to be available to hold partially processed jobs, mathematical

© J.C. Baltzer AG, Science Publishers

264 W. Han, P. Dejax, The flowshop scheduling problem

programming approaches and implicit enumeration approaches based on graph-theoretical
representation can be used to solve the problem [14,26]. Furthermore, if only one
of the two machines involves sequence-dependent separable changeover times, a
dynamic programming approach can be used to minimize the makespan [8]. However,
the computational complexity of these exact optimization algorithms is quite large
even for problems of moderate size. In fact, flowshop problems with sequence-
dependent changeover times are NP-hard, implying that it is unlikely that an efficient
optimization algorithm that will solve all problems in a polynomially bounded
computational time can ever be found. Realizing this fact, Gupta and Darrow [17]
described heuristic algorithms to find approximate solutions to the two-machine
sequence-dependent flowshop problem. An analysis of the general M-machine sequence-
dependent flowshop problem is provided by Gupta [16] who also describes some
heuristic approaches based on the travelling salesman formulation of the problem.

In many practical cases, changeover times are separable and can be broken
down into sequence-independent components. In doing so, the changeover time is
defined as the sum of two components, namely the actual setup time (Sire) needed
to perform the setup for job i at machine m and the actual removal time (Rkm) for
job k at machine m so that machine m can process job i. In such a case, the setup
time is the time needed to set up the tools, jigs, fixtures, etc., for job i at machine m
while removal time is the time needed to remove the tools, jigs, and fixtures or to
undertake cleaning operations once job k has completed processing on machine m.
While the changeover times can now be considered independent of the sequence,
the resulting problem is still NP-hard. Therefore, in addition to exact optimization
algorithms, heuristic algorithms are both desired and necessary. The approaches
taken by Yoshida and Hitomi [31], Sule [27], Sule and Huang [28], Szwarc [29],
and Proust et al. [23, 24] can be used to develop approximately optimal solutions
to the problem.

In this paper we consider the flowshop problem where the setup, processing,
and removal times are separable and significant enough to be considered explicitly
in finding an optimal schedule. The objective function considered here is the
minimization of the makespan (or the maximum fiowtime of any job). In section 2,
we define precisely the notations and assumptions of the problem. In section 3 we
survey the corresponding literature. In section 4, we present a new heuristic procedure
(PHDsR) based on the explicit consideration of the machine workload. Section 5
reports the results of our computational experience. In particular we compare the
performance of our heuristic with one of the most recent and efficient heuristics
(DFFP) for this problem, as well as to the optimal solutions obtained from a newly
developed branch and bound procedure. Section 6 presents our conclusions.

2. Problem, notations, assumptions and definition

Following Graham et al. [13], a shop scheduling problem may be characterized
by three parameters, namely the machine environment, job characteristics and the

W. Hart, P. Dejax, The flowshop scheduling problem 265

optimality criteria. Using the symbol F for the flowshop, M for the number of
machines and Cmax for the maximum flowtime, a flowshop problem may be represented
as an FMIICmax problem. Furthermore, with the separation of no sequence-dependent
(nsd) setup and removal times from the processing time Pij needed to process
job i at machine j, the above representation is modified as a FMISnsd, RnsdlCmax
problem. Furthermore, in formulating the problem, the following assumptions are
made.

(1) All jobs and machines are available at time zero.

(2) All processing times on the machines are known, finite, and independent of
the order in which all the jobs are processed. Setup, processing and removal
times are separable and independent of the order in which jobs are processed
on any of the M machines.

(3) Each job is processed through each of the M machines once and only once.
Furthermore, a job does not become available to the next machine until it
completes processing on the current machine. Splitting of jobs is not allowed.

(4) Once a job starts on a machine, it must be completed before another job can
be scheduled on the same machine (i.e. no pre-emption of jobs is allowed).

(5) Sufficient storage capacity exists to stock any number of available jobs between
any two consecutive machines.

(6) Only permutation schedules (i.e. schedules which maintain the same order of
all available jobs on all machines) are considered.

While the above assumptions may seem very restrictive, the associated problem
has been shown to be NP-hard by Garey and Johnson [12] even when setup and
removal times are not considered. Realizing this fact, several heuristic algorithms
have been developed to find efficient solutions to the FM 11Cmax problem. Notable
among these are the approaches taken by Campbell et al. [4], Dannenbring [9],
Park et al. [22], and Escudero [10]. For a recent state of the art on this subject,
consult Han and Dejax [18]. For the general job-shop scheduling problem, Adams
et al. [1] have proposed an approximation method based on the identification of
bottlenecks and for minimizing the makespan. It consists of repeatedly identifying
and sequencing the bottleneck machines as well as reoptimizing the previously
established sequences. Both the bottleneck identification and local reoptimization
procedures are based on solving certain one-machine scheduling problems. Besides
the straight version of the Shifting Bottleneck Procedure, they have also implemented
a version that applies the procedure to the nodes of a partial search tree. It should
be noted that Carlier and Pinson [5,6] have also proposed a bottleneck approach for
the job-shop problem. But unfortunately, tools setup and removal times were not
taken into account in these works. For other research on the subject of job-shop
scheduling, see also Balas [3], Baker [2], Conway et al. [7], French [11], and
Rinnooy Kan [26].

266 W. Han, P. Dejax, The flowshop scheduling problem

Let us now define the completion time for each job -mach ine pair (i,m). For
that purpose, let Pim, Sire, and Rim be the processing, setup, and removal times,
respectively. We suppose that (7 is a schedule of the jobs already scheduled before
job i. Consider now a schedule ¢ri formed by concatenating job i at the end of tr.
Then, the completion time of tyi at machine m can be found by using the following
recursive relationship:

C(¢ri, m) = max{C(tYi, m - 1) - Ri,m_l;C(a,m) + Sim} + Pim +Rim, (1)

where C(O,m) = C(o',0) = 0 for all tr and m.
To calculate C(cri, m), C(O,m) = 0 is useful if tr is empty (i is the first job

to be scheduled); and C(tr, 0) = 0 is useful i fm is the first machine to be considered.
In defining the above relationship (1), it is assumed that the setup for job i

at machine m starts as soon as the removal operation of the last job of o" has been
completed. Furthermore, job i can be moved from machine (m - 1) to machine m
as soon as it completes processing at machine (m - 1) and does not wait at machine
(m - 1) for the removal of its tools, jigs, fixtures, etc. Then, the permutation flowshop
scheduling problem consists of finding a schedule tri such that F[C(tri, M)] is
minimum where o" ranges over all permutations of (n - 1) jobs not containing job i
and i ranges from 1 through n not contained in the specific tr associated with (7/.

As previously stated, the goal of the approach is to describe an approximate
algorithm to obtain the job 's inputting sequence for the machines system, and the
optimality criterion used in this paper is the minimization of makespan (or maximum
flowtime). However, Sule and Huang [28], Proust et al. [24] and Szwarc and Gupta
[30] differ in their interpretation of makespan. Sule and Huang [28] and Proust et
al. [24] consider C(S,M) as defined by relation (1) above as makespan if S is a
complete schedule of n jobs. However, this includes removal time associated with
the last job in S at machine M. Szwarc and Gupta [30] think that this removal time
should not be included in the definition of makespan. In this paper, Sule and
Huang's interpretation will be used and makespan will be as obtained by using
relation (1).

3. Heuristic algorithms for the FMISnsd,RnsdlCmax problem

The problem considered in this paper was first formulated by Yoshida and
Hitomi [31], who developed a simple extension of Johnson's optimal rule [20] to
solve the two-machine case where removal and setup times are not separated from
each other and are sequence-independent. Sule [27] modified Yoshida and Hitomi 's
results to allow for the separation of setup, processing, and removal times. Sule
and Huang [28] extended the two-machine analysis to solve approximately the
three-machine case. Szwarc [29] was interested in more general scheduling problems
than the one we are studying here, but it can be noted that he also suggested, as
a special case, a solution to our problem. Proust et al. [24] draw up a synthesis of

W. Han, P. Dejax, The flowshop scheduling problem 267

Campbell et al. 's [4] CDS heuristic algorithm and Sule's algorithm mentioned
above and propose a heuristic algorithm, called DFFP for the general M-stage
problem. This heuristic has been considered to be the best up to now. An improved
version, HEURES [23], which consists in making adjacent permutations on the
schedule selected with DFFP was proposed. The following is a summary of the
work that has come to our attention.

3.1. THE SH AND SH-1 ALGORITHMS

In a variation on the classical problem, Yoshida and Hitomi [31] allowed for
a setup time before each operation of each job on each of the machines. For the two-
machine case and with allowance for setup, processing and removal times, Sule [27]
showed that job i precedes job j in an optimal schedule if:

min(Sil - Si2 + Pil, P j2 + Rj2 - Rj l) <- min(Sj l - Sj2 + Pjl, Pi2 + Ri2 - Ril). (2)

The above relation (2) leads to the following algorithm:

Step 1: Let

k = arg min {min{Sil -S i2 +Pil,Pi2 +Ri2 - R i l } },
i~K

where K is the set of jobs still available. Initially all n jobs are concerned.

Step 2: In case of Ski - Sk2 + Pkl < Pk2 + Rk2 - Rkl, place job k at the start of the
schedule; otherwise, place job k at the end of the schedule.

Step 3: Suppress job k from the set K of remaining jobs to be placed and go to
step 1.

The above algorithm is a polynomial procedure (henceforth called the SH
algorithm) to find the optimal solution of the F21Snsd, RnsdlCmax problem.

Sule and Huang [28] proposed a heuristic algorithm for the three-machine
problem. This heuristic consists in extending the above two-machine algorithm to
approximately solve the three-machine case by creating an auxiliary two-machine
problem where the first stage is a combination of the first two machines and the
second stage is a combination of the last two machines. In other words, two real
machines are combined into one auxiliary machine and the corresponding times are
added together. The steps of the algorithm are as follows:

Step 1: Let

k = arg rffm { lmn{Sil - Si3 + Pa + Pi2, Pi2 + Pi3 + Ri3 - Ril } },
ieK

where K is the set of jobs still available. Initially all n jobs are concerned.

Step 2: In case of Ski - Sk3 + Pkl + Pk2 < Pk2 + Pk3 + Rk3 - R k l , place job k at the start
of the schedule; otherwise, place job k at the end of the schedule.

268 W. Han, P. Dejax, The flowshop scheduling problem

Step 3: Suppress job k from the set K of remaining jobs to be placed and go to
step 1.

The above algorithm (henceforth called the SH-1 algorithm) generates an
approximate solution to the original F31Snsa, Rnsdlfmax problem. This heuristic was
tested at first on 200 problems with five or six jobs. The optimal sequence was
obtained in 93% of the trial runs. In the other cases, the makespan of the proposed
solution was more than 2% off the optimal makespan.

3.2. SZWARC ALGORITHM

A generalization of the problems proposed in Yoshida and Hitomi [31],
Sule [27], Sule and Huang [28], and Proust et al. [24] can be defined by considering
the FMIlag timelCmax problem. Szwarc [29] studied this problem and proposed
heuristic approaches which can be modified to solve the problem being considered
here if we consider the lag time as no sequence-dependent setup and removal times.
Based on Szwarc's work, we propose the following rough algorithm:

Step O:

Step 1:

Initialize and transform the data. For each job i and each machine m,
calculate:

tim = Sim + Pim + Rim;

ail = 0 , (3)

aim = -Ri, m_ 1 -Sire.

Let P denote the total number of auxiliary two-machine problems to be
solved, such that P < (M - 1). Set k = 1.

For each job i, generate the processing times for auxiliary machines 1 and
2 as follows:

M-1 M

Ai k = ~ tim + ~.d aim'
m=k m=k+l

M M
B k = ~.~ tim+ ~ aim.

m=k+l m=k+l

(4)

Step 2:

Step 3:

Solve the auxiliary two-machine problem k whose processing times are
given in (4) by using Johnson's rule for the F211Cmax case. Let S k be the
schedule obtained and Cmax(S k) be its makespan obtained by using the
original problem data. If k < P, set k = k + 1 and return to step 1, otherwise
go to step 3.

Among the P schedules obtained above, select the schedule S k with the
lowest value of Cmax(S k) as the final solution.

W. Han, P. Dejax, The flowshop scheduling problem 269

Note that the above algorithm in fact consists in generating M - 1 solutions
by applying Johnson's algorithm on two auxiliary machines. The schedule which
has the smallest Cma x is kept as the final solution. The processing times for the kth
(k = 1 M - I) auxiliary two-machine problem are respectively:

M-1

Aik = E Pim + Sik -SiM,
m=k

M

Bi k = Z Pim + RiM - Rik"
m=k+l

(5)

3.3. THE DFFP ALGORITHM

Proust et al. [23] extended the logic of Campbell et al. [4] to solve the
problem being considered here and proposed the new heuristic algorithm DFFP (see
also Proust et al. [24]). It also consists in considering a maximum of M - 1 auxiliary
two-machine problems. Each of these auxiliary two-machine problems is solved by
using Johnson's algorithm. The solution to the original problem is the best of the
M - 1 which has the lowest makespan. In fact, this heuristic is a synthesis of
Campbell et al.'s [4] CDS heuristic algorithm for the FMIICmax scheduling problem
and Sule's algorithm mentioned above. The steps of the algorithm are as follows:

Step 0: Initialize the data. Let P be as above (i.e. it is the total number of auxiliary
two-machine problems to be solved), such that P < (M - 1). Set k = 1.

Step 1: For each job i, generate the processing times for auxiliary machines 1 and
2 as follows:

k

Aik = E Pira + Sil --Si,M-k+l,
m=l

M (6)

Bk= Z Pim + Rim-Sik"
m--M-k+l

Step 2:

Step 3:

Solve the auxiliary two-machine problem k whose processing times are
given in (6) by using Johnson's algorithm for the F211Cmax case. Let S k
be the schedule obtained and Cmax(S k) be its makespan by using the original
problem data. If k < P, set k = k + 1 and return to step 1, otherwise go to
step 3.

Among the P schedules obtained above, select the schedule S k with the
lowest value of Cmax(S k) as the final solution.

Note that the difference between the algorithm of Szwarc and DFFP only lies
in the way they compute the processing times for Johnson's algorithm. Both algorithms

270 W. Han, P. Dejax, The flowshop scheduling problem

have been compared in Proust et al. [23]. The results show an advantage for DFFP
in 70.19% of the cases and for Szwarc's in 19.31% of the cases. The algorithm
DFFP has been compared by its authors with the algorithm SH-1 in the particular
case of three machines. For 320 problems, 22, or 6.88%, are better solved with
SH-1 than with DFFP; 195 problems, or 60.93%, are solved identically with the two
heuristic algorithms; 103 problems, or 32.18%, show an improvement with DFFP
compared with SH-1. A comparison of the results of DFFP with the optimal sequence
was also made. Out of 268 problems, 27, or 10.07%, result in solutions which
deviate by more than 5% from the optimum; 142, or 52.99%, result in solutions
which deviate by less than 5% from the optimum; 99, or 36.94% result in the
optimal solution.

3.4. THE HEURES HEURISTIC

This heuristic algorithm has two phases. In phase 1, and initial schedule is
obtained by using the algorithm DFFP. Phase 2 attempts to improve the solution
by making adjacent permutations on the initial schedule, by means of Dannenbring's
RAES procedure [9]. This is a general procedure to carry out improvements to any
initial schedule. The steps of the algorithm HEURES are as follows:

Step O: Let S = (al ,a 2 an) be the schedule obtained by using heuristic DFFP
and Cmax(S) its makespan, where a i gives the ith job in the schedule. Let
HEU = S and Cmax(HEU) = Cmax(S). Go to step 1.

Step 1: Let i = 1 and Best_/= NULL.

Step 2: Let S" be the schedule obtained by interchanging ai and ai+l, in HEU and
Cmax(S") its makespan. If Cmax(S") < Cmax(HEU) then Cmax(HEU) = Cmax(S")
andBest_i = / . S e t / = i + 1.If i < n return to step 2, otherwise go to step 3.

Step 3: If Best_/is not NULL, then let HEU be the schedule obtained by swapping
the (Best_i)th and (Best_/+ 1)th elements in HEU and return to step 1,
otherwise go to step 4.

Step 4: Accept schedule HEU as an approximate solution to the problem.

4. The PHDsR heuristic algorithm

We propose a new heuristic algorithm, called PHDsR (Procedure Han and
Dejax), which is based on the explicit consideration of machine workloads to solve
FMlSnsa, Rnsal Cmax scheduling problems. We take a job-flow management approach
to this problem. In other words, minimizing the makespan is equivalent to having
the flow pass as quickly as possible through the machines while respecting the
imposed constraints. It is the bottleneck machine, that is, the most heavily loaded

W. Han, P. Dejax, The flowshop scheduling problem 271

one, which determines the flow speed. Therefore the bottleneck machine must begin
to run as soon as possible and the time of work remaining to be done on the
downstream machines must be speeded once the work on the bottleneck machine
is finished. Also, the bottleneck machine should not stop running due to lack of
workload immediately in front of it.

Starting with a bottleneck machine, we break all the machines down into the
auxiliary machines 1 and 2. The first one combines the machines that are upstream
of the bottleneck machine; the second assembles the downstream machines. The
bottleneck machine is situated between the two auxiliary machines. In the case
where the bottleneck machine is the first (respectively the last), it is considered to
be the first (respectively the last) auxiliary machine. We can thus solve the original
M-machine problem by creating M auxiliary two-machine problems. Each of these
two-machine problems is solved by using Sule's SH algorithm. The calculation is
repeated with each machine, ranked in order of decreasing load, being considered
successively as the bottleneck machine. The proposed solution to the original problem
is the schedule which leads to the lowest makespan Cmax.

It should be noted that the choice of the values M - 1 and (k - 1)/(M - k) in
the formal description below is made so that the processing times for the two
auxiliary machines are comparable.

4.1. FORMAL DESCRIPTION

We formally describe the algorithm as follows:

Step 0: Initialize the data. Let J be the set of machines m, m = 1 M. Calculate
the load of each machine. For machine m, the load W m is included by the
setup, processing and removal times. It is defined by:

n

Wm=~_ ~ (Sim+Pim+Rim), V m ~ J . (7)
i=l

Step l: Choose a bottleneck machine. Select machine k so that

k = argmax{W m }. (8)
m~J

Step 2: For each job i and from the bottleneck machine k, calculate setup, processing
and removal times for the two auxiliary machines. Let S n, Pil, Ril and Si2,
Pi2, Ri2 be the setup, processing and removal times for the auxiliary machines
1 and 2, respectively.
If k = 1, then:

=s,,,

=Si2,

Pikl =(M-1)pn , R~ k = R/I;

M

Pi k = E Pij, R~ = RiM.
j=2

(9)

272 W. Han, P. Dejax, The flowshop scheduling problem

Step 3:

Step 4:

If k = M, then:
M-I

S~ = SiM, Pi k = Z Pij, Ri~ = Ri, M-,;
j= l

S~=SiM, Pi~=(M-1)PiM, R~=RiM.
(10)

Otherwise, in the general case:

k-1

j=l

M
= s , , , = 1 Z p . , = R,, , .

M - k j=k+l

(11)

Solve the auxiliary two-machine problem whose bottleneck machine is k
and the setup, processing and removal times are given in (9), (10) or (11),
respectively, by using Sule's algorithm for the F21Snsd, RnsdlCmax case.
Let S k be the schedule obtained and Cmax(S k) its makespan by using the
original problem data. Remove k from the set J. If J = O, go to step 4,
otherwise go to step 1.

Among all the schedules obtained above, select the schedule S k with the
lowest value of Cmax(S k) as the final solution.

4.2. REMARKS

In most cases setup and removal times are small related to processing times.
So, as most authors do, we assume:

• no job is such that the setup time on a given machine is greater than the sum
of its setup and processing times on any preceding machine;

• the completion time of the last operation of the last job on the last machine
is counted at the end of removal. No other time is assumed to be greater than
this on the preceding machines.

The two special cases are illustrated in fig. 1.

4.3. COMPLEXITY ANALYSIS

The PHDsR algorithm relies on the application of Sule's algorithm M times.
The complexity of Sule's algorithm is O(nlogn). Therefore the complexity of the
PHDsR algorithm is O(Mn log n).

W. Han, P. Dejax, The flowshop scheduling problem 273

First case :

! [S il [Pil [Ril

I

I [Si2 I
I
L

I

P~ I

pi3 [Rfl,, [

Second case :

IS i. M-2 ! P i, M-2 [Ri, M-2 [

I S"i,M-I I Pi, M-1

, SiM

Ri, M-I

c.u__A
Fig. 1. Special cases not taken into account.

5. Computational experience

To analyze the performance of the algorithms PHDsR and DFFP for finding
feasible schedules, we compare them with an exact algorithm on randomly generated
problems of sizes up to 100 jobs and 20 machines. The optimal solution was
obtained using a branch and bound procedure based on a new lower bound described
in Han and Dejax [19]. Previously published optimal methods, see for example
Proust et al. [24], could not be used to solve problems of the size presented here.
The results of computational experience are reported below.

5.1. GENERATION OF PROBLEM DATA

Our experiments were conducted by comparing the results, obtained using
the heuristics PHDsR and DFFP, with those of an optimal branch and bound procedure
which we have developed [19]. To generate the problem data, a uniform distribution
on an interval [a,b] was employed for a set of 4 scenarios. In scenario 1, no specific
bottleneck is generated. In scenario 2, we generate bottleneck machines with various

274 W. Han, P. Dejax, The flowshop scheduling problem

coefficients. In the third scenario we analyze the performance of the algorithms in
the case of varying interval widths for the setup and removal times. In the fourth
scenario, we analyze the effect of the interval lower bound for the setup and
removal times.

For the first scenario, the sampling intervals for the processing times were
[ap, bp] ~ {[10,60], [5,55]} and the sampling intervals for the setup and removal
times [asr, bsr] were [1,5]. The problems of size n x M are {(8 x 4), (8 x 5), (8 x 6),
(10 x 4), (10 x 6), (10 x 8), (13 x 4), (13 x 6), (13 x 8), (13 x 10)}. For each problem
size we generated 30 tests, a total of 300 test problems.

For the second scenario, a coefficient with the value of 2, 3, 4, or 5 is chosen
at random and attributed to any column for each problem so as to make a bottleneck
appear in the system. We chose a scenario for which the sampling intervals [ap, bp]
for the processing times are {[5,55], [10,50], [5,45], [10,60]} and the sampling
intervals for the setup and removal times [asr, bsr] are { [1,5], [1, 10] }. The problems
of size n x Mare {(10 x 5), (15 x 8), (20 x 8), (25 x 10), (30 x 10), (40 x 13), (50 x 15),
(60 x 6), (80 x 8), (I00 x 20)}. For each problem size we generated 30 tests, a total
of 300 tests.

For the third scenario, the sampling intervals for the setup and removal times
[asr, bsr] are {[1,5], [1,10], [1,15]} for each one of three sampling intervals of the
processing times { [20, 80], [30, 80], [40, 80] }. The problems of size n x M are { (8 x 5),
(9 x 6), (10 x 7)}. For each problem size and each corresponding sampling interval
for the setup, removal times and processing times we generated 10 tests, a total of
90 tests.

In the fourth scenario, we kept the sampling intervals for the processing times
and the width of the sampling intervals for the setup and removal times constant
and made the lower bound intervals for the setup and removal times vary. The
sampling intervals for the processing times were { [20,80], [30, 80], [40, 80] } for
each one of three sampling intervals for the setup and removal times { [1,5], [5, 10],
[10, 15]}. The problems of size n x M are {(8 x 5), (10 x 6), (12 x 8)}. For each
problem size and each corresponding sampling interval for the setup, removal times
and processing times we generated 10 tests, a total of 90 tests.

5.2. MEASURE OF EFFECTIVENESS

Since an optimum solution for the generated problems could be found, the
percentage deviation of the makespan Cm~x(A) of the heuristic A from its optimal
makespan Cmax(OPT) can be calculated by the following equation:

p i (A) = 100 [Cmax(A) - Cmax (OPT)].
Cmax (OPT)

(12)

If pi(A) = 0, then algorithm A yields an optimal solution on the tested problem i.
The numerical value of pi(A) is the relative deviation between the makespans

W. Han, P. Dejax, The flowshop scheduling problem 275

obtained by using heuristic algorithm A and the optimal algorithm. For comparison
of the effectiveness of various algorithms, the average (Pavg) and maximum (Pmax)
were computed for N test problems where Pavg = [~ Pi] IN. The percentage deviation
for the heuristic PHDsR and for DFFP was calculated by letting respectively
Cmax(A) = Cmax(PHDsR) and Cmax(A) = Cmax(DFFP). Ifpi(PHDsR) < pi(DFFP), then
algorithm PHDsR performs better than algorithm DFFP in finding a minimum
makespan schedule for test problem i while p/(PHDsR)= pi(DFFP) indicates that
both algorithms yield identical results.

5.3. COMPUTATIONAL EXPERIENCE

The PHDsR, DFFP and a new branch and bound procedure were implemented
in the C language and tested on a working station SUN 3 (processor Motorola
68020, 20MHz). We present the results of the comparisons below.

5.3.1. Comparisons in the general case

In the general case (first scenario), a total of 300 problems was solved
respectively by the heuristic algorithms PHDsR, DFFP and the optimal branch and
bound algorithm. In 134 of these problems (44.46%) the algorithm PHDsR found
the optimal solution. The algorithm DFFP optimally solved only 66 problems (22%).
The PHDsR algorithm resulted in a lower than 5% deviation value in 149 (49.67%)
problems and the DFFP in 193 (64.33%). DFFP found their solution with more than
5% deviation from the optimal solution in 41 of these problems (13.67%) and only
in 17 or 5.67% problems for the algorithm PHDsR. On average Pavg DFFP's makespan
was 0.93% greater. The maximum value of the deviation Pmax is 10.05% for PHDsR
and 12.90% for DFFP. The results of the first scenario show that the algorithm
PHDsR performs better than the DFFP algorithm. The general results are given in
table 1 which can be read as follows: In the first two columns, each line corresponds
to a number of jobs (n) and machines (M). Each of the four following columns
corresponds to the interval in which the comparison indicator Pi is situated. In each
line we indicated the number of problems leading to an indicator in the corresponding
interval. The average Pavg and the maximum value of the deviation Pmax are indicated
in the seventh and eighth columns. The left part (for PHDsR) and right part (for
DFFP) are symmetrical.

5.3.2. Comparisons with an explicit bottleneck machine

In case of the presence of an explicit bottleneck machine (second scenario),
a total of 300 problems was solved respectively by the heuristic algorithms PHDsR,
DFFP and the optimal branch and bound algorithm. In 237 of these problems (79%)
the algorithm PHDsR found an optimal solution. The algorithm DFFP optimally

276 W. Han, P. Dejax, The flowshop scheduling problem

Table I

Comparison in the general case.

PHDsR DFFP

n M [0]]0, 2]]2, 5]]5, ~] Pmax Pavg [0]]0, 2]]2, 5]]5, ~] Pmax Pavg

8 4 4 11 10 5 10.05 2.82 3 8 11 8 7.47 3.29

8 5 11 8 10 1 5,30 1.52 9 6 7 8 12.75 3.11

8 6 16 7 5 2 6.19 1.15 7 7 13 3 6.96 2.37

10 4 18 9 3 0 4.93 0.70 7 12 9 2 9.90 1.92

10 6 I6 9 3 2 6.55 0.93 6 14 5 5 10.83 2.19

10 8 t3 12 5 0 4.62 0.81 13 13 4 0 4.69 0.77

13 4 17 7 5 1 5.12 1.07 3 12 11 4 10.24 2.31

13 6 15 11 4 0 4.08 0.88 4 15 9 2 8.78 1.94

13 8 13 12 5 0 3.37 0.73 7 16 5 2 12.90 1.60

13 10 11 7 6 6 8.96 2.28 7 10 6 7 10.54 2.73

Total 134 93 56 46 10.05 1.29 66 113 80 41 12.90 2.22

In % 44.66 31 18.67 5.67 22 37.67 26.67 13.67

Table 2

Comparison with an explicit bottleneck machine.

PHDsR DFFP

n M [0]]0, 2]]2, 5]]5 ,**] Pmax Pavg [0]]0, 2]]2, 5]]5, ~,,] Pmax Pavg

10 5 17 11 2 0 3.09 0.36 1 15 11 3 8.33 2.29

15 8 27 3 0 0 1.07 0.06 11 16 3 0 3.5I 0.76

20 8 18 12 0 0 1.41 0.27 4 20 6 0 4.60 1.25

25 10 25 5 0 0 0.79 0.06 4 26 0 0 1.48 0.41

30 10 24 6 0 0 0.34 0.03 4 24 2 0 2.41 0.57

40 13 25 5 0 0 0.43 0.02 2 28 0 0 0.98 0.34

50 15 22 8 0 0 0.45 0.05 3 26 1 0 2.14 0.40

60 6 28 2 0 0 0.04 0.00 1 29 0 0 1.74 0.50

80 8 28 2 0 0 0.04 0.00 3 27 0 0 0.28 0.11

100 20 23 7 0 0 0.15 0.02 1 29 0 0 0.69 0.15

Total 237 61 2 0 3.09 0.08 34 240 23 3 8.33 0.68

In % 79 20.33 0.67 0 11.33 80 7.67 1

W. Han, P. Dejax , The f lowshop scheduling problem 277

solved only 34 problems (11.33%). The PHDsR algorithm resulted in a lower than
5% deviation value in 63 (21%) problems and the DFFP in 263 (87.67%). DFFP
found their solution with more than 5% deviation from the optimal solution in 3
of these problems (1%) and in zero problems for the algorithm PHDsg. On average,
PavgDFFP's makespan was 0.60% greater. The maximum value of the deviation Pmax
is 3.09% for PHDsR and 8.33% for DFFP. The general results are given in table 2
which is similar to table 1.

5.3.3. Sensitivity analysis

In the third scenario, we kept the sampling intervals for the processing times
constant and made the sampling intervals for the setup and removal times vary. The
results show that the behavior of the two algorithms is worse as the width of
sampling intervals for the setup and removal times is increased while keeping the
sampling intervals for the processing times constant. But the PHDsR algorithm
always performs better than the DFFP algorithm. The general results are given
in table 3.

Table 3

Comparison with a~, = C.

[ap, bp] [as,,bs,] ~ [1,5] [1, 10] [1, 15]
n x M 8 x 5 9 x 6 I 0 x 7

[20, 80] 2.84 3.45 4.47
1.44 2.84 3.24

p~ (DFFP) 3.26 3.41 5.41
[30, 80] Pi i PHDsR) 2.44 3.07 3.80

3.32 3.30 3.76
[40, 80l 2.18 2.39 2.7§

[ap, bp]

[20, 801

t"p, bp]

[30, 801

tap, bpl

[40, 80]

Table 4

Comparison with bsr - asr = C.

n x M

8 x 5

n x M

1 0 x 6

n x M

1 2 x 8

[a,,, bsr] ~ [1, 5] [5, 101 [10, 15]

Pi (DFFP) 4.25 3.3,...1. 3.29
Pi (PI"ID SR) 2.77 2.10 1.85

[asr, bsr]~ [5,10] [10,15] [15,20]

Pi (DFFP) 2.94 2.49 2.32
Pi (PHDsR) 2.46 2.12 1.85

[asr, bsr] e [5, 15] [15,25] [25,35]

Pi (DFFP) 2.60 2.26 1.26
Pi (PHDsR) 1.96 1.94 0.96

278 W. Han, P. Dejax, The flowshop scheduling problem

In the fourth scenario, we kept the sampling intervals for the processing times
and the width of the sampling intervals for the setup and removal times constant
and made the lower bound of the intervals for the setup and removal times vary.
The results show that the behaviour of the two algorithms is better as the lower
bound of the intervals for the setup and removal times is increased. The performance
of the two algorithms varies as the lower bound of the intervals for the processing
times is increased. The PHDsR algorithm performs better than the DFFP algorithm
in all the cases. The general results are given in table 4.

The computing times required by the PHDsR algorithm and the DFFP algorithm
for solving any of the above problems are less than one second CPU time. Our
branch and bound procedure found, in a little under sixty minutes, an optimal
schedule to any of the problems mentioned above.

6. Conclusion

In this paper we have discussed the static flowshop scheduling problem
where setup, processing, and removal times are separable and sequence independent.
Through a synthesis of known results, we have proposed a new approach based on
the machine workload to find a (hopefully) good solution to the problem when the
objective function is the minimization of makespan. The computational results
show that our algorithm yields excellent results. Additionally, this algorithm can be
used to find an initial solution to be used in branch and bound algorithms in order
to increase their efficiency.

Acknowledgements

The authors thank three anonymous referees whose comments greatly improved
the quality and presentation of the paper.

References

[l] J. Adams, E. Balas and D. Zawact, The shifting bottleneck procedure for job shop scheduling,
Manag. Sci. 34(1988)391-401.

[2] K.R. Baker, Introduction to Sequencing and Scheduling (Wiley, New York, 1974).
[3] E. Balas, Machine sequencing via disjunctive graphs: An implicit enumeration algorithm, Oper. Res.

17(1969)941-957.
[4] H.G. Campbell, R.A. Dudek and N.L. Smith, A heuristic algorithm for the n-job, m-machine sequencing

problem, Manag. Sci. 16(1970)630-637.
[5l J. Carlier and E. Pinson, An algorithm for solving the job-shop problem, Manag. Sci. 35(1989)

164-176.
[6] J. Carlier and E. Pinson, A practical use of Jackson's preemptive schedule for solving the job-shop

problem, Ann. Oper. Res. 26(1990)269-287.
[7] R.N. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling (Addison-Wesley, Reading,

MA, 1967).

W. Han, P. Dejax, The flowshop scheduling problem 279

[8] B.D. Corwin and A.O. Esoghue, Two-machine flowshop scheduling problems with sequence setup
times: A dynamic approach, Naval Res. Log. Quarterly 21 (1974) 1174-1182.

[9] D.G. Dannenbdng, An evaluation of flowshop sequencing heuristics, Manag. Sci. 23(1977)
1174-1182.

[10] L.K Escudero, An inexact algorithm for part input sequencing with side constraints in FMS, Int. J.
Flexible Manuf. Syst. 1(1989)143-174.

[11] S. French, Sequencing and Scheduling: An introduction to the Mathematics of Job Shop (Wiley, New
York, 1982).

[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guided Tour to the Theory of NP-
Completeness (Freeman, San Francisco, CA, 1979).

[13] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation
in deterministic sequencing and scheduling: a survey, Ann. Discr. Math. 5(1979)287-326.

[14] J.N.D. Gupta, A search algorithm for generalized flowshop scheduling problem, Comp. Oper. Res.
2(1975)83-90.

[15] J.N.D. Gupta, A review of flowshop scheduling research, in: Disaggregation: Problems in Manufacturing
and Service Organizations, ed. Ritzman et al. (Martinus Nijhoff, The Hague, 1979) pp. 363-388.

[16] J.N.D. Gupta, Flowshop schedules with sequence dependent setup times, J. Oper. Res. Soc. Japan
29(1986)206-219.

[17] J.N.D. Gupta and W.P. Darrow, The two-machine sequence dependent flowshop scheduling problem,
Europ. J. Oper. Res. 24(1986)439-446.

[18] W. Han and P. Dejax, Une heuristique pour le probl~me d'ordonnancement de type nlMIFICmax avec
la pr6sence de machines goulots, RAIRO, Recherche Op6rationelle 24(1990)315-330.

[19] W. Han and P. Dejax, A new branch and bound method for the M-stage flowshop scheduling with
set-up, processing and removal times separated, Cahiers d'Etudes et de Recherche, no. 91-1, Ecole
Centrale de Pads (1991).

[20] S.M. Johnson, Optimal two and three-stage production schedules with setup times included, Naval
Res. Log. Quarterly 1(1954)61-68.

[21] J.K. Lenstra• Sequencing by Ent•nerative Meth•ds• Mathematical Center Tract (Mathematis•h Centrum•
Amsterdam, 1976).

[22] Y.B. Park, C.D. Pegden and E.E. Enscore, A survey and evaluation of static flowshop scheduling
heuristic, Int. J. Prod. Res. 22(1984)127-141.

[23] C. Proust, M. Drogou, J.M. Foucher and E. Foucheyrand, Une heuristique pour le probl~me
d'ordonnancement statistique de type n/m/flowshop avec prise en compte des temps de montage et
d6montage d'outils, RAIRO, APII, 22(1988)37-54.

[24] C. Proust, J.N.D. Gupta and V. Deschamps, Flowshop scheduling with set-up, processing and
removal times separated, Int. J. Prod. Res. 29(1991)479-493.

[25] A.H.G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations
(Martinus Nijhoff, The Hague, 1976).

[26] B.N. Srikar and S. Ghosh, A MILP model for n-job, M-stage flowshop with sequence dependent
setup times, Int. J. Prod. Res. 24(1986)1459-1474.

[27] D.R. Sule, Sequencing n jobs on two machines with setup, processing and removal times separated,
Naval Res. Log. Quarterly 29(1982)517-519.

[28] D.R. Sule and K.Y. Huang, Sequencing on two and three machines with setup, processing and
removal times, Int. J. Prod. Res. 24(1983)1459-1474.

[29] W. Szwarc, Flowshop problems with time lags, Manag. Sci. 29(1983)477-481.
[30] W. Szwarc and J.N.D. Gupta, A flow-shop problem with sequence-dependent additive setup times,

Naval Res. Log. Quarterly 34(1987)619-627.
[31] T. Yoshida and K. Hitomi, Optimal two-stage production scheduling with setup times separated,

AIIE Trans. 11 (1979)261-264.

