
Annals of Operations Research 50(1994)143-171 143

Comparison of formulations and a heuristic
for packing Steiner trees in a graph

Sunil Chopra

Department of Managerial Economics and Decision Sciences,
J.L. Kellogg Graduate School of Management, Northwestern University,

Evanston, IL 60208, USA

In this paper, we consider the problem of packing Steiner trees in a graph. This
problem arises during the global routing phase of circuit layout design. We consider
various integer programming formulations and rank them according to lower bounds
they provide as LP-relaxations. We discuss a solution procedure to obtain both lower
and upper bounds using one of the LP-relaxations. Computational results to test the
effectiveness of our procedures are provided.

Keywords: Steiner tree, packing, LP-relaxation.

I. Introduction

In this paper, we consider the problem of packing Steiner trees in a graph.
This is the fundamental problem in the global routing phase of circuit layout design.
An excellent background on combinatorial problems in circuit layout design is
contained in Lengauer [10]. The problem can be described as follows.

Consider an undirected graph G = (V, E) with positive integer capacities ce
and nonnegative lengths we E R÷, for each edge in E. f~ = {Ni, i = 1, 2 , . . . , k} is
a family of subsets of the node set V. f~ is referred to as a netlist and each subset
Ni defines a net i. The nodes in N i are the terminals of net i. Let F = {T/, i = 1 k}
be a family of trees such that T/spans Ni. Such a tree T/is called a Steiner tree for
net i. F is referred to as a routing. The traffic U(F, e) on an edge e for a routing
F is the number of trees T/in F that contain edge e.

u(r', e) = I{ilT/ ~ F, e ~ T/}I. (1.1)

The length of a routing F is given by

w (r) = w,u(r, e).
eeE

(1.2)

© J.C. Baltzer AG, Science Publishers

144 S. Chopra, Packing Steiner trees in a graph

The load on edge e E E in a routing F is defined to be

L(F, e) = max{0, U(F, e) - Ce}. (1.3)

An edge e is said to be oversaturated if L(F, e) > 0. Most of the above terminology
is taken from Lengauer [10], and Lengauer and Ltigering [11]. A routing is said to
be legal if no edge is oversaturated.

Global routing problems may be constrained or unconstrained. In constrained
global routing (CGR), we look for a legal routing of minimum length.

In unconstrained global routing (UGR), we look for a minimum length routing
among those that minimize the maximum load on an edge. Essentially, we first look
for the minimum excess capacity needed on each edge to produce a legal routing.
Then we look for the minimum length legal routing given this excess.

Both versions of the problem are known to be NP-hard since they include as
a special case the problem of finding a minimum length Steiner tree which is NP-
hard (see Garey and Johnson [5]).

In this paper, we restrict attention to the unconstrained global routing
problem. Most of the existing methods are sequential routing algorithms. The
seminal work on sequential routing is that of Lee [9] and Moore [14]. These
methods try to produce a routing by sequentially considering one net at a time. The
method due to Raghavan and Thompson [16] is nonsequential. However, it
requires that the Steiner trees under consideration be prespecified. This is not
always feasible.

Integer programming methods have been considered by Lengauer [10], Lengauer
and Ltigering [11], and Gr6tschel et al. [7,8] (see also Martin [13]).

The objective of our study is to use integer programming methods to come
up with good lower and upper bounds for UGR. We focus in particular on lower
bounds, since this is one area that has traditionally been ignored. One simple lower
bound for UGR can be obtained by ignoring the capacity constraints and constructing
a routing using the minimum length Steiner trees for each net. The tighter the
capacity constraints, the worse the lower bound provided by the above procedure.
In this respect, good integer programming formulations can play a significant role.
The hope is also that solutions giving good lower bounds can be used to obtain
solutions giving tight upper bounds.

In section 2, we consider various integer programming formulations for UGR
and compare them in terms of the LP-relaxation lower bound they provide. In
section 3, we show how UGR can be solved by sequentially solving two related
problems. Upper and lower bounding procedures are provided in each case. In
section 4, we provide computational results testing our approach. In section 5, we
discuss further work to be done.

We assume basic knowledge of graph theory. An edge e in an undirected
graph with end nodes s and t will be referred to as [s, t]. An arc directed from s
to t will be referred to as (s, t).

S. Chopra, Packing Steiner trees in a graph 145

2. Integer programming formulations

In this section, we give four different formulat ions for UGR and compare the
associated LP-relaxations.

2.1. THE UNDIRECTED FORMULATION

A formulat ion similar to the one we are about to give has also been considered
by Lengauer [10], Lengauer and Liigering [11], and Gr~Stschel et al. [7]. Define a
variable xi,e for each net i and edge e ~ E where

1 if edge e is in the Steiner tree spanning net i,

Xi'e = 0 otherwise.

Each partition (X, V - X) of the nodes V of the graph G defines a cut. We call
(X, V - X) a Steiner cut for net i if IX n N i I > 1 and I (V - X) n Ni I > 1. Let t$(X) be
the set of edges in G with one end node in X and the other in V - X . For a net
i ~ { 1 k} and each associated Steiner cut (X, V - X) , define the Steiner cut
inequality

~_~ xi, e > 1. (2.1)
e ~ 8(X)

Let u be the variable measuring the max imum load on edges, u is est imated by the
fol lowing load inequality for e E E:

k

E Xi, e -- U <-- C e. (2 . 2)
i=1

Let M be a very large positive number. In particular, M = k ~e~ew e suffices where
k = I ~ 1. UGR can now be formulated as follows:

minimize (kl M u + ~ W e ~Xi . e
e~E i=1

subject to (x, u) satisfies (2.1), (2.2),

x > 0 , u > 0 , x integer. (2.3)

The large value of M ensures that we select only among those routings that minimize
the m a x i m u m load on an edge. Define the polyhedra LPI(f~, G) and IPI(f~, G)
where

LPI(£~, G) = {(x, u) l(x, u) satisfies (2.1), (2.2), x > 0, u > 0},

IP I (fL G) = conv{(x, u) E L P I (~ , G), x integer}.

146 S, Chopra, Packing Steiner trees in a graph

2.2. THE DIRECTED FORMULATION

Given UGR on an undirected graph G = (V, E), one can restate the problem
on a corresponding directed graph as follows. Given G = (V, E) with edge set E,
construct the directed graph D = (V, A) with arc set A, where arcs a = (s, t) and
a ' = (t, s) are in A if and only if edge e = [s, t] is in E. The length w a of an arc a
is equal to the length of the corresponding undirected edge e. For each net i, we
declare one of the nodes r i ~ Ni as the root. An arborescence rooted at r i is said to
be a S t e i n e r a r b o r e s c e n c e if it spans each node in N;. A routing F on D consists
of a set of Steiner aborescences - one for each net. Define a variable Yi, a for each
net i and arc a E A where

1 if arc a is in the Steiner arborescence spanning net i,

Yi,a = 0 otherwise.

Define a cut (X, V - X) to be a d i r e c t e d S t e i n e r cut if r i E X and I (V - X) n Nil > 1.

Define t~(X) to be the set of arcs directed from X to V - X with one end in X and
the other in V - X. For each net i and directed Steiner cut (X, V - X), we obtain the
directed Steiner cut inequality

Z Yi,a -> 1. (2.4)
a ~ •(X)

Consider an edge e = [s, t] in the undirected graph G. Let a = (s, t) and a ' = (t, s)
be the corresponding arcs in the directed graph. Capacity is used up if either of the
arcs a or a ' is used by a Steiner arborescence. The load inequality is thus given as
follows:

k k

~_~ Yi,a + Z Yi,a" -- U <-- Ce • (2.5)
i = I i=1

UGR can now be formulated as

minimize

subject to

M u + Z W a Z Y i , a
aeA i=1

(y, u) satisfies (2.4), (2.5),

y > 0 , u > 0 , y integer. (2.6)

M is a large positive number as defined earlier. Define the polyhedra LP2(~ , G)
and IP2(fL G) where

LP2(~, G) = {(y, u) I(y, u) satisfies (2.4), (2.5), y > 0, u > 0},

IP2(~, G) = conv{(y, u) ELP2(f~, G), y integer}.

S. Chopra, Packing Steiner trees in a graph 147

2.3. THE EXPLICIT FORMULATION

This formulation has also been considered by Lengauer and Ltigering [11].
For each net i, let Si = { Tij, j = 1 n i } be the set of all Steiner trees in the graph
G. n i may be exponential in I V I. In this formulation, we explicitly define a variable
zij for each Steiner tree T/j for net i. The total number of variables is thus given by
xf~ki=lni . Define the variable

1 if Steiner t r e e T/j is chosen to span net i,

zi,j = 0 otherwise.

The following constraint ensures that exactly one Steiner tree is chosen for each
net i:

ni
Zi,j = 1. (2.7)

j = l

The load on each edge is measured by the following constraint:

k

~ Zij -- U <-- Ce •
i=l j:e¢Tij

(2.8)

The length lij of a Steiner tree Tij is given by

lij ~ ~_j We.
eE~j

UGR can now be formulated as

k ni

 i=ze Mu + Z Z l, JZ,J
i=1 j=l

subject to (z, u) satisfies (2.7), (2.8),

z > 0 , u > 0 , z integer. (2.9)

Define the polyhedra LP3(f~, G) and IP3(~, G) where

LP3(~, G) = {(z, u) I (z, u) satisfies (2.7), (2.8), z > 0, u > 0},

IP3(f~, G) = conv{(z, u) E LP3(~, G), z integer}.

A formulation similar to (2.9) has also been considered by Raghavan and
Thompson [16].

148 S. Chopra, Packing Steiner trees in a graph

2.4. A COMPARISON OF LP-RELAXATIONS

For any nonnegative edge lengths We, each of the three formulations (2.3),
(2.6) or (2.9) will give the same optimal solution. The optimum to the LP-relaxation
in each case gives a lower bound to the integer optimum. In this section, we
compare the LP-relaxations in terms of the lower bound they provide. Define

V 1 = m i n ,

V 2 = m i n

V 3 = rrfin {Mu

1, } Mu + ~ w e xi, e (x, u) E LPI(~, G) ,
e~E

Mu+ ~.,w a ~_,Yi,a [(Y,u) E L P 2 (a , G) ,
aEA i=1

k ni }
+ ~, ~, lijzijl(z,u) ~ LP3(f~,G) ,

i=l j=l

The following results rank the LP-relaxations in terms of the lower bound they
provide.

THEOREM 2.4.1

Vl, V2 and V 3 can be ordered as follows:

Vl<_V2<_v3.

The proof of theorem 2.4.1 is given as two separate propositions.

[]

PROPOSITION 2.4.1

v, <_ v:.

Proof
Let (y, ~-) ~ LP2(~, G) be the extreme point defining V 2. Construct (~, ~)

where for each edge e = [s, t] in the undirected graph and the corresponding arcs
a = (s, t), a ' = (t, s) in the directed graph, we have

Clearly,
Xi,e = Yi,a q" Yi,a"

i k l l k ME+ E W e ~,~i,e = M ~ ' + E W a ~,Yi,a
e~E i= 1 a~A i=I

=v2.

Let (X, V - X) be any Steiner cut for net i with r i ~ X.

S. Chopra, Packing Steiner trees in a graph 149

Also,

Z x~'.e = Z Yi .a+ Z Yi, a > Z Yi, a > 1 "
e~6(X) ae8(X) aeS(V-X) ae6(X)

k k

Z Xi,e - - ' i f = Z (yi, a -I- Yi,a') -- U <-- Ce.
i=1 i=1

Thus, (~', ~) satisfies both (2.1) and (2.2) and is a point in L P I (~ , G). This shows
that

VII <- M~ + Z We ~,x-i,e =V2. []
eeE i=1

We now give an example where V1 < V2. Let G = (V, E) be the complete
graph on four nodes V = { 1, 2, 3, 4 }. Set Ni = V - { i } for i E { 1, 2, 3, 4 }. Let we = 1
and ce = 2 for all edges in E. One can verify that V l = 6 and V 2 = 8 for arbitrary
choice of r i, i ~ { 1, 2, 3, 4 }. In this case, V2 is in fact the optimal solution.

PROPOSITION 2.4.2

v2<_v3.

Proof
Let (~, ~) E LP3(f~, G) be the extreme point defining V 3. Each variable zij

corresponds to a Steiner tree Tij for net i. The tree T/j can be converted to an
arborescence Aij rooted at r i by suitably directing the edges in Tij. Form the vector
y where for i ~ { 1 k }, a ~ A, we have

Note that

Yi,a = ~ , Zij. (2.10)
j:aeAij

kn, /
V3 = M'~ + ~_~ ~_~lij~ij = M~ + ~ W a

i=1 j = l aeA ~.

k 1
i=1 j:aeAij j

= M ' g + Z W a Yi,a •
aeA

Consider any directed Steiner cut defined by (X, V - X) for the net i with
r i E X. For i E { 1 k}, we have

150 S. Chopra, Packing Steiner trees in a graph

Z yi,o: Z Z~ij
a¢8(X) aeS(X) j:a~aq

tl i

--Z Z ~,J
j = l acAqn6(X)

ni

j=l
(since I Aij c~ 5(x) l > 1, Vj)

= 1 (by (2.7)).

Further note that if e = [s, t], a = (s, t) and a ' = (t, s), then I{a, a ' } c~ Aijl < 1 for all
i, j . Thus,

k k
Z Yi,a + E Y~,a' - "ff
i=1 i=1

: Z Z z~j + Z z~j -
i=l j:acAij j:a'¢Aij

: Z Z z~j - ~
i=1 3.{a,a }nAo-I

(since I {a, a'} n Aijl < 1)

k

E Z ~J-~-<Ce
i=l j:e~Tij

(by (2.8)).

Thus, (y, fi-) ~ LP2(O, G). This shows that

I k
V z < - M ~ + ~_~w a ~ . ~ , a

a~A i=l
= e 3 . []

Figure 1 contains an example for which V2 < V3. G = (V, E) is shown in the
figure with N1 = N2 = { 1, 2, 4, 6}, w e = 1, Ve E E , c(ei) = 2 for i E { 1, 2, 3}, c(ei) = 1
or i ~ {4 9}. Set r 1 = rE = 1. One can verify that V 2 = 9, while V 3 = 10 (which
is in fact the optimal solution).

Proposit ions 2.4.1 and 2.4.2 together prove theorem 2.4.1.

R e m a r k 2.4.1

Note that in general Vl < V2 and V2 < V3.

S. Chopra, Packing Steiner trees in a graph 151

e 6

(
e 5 ~ = 4

Fig. 1.

At this stage, we have shown that the LP-relaxation of formulation (2.9) is
the strongest (in terms of lower bounds for the integer optimum), while the LP-
relaxation of formulation (2.3) is the weakest. Notice that the total number of
Steiner trees is exponential in the number of nodes and nets. Thus, the number of
columns in the LP-relaxation of (2.9) is exponential in the size of the underlying
Steiner packing instance. If column generation is used, we have to solve Steiner tree
problems (which is NP-hard) to decide on incoming columns. Thus, solving the LP-
relaxation of (2.9) is NP-hard. On the other hand, the LP-relaxations of (2.3) and
(2.6) are polynomially solvable using results of Gr6tschel et al. [6], since Steiner
cut inequalities can be identified in polynomial time. However, theorem 2.4.1 does
not completely identify the gap between the LP-relaxation of formulations (2.9) and
(2.6). We do so in the following development.

Given the directed graph D = (V, A), a net i and a root r i ENi, define the
associated Steiner arborescence polyhedron

STP(Ni, D) = conv{x(Aij) I Aij is a Steiner arborescence} + RA+,

where x(Aij) is the incidence vector of Aij. Let ay > ao be any facet defining
inequality for STP(N/, D). Define the vector fl where

aa if j = i ,

flj,a = 0 i f j ¢ i .

152 S. Chopra, Packing Steiner trees in a graph

The inequality fly > a0 is valid for IP2(f~, G). Let Biy > b i define the set of all valid
inequalities that are obtained by lifting facet defining inequalities for STP(Ni, D)
as described above. We should point out that a complete description of the set of
inequalities Biy > b i is unknown and is unlikely to be found since the Steiner tree
problem itself is NP-hard. We strengthen formulation (2.6) by adding all inequalities
of the form

Biy > b i (2.11)

for i = 1, 2 k. Define the polyhedron

and

LP4(f2, G)= {(y, u)I (y, u) satisfies (2.4), (2.5), (2.11), y> 0, u > 0 }

V 4 = m i n Mu + Y~ w a ~ Y i , a) I (y , u) G L P 4 (D , G) .
aEA i=1

We now show that the optimum to the LP-relaxation of (2.9) is equal to the optimum
obtained using LP4(fL G) as the LP-relaxation.

PROPOSITION 2.4.3

v3-- v4.

P r o o f

We first show that V4 < V3.
Let (L ~) E LP3(fL G) be the extreme point defining V 3. Define y as in (2.10).

As in the proof of proposition 2.4.2, one can prove that (y, ~) satisfies the inequalities
(2.4) and (2.5). We now show that (y, ~) also satisfies the inequalities (2.11). Each
variable zij is associated with a Steiner tree Tij for net i. One can construct the
corresponding Steiner arborescence Aij rooted at r i by suitably directing the edges
in T/j. For each arborescence Aij, we define its incidence vector t o for i E { 1 k},
j E { 1 ni}, where

tsiJa = { 1 if S = i, a E Aij,

0 otherwise,

for a EA, s E { 1 k}. Each vector t ij clearly satisfies the inequalities (2.11) for
the corresponding net i. Note that

k ni
y = ~.~ ~.~ Zijt ij

and i=I j=l
ni
~ g i j = l for i E { I k}.
j=l

S. Chopra, Packing Steiner trees in a graph 153

Thus, we have for i ~ { 1, k}

k n s
8'y= 8'Z Z z S

s=l j = l

k n$

= Z Z zsjs','
s=l j = l

ni

Z Zq Bitij
j=l

(since Bit sj = 0 for s ¢ i)

>
ni
Z ZiJ bi
j = l

(since Bit ij >_ b i)

= b i (by (2.7)).

This shows that (y, -i) E LP4(f~, G). Now

k

V4 <M'if+ ZWa Z ~',a
aeA i=1

i=I j:a~Ai) knll
= M - i + Z ZziJ Z Wa

i=1 j = l aeAq
=v3.

Now we consider the direction V 3 < V4. Let (y,-i) be the optimal vertex of
LP4(fL G) defining V 4. Note that for net i E { 1 k}, the inequalities (2.4) and
(2.11) completely define the associated Steiner arborescence polyhedron STP(Ni, D).
Given i ~ { 1 k}, let yi be the restriction of y to the variables Yi, a for a CA.
yi satisfies inequalities (2.4) and (2.11) for net i. This shows that yt ~ STP(Ni, D),
i.e. yi dominates the convex hull of a subset Ji of vertices of STP(Ni, D). Thus, we
can write

Yi = IF, °t}Y ij + ~i, (2.12)
J~Ji

where c5 i >_ O, a j _> 0 and ~j~j~ a j = 1. Further, yij is the incident vector of a Steiner
arborescence A 0 for net i. For each vector yij, define ~ij, where

{ ~/j ya t~ if s = i,

Ys,a = 0 otherwise.

154 S. Chopra, Packing Steiner trees in a graph

Since M > 0 and wa > 0, Va CA, we can in fact assume that 5 = 0, # = 0. Each
vector y'J is the incidence of a Steiner arborescence Aij (and a corresponding tree
Tij). Define g, where

- i Zij = O~j

Since ~ j ~ , / a] = 1, we have

for i E {1 k}, j E {1 ni} .

ni

~ z - i j = l VIE{1 ,k}.
j=l

Also, for e E E (a and a ' are the corresponding arcs in D)

k k
i

i=1 j:e~Tii i=1 j:e~Ti)

k

= + Y i , a ,) -
i = l

(from (2.12))

< C e .

Thus, (g, ~') E LP3(~, G). This shows that

The result thus follows.

k n i

V3 <- M ~ + ~_. ~ lijgij = V4 •
i=1 j = l

[]

This shows that LP3(f~, G) and LP4(fL G) are equivalent LP-relaxations in
terms of the lower bound they provide.

2.5. A M U L ~ - C O M M O D I T Y FLOW FORMULATION

In this section, we give a multi-commodity flow based formulation that is
shown to be equivalent to formulation (2.6) in terms of the lower bounds it provides.
It does have the advantage of a polynomial number of variables and a polynomial
number of constraints in the formulation.

Given the undirected graph G = (V, E), form the directed graph D = (V, A) as
described in section 2.2. For each net i, one of the nodes r i ~ Ni is declared as the
root. For each net i and terminal s ~ N i - { ri }, we define a commodity i, s. Given
an arc a = (f, h), let x~ represent the flow of commodity i, s on arc a. In order to
ensure a Steiner tree for each net i ~ { 1 k}, we must ensure a flow of one unit
of commodi ty i, s from r i to s for all s ~ N i - { r i } . This is done using the following
flow constraints:

S. Chopra, Packing Steiner trees in a graph 155

-1 if h = r i,

x ~ - ~ x~f = 1 if h = s ,

f E v f ~ v 0 if h ~ ri, s.

(2.13)

In constraints (2.13), if (f, h) CA, the variable x~ is simply ignored. If we find a
multi-commodity flow satisfying (2.13) for s ~ N i - {ri}, the arcs with positive flow
contain a Steiner arborescence spanning net i. To capture this, we define integer
variables Yi,a, where

Y/~a ~ f
if there is a positive flow of any of the commodities i, s
for s ~ Ni - {r/} on arc a,

0 if the flow on arc a is 0.

The length of an arc a = (f, h) is referred to as w,, or Wfh. UGR can then be
formulated as follows:

minimize M u + ~ w a Yi,a
a~A

subject to x satisfies (2.13),

x ~ <-Yi,a f o r a = (f , h) ~ A , i~{1 ,k}, s ~ N i - { r i } . (2.14)

k k

~ Yi,a + ~_~ Yi,a" -- U < Ce
i=1 i=I

for a = (s , t) , a ' = (t , s) , e = [s , t] E E ,

x , y , u > O, y E {0,1}. (2.15)

This is a generalization of the multi-commodity flow formulation for the Steiner
tree problem given by Wong [19]. Define the polyhedra LP5(f~, G) and IP5(K~, G),
where

LP5(~, G) = {(x, y, u) > 0 1 (x, y, u) satisfies (2.13), (2.14) and (2.15)},

IP5(D, G) = conv{(x, y, u) E LP5(f~, G), y integer}.

Notice that LP5(f~, G) is an LP-relaxation to this formulation of UGR and it is
defined by a polynomial number of variables and constraints. This LP-relaxation
can thus be solved in polynomial time. Define

= ~n{Mu + (x,
aEA

y, u) ~ LP5(~, G) 1 .

156 S. Chopra, Packing Steiner trees in a graph

We now prove that the LP-relaxation lower bound provided by this formulat ion is
equal to the lower bound obtained f rom the LP-relaxation to (2.6).

PROPOSITION 2.5.1

½=vs.

Proo f

We first show that V2 < Vs. Let (~, y, ~-) be the extreme point of LP5(~ , G)
defining I"5. Notice that its restriction (y, g) sa t i s f i es inequality (2.5), which is
equivalent to (2.15). Consider any directed Steiner cut (X, V - X) w i t h r i E X ,
s ~ (V - X) n Ni. We have

1 _< ~ , x f h-is (since 1 unit of i, s flows from ri to s)
(f ,h) E 6(X)

< 2 Yi,a
ae6(X)

(by (2.14), where a = (f , h)) .

This shows that (y, V) also satisfies inequalities (2.4), i.e. (y, V) ~ LP2(~ , G). Thus,
v2 <<_ vs.

Conversely, let (y, fi) be the extreme point of LP2(fL G) defining V2. For
each net i, consider the directed graph D = (V, A) with arc capacities Yi,a-For
S ~ .N i - {ri} we know that we can send one unit of flow from r i to s in the above
network, using the max-flow min-cut theorem (see Ford and Fulkerson [4]), since
the min imum capacity cut separating r i and s has capacity at least one. For each
commodi ty i, s, send one unit of flow from r i t o s with arc capacities Yi,a. Let 2j{
be the flow of commodi ty i, s on arc (f, h). For a = (f, h), i E { 1 , k}, define

Yi.a ---- max{~}~ Is E Ni - {r/}}.

For a = (h , f) , a ' = (f, h), e = [h , f] , define

{k k }
= m a x 2 y i , a -t- Z y i , a, - c e , O .

a~A i=1 i = I

It is easy to see that (2, y, ~) E LP5(f~, G). Further, by construction, Yi,a < Y~,a,
V i ~ { 1 k}, a E A , and ~ <~-. Since M > O , wa>O, we have

Ikl lkl V2 = M u ' + Z W a Z y i , a >-- M u + Z W a Z y i , a
aEA i=1 a~A i=1

>-vs.

The result thus follows. []

S. Chopra, Packing Steiner trees in a graph 157

This shows that LP2(f2, G) and LP5(f~, G) are equivalent in terms of the LP-
relaxation lower bound they provide.

3. Obtaining the upper and lower bounds

In this section, we describe the procedure used to obtain upper and lower
bounds for UGR. From theorem 2.1 and proposition 2.4.4, it follows that either
LP3(f~, G) or LP4(f2, G) is likely to give the best lower bound. Unfortunately, both
are NP-hard. Thus, as a relaxation to LP4(D, G), we have to use either LPI(tq, G)
or LP2(fL G). Computational results obtained in Chopra et al. [2] indicate that the
directed Steiner cut inequalities (defining LP2(fL G)) alone often suffice to obtain
an integer solution for the Steiner tree problem. On the other hand, the undirected
Steiner cut inequalities were found to be very weak in general. In this study, we
thus chose to use LP2(fL G), which can be solved in polynomial time and gives a
tighter LP-relaxation than LP1 (~, G).

Optimizing on LP2(fL G) is difficult in practice because of the constraints
(2.5) (the size of the problems becomes very large for any cutting plane type
approach). We relax these constraints in a Lagrangian fashion. The remaining problem
breaks up into k independent problems, each of which is solved to optimality. The
detailed procedure is described in the sequel.

We divide UGR into two distinct problems and reformulate. In the first stage,
we consider the problem of finding the minimum excess capacity needed to obtain
a legal routing. This can be formulated as follows:

u* = min{u I(Y, u) E LP2(fl, G), y integer]. (3.1)

If u* is the optimal solution to (3.1), the problem of finding a minimum length
routing as follows:

W* = mininimize ~ wa ~ Yi,a
aEA i=1

subject to y satisfies (2.4),

k k

~_~Yi,a' q'~.~Yi,a <--Ce q-U*,
i=l i=l

y > 0, y integer. (3.2)

Problem (3.1) is known to be NP-hard even in the special case that G is a series-
parallel graph (see Richey and Parker [17]). Problem (3.2) contains the Steiner tree
problem as a special case and is thus hard (see Garey and Johnson [5]). However,
we solved the LP-relaxation in each case. We found that (3.1) is more simple to
solve in practice that either (2.6) or (3.2) and this allows us to obtain much better

158 S. Chopra, Packing Steiner trees in a graph

bounds for (3.2) than would arise from (2.6). This is because in (3.2) the objective
function minimizes the length of the routing, while in (2.6) the objective function
has two parts - one to minimize excess capacity and one to minimize length. Also
solving (3.1) would be useful even if we are to use formulation (2.9).

3.1. SOLVING (3.1) TO OBTAIN MINIMUM EXCESS CAPACITY

Notice that the constraints (2.5) defining LP2(~, G) are linking constraints
and their removal breaks the remaining problem into k independent problems which
can be solved efficiently using branch and cut (see Chopra et al. [2]) or Lagrangian
relaxation (see Beasley [1]). In a parallel implementation, each independent problem
can be solved simultaneously. Solving (3.1) directly is difficult because of the size
of the problems involved. A problem with with 1000 edges and 100 nets would
result in 200,000 variables (on directing). Removal of the load constraints (2.5)
results in k independent problems, which is much more manageable. When solving
(3.1), we remove the constraints (2.5) using a Lagrangian relaxation. For details
regarding Lagrangian relaxation, see Fisher [3]. Let ~.e > 0 be the Lagrangian
multipliers for constraints (2.5). Corresponding to the variable u, the dual to the
LP-relaxation of (3.1) contains the inequality ~E,71., < 1, with ~.e > 0. All other
inequalities have a right side of zero. In case the optimal solution of u* is
strictly positive, by complementary slackness we have Y.~ee&~ = 1. If U* = 0, we
can scale 2 to impose this equality. While updating the multipliers &, we thus
impose this equality. A lower bound to u* can be obtained by solving the
following problem:

minimize E ~la E Yi,a - E ~eCe
a~A i=l e6E

subject to y satisfies (2.4), y > 0, y integer, (3.3)

where #,, =]'£a"----'~e for e = [s, t], a = (s, t), a ' = (t, s). The objective function for
(3.3) eliminates u since Y.e~e~.e = 1. Notice that (3.3) can be solved as k independent
problems. Solving (3.3) is NP-hard. However, in practice, branch and cut using the
constraints (2.4) has proved very effective in solving this problem (see Chopra et
al. [2]). Each routing F = {T/, i = 1 k} obtained as a solution to (3.3) gives an
upper bound to u* as max{L(G, e) le ~E} and the objective function value gives
a lower bound.

We use a subgradient procedure to maximize the lower bound obtained from
solving (3.3). The multipliers are updated using subgradient steps, and for each set
of multipliers we solve (3.3). We first give two improvement heuristics that significantly
reduce the gap between the upper and lower bound.

S. Chopra, Packing Steiner trees in a graph 159

REDUCING THE UPPER BOUND ffHE PACKING HEURIS~C)

Given any set of multipliers ~. (and corresponding ~) , one can construct a
"packed routing" Fp(~,) as follows. We refer to Fp (~) simply as Fp.

1 Step 1. S e t i = l , c e = c e f o r a l l e ~ E , F p = O , u ÷ = 0 .
i S tep 2. Check if net i can be spanned using a Steiner tree T, where ce > O, Ve ~ T.

This can be checked using breadth-first search from each node in N i using
i edges e for which c / > 0. If no such tree exists, set c / = ce + 1, Ve ~ E,

u ÷ = u ÷ + 1. Now every edge has c~ > 0. Find the min imum length (with
arc a getting a weight ~a) Steiner tree T/spanning net i. In our implementation,
we use the method of Takahashi and Matsuyama [18] to obtain a heuristic
solution T / fo r net i. Set Fp = Fp u {T i}.

S tep 3. I f i = k, stop. Else, set

i for e ~ T / , ~i + 1 Ce

t"e = i - - 1 fo r e~T/. Ce

i = i + l . G o t o s t e p 2 .

Fp gives a packed routing and u + the excess capacity required by this routing.
Clearly, the order in which the nets are packed may affect the value of u +. Korte
et al. [12] suggest that ordering the nets in ascending order of INil is effective. One
can also further try to improve the packing by trying to construct a Steiner tree for
each net i using f e we r edges with load L(Fp, e) > u + than the current tree. These
procedures together constitute the "packing heuristic" which outputs the routing l-'p
with m a x i m u m load u +.

IMPROVING THE LOWER BOUND (THE PARTITION HEURISTIC)

The lower bounding heuristic is based on the fol lowing observation. Let
~z = (~, i = 1, 2 r) be any partition of the node set V, where I V/I > 1, V / n Vj = O
for i ~ j and u i V/= V. Let E(Tr) be the set of edges with end nodes in two different
subsets of 7r, i.e.

E(nr) = {e ~ EI e = [s, t], {s, t} ~ V/ for i = 1, 2 r}.

The capacity of the partition is given by

= c , .

e ~ E(~r)

For each net i, let ~ be the number of subsets of ~ containing at least one node f rom
Ni, i.e.

160 S. Chopra, Packing Steiner trees in a graph

Yi=l{ j : lN ic~Vj l>l , j E {1,2 r}}}.

Each Steiner tree spanning net i must use at least ~ - 1 edges f rom E(~). Define
g(zr) = ~/k__ 1Yi -- k. The total capacity of all edges in E(lr) that is used up by any
routing is at least g(n:). Define u- = F(g(~z) - c(~z))/IE(lr)17, max{0, u-} is clearly
a lower bound for u*.

To try to identify a suitable partition ~z, we use the best packed routing Fp,
with max imum load u ÷, provided by the packing heuristic. Given an integer r < u ÷,
define

Er (rp) : {e E EIL(rp, e) >_ r}.

The graph Gr= (V, E - E r) consists only of edges with load less than r. For
r .<.< u + - 1 , Gr is not connected since Fp is a result of the packing heuristic. Thus,
we have a partition ~r = (V/, i = 1, 2 , q) of the node set defined by Gr, where
each subset V/induces a connected component of Gr and there is no edge in E - Er
with one end node in V/and another in Vj for i ~ j . Each of the edges E(~r) is over
capacity for the routing Fp. Thus, it is quite likely that g (~ r) - C(~r) has a large
value. We further try to increase g(ZCr)- C(~r) using the fol lowing procedure.

Let Vj and Vn be any two subsets in n: r. Consider the partit ion ~r formed by
combining the subsets Vn and Vj into one, i.e. replace Vj and Vn by Vj u Vn. Define

E~j = {e ~ E l e = [s,t], s ~ V~, t ~ Vj}
and

C n j = ~ _ ~ C e .
e E En i

Let g~j be the number of nets with a terminal in each of Vj and Vn, i.e.

gnj=l{i:lV,,c~N~l>l and IVjnN~I->I}I.

It is easy to verify that g(gr) = g(~r) - gnj and C(gr) = c (7 ~ r) - Cnj. I f gnj < C~j, then
g(gr) - C(gr) > g(Irr) - C(~r). For each pair of subsets Vj and V n in ~r r, we find g~j
and c~j and identify the two subsets into one if g~j < c~j. We continue this procedure
iteratively until either g~j > c~j for each pair of subsets in the current parition or
there is only a single subset remaining. Let x* be the resulting partition. Clearly,
g(n'*) - c (~) > g(n:r) - c(Trr). If n'* has only one subset, u- = 0, else

u - = ~ (g (~ *) - c(~'))/IE(~*)17.

THE SUBGRADIENT PROCEDURE

Now we describe the subgradient procedure used to obtain lower and upper
bounds for (3.3).

S. Chopra, Packing Steiner trees in a graph 161

Step 1.

Step 2.

Set initial values of ubl = k, ub2 = k, ub = k, lb l = 0, lb = 0 and Lagrange
multipliers he = I l I E I for all e E E.

Solve (3.3) with the current set of multipliers. Let F be the resulting routing,
Z the optimal value of the objective function, and ~ = max{L(F, e) I e ~ E}.
Set lb = max{Ib, [Z1 }, lbl = max{/bl, Z}.

Step 3. If ub l < ~', go to step 4, else run the packing heuristic with multipliers
h to obtain routing Fp and ~+ = max{L(Fp, e) le E E}. Run the partition
heurist ic on Fp to obtain ~ - . Set ubl = ~, ub2 = min{ub2,~'+,lF.]},
lb = max{/b, ~--} and ub = rrfin{ub, ub2}. If ub = lb, stop.

Step 4. Given e = [s, t], a = (s, t), a ' = (t, s), calculate the subgradients

k

(~e = --Ce q- Z ('Xi,a "4- "Xi,a'),
i=I

where • is the incidence vector of routing F. Adjust the subgradients as
follows

~ = 0 if h e = O and ~e<O.

Stop if Y-,e ~ e 52 = 0.

Step 5. Define a step size

11 = f (u b - r) / ~ . ~2e.

f is initially set to 1 and reduced by a factor of 0.6 each time there are
fifteen consecutive iterations with no improvement in lb l . Update the
Lagrange multipliers by

h e = max{0, he + r/Se), Ve ~ E.

Rescale h such that Y-e ~ E h = 1.

Step 6. If f < 0.005 and 7/< 0.005, stop. Else, go to step 2.

The output of this procedure is the routing 1-" 1 defining ub and a value for both
the upper bound ub and lower bound lb for u*.

3.2. OBTAINING THE MINIMUM LENGTH ROUTING

Here also, we relax constraints (2.5) in a Lagrangian fashion. Lower bounds
to the optimal solution of (3.2) can be obtained by solving the following Lagrangian
relaxation:

162 S. Chopra, Pack ing S te iner trees in a graph

minimize Wa Yi,a - ~_~ "~'e(Ce + u*)
a~A "= e~E

subject to y satisfies (2.4), y > 0, y integer, (3.4)

where for e = Is, t], a = (s, t) or (t, s)

Wa = Wa -I- ~f, e. (3 .5)

Equation (3.4) once again breaks up into k independent Steiner tree problems.
Solving (3.4) is NP-hard in general. However, in Chopra et al. [2], we observed that
solving the corresponding LP-relaxation (using (2.4)) gives very good lower bounds.
We run a packing heuristic similar to that in section 3.1. The only difference is that
we construct the packed routing Fp(W) instead of Fp(;t) as described earlier (set
/2a = ~ a ' ---- W'a)" Let u + = max{L(Fp(~), e) le E E} and W(Fp(~)) be the length of
the routing Fp(~'), i.e.

W(Fp(~)) = ~_~ w e U (Fp(~) , e) .
eEE

If u + _< u*, then W(Fp(~)) provides an upper bound to W*, the optimum for (3.2).
The optimal solution to (3.4) gives a lower bound for W*.

The subgradient procedure can now be described as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Set ub = W(F1), where Fl is the routing defining u* obtained as a solution
to (3.3) and lb = 0. Initially, set ,q,e = 0, Ve E E and u + = k.

Solve (3.4) with the current set of multipliers and ~ as defined in (3.5).
Let F be the resulting routing, ~ the optimal value of the objective
function and ~ = max{L(F, e) le E E}. Set lb = max{/b, ~}. If ~ < u , set
ub = rffm{ub, W(F)}.

If ~ < u* or u+< ~, go to step 4, else set u+= min{u +, ~} and run the packing
heuristic (using arc weights #a) to obtain Fp with Up = max{L(Fp, e) le E E}.
If ~-p < u*, set ub = min{ub, W(Fp)}.

Given e = [s, t], a = (s, t), a ' = (t, s), calculate the subgradients

k

a, = -Ce + + rJ,o'),
i=1

m

where ~" is the incidence vector of the routing F. Adjust the subgradients
as follows:

i f Z e = 0 and

Stop if ~ e e e 8 2 = 0.

S. Chopra, Packing Steiner trees in a graph 163

Step 5. Define a step size

77 = f(ub - ~)//~__, 6~.

f is initially set to 1 and reduced by a factor of 0.6 each time there are
fifteen consecutive iterations with no improvement in lb. Update the Lagrange
multipliers by

&e = max{O, '~e + r/Se}, Ve E E.

Step 6. If f < 0.005 and 7/< 0.005, stop; else, go to step 2.

The output of this procedure is a routing F* defining ub and a value for the
upper bound ub and lower bound lb for W*.

4. Computational results

In this section, we present computational results for the solution procedure
described in section 3. As described, we separate UGR into two distinct problems
- one to find the minimum excess capacity u* (formulated as (3.1)) and the other
to find a minimum weight legal routing for excess capacity u* on each edge (formulated
as (3.2)).

We used problems on rectilinear grid graphs and randomly generated graphs
to test our solution procedure. Rectilinear grid graphs most closely approximate the
problem arising in practice.

Rectilinear grids of size 10 x 10 and 15 x 15 were used. For each net, first
the number of nodes was randomly generated between 2 and 10 (using a uniform
distribution). The nodes of the net were then randomly placed on grid points (using
a uniform distribution for each of the x and y coordinates).

For the case where the underlying graph G = (V, E) was randomly generated,
we studied two graph densities IEI = 31VI, 51VI. The edge capacities were integers
uniformly generated between 1 and 4. The edge lengths were integers uniformly
generated between 1 and 10. The netlists were generated randomly as follows. For
each net i, we first generated the size JNil uniformly between 3 and 10. We then
generated I Nil nodes from V to obtain the net i.

In these runs, we made the following change from the procedure described
in section 3. Each subgradient step requires the solution of (3.3) (or (3.4)). Obtaining
the exact solution at each step would have been very time consuming since we solve
k Steiner tree problems for each subgradient step. So we use a heuristic at each step
to solve the Steiner tree problems. The heuristic used is the one proposed by
Takahashi and Matsuyama [18]. Since the heuristic does not give us a lower bound
((3.3) or (3.4) has to be solved exactly to obtain a Lagrangian lower bound), we
multiply the heuristic solution by 0.90 and use this value as a temporary lower
bound. Finally, we use the multipliers giving the highest temporary lower bound

164 S. Chopra, Packing Steiner trees in a graph

Table l(a)

Rectilinear grid graphs.

Problem size k nsize u~ u 1 u~ u 2 iter time

gridl01 I0 × 10 25 6.56 5 2 4 3 195 13.0
grid102 10 × I0 25 6.52 5 2 4 3 205 13.7
gridl03 10 x 10 25 6.48 5 2 4 3 190 13.8

gridl04 10 × 10 50 6.28 9 3 7 6 185 30.5
gfidl05 10 × 10 50 6.24 8 3 7 6 193 32.5
gndl06 10 x I0 50 5.86 9 3 7 5 211 44.8

gndl07 10 × 10 75 5.52 12 4 10 8 183 31.0
gridl08 10 x 10 75 6.43 13 4 11 9 215 41.4
gridl09 10 x 10 75 6.11 12 4 10 9 195 37.9

gridl010 10 x 10 100 6.03 16 5 13 12 205 39.2
gridl011 I0 × 10 100 6.19 16 5 13 12 172 30.7
gridl012 10 × I0 I00 6.10 16 5 13 11 183 53.5

gfidl51 15 × 15 25 5.08 4 I 3 2 230 83.5
gfid152 15 × 15 25 5.92 4 1 3 2 195 84.9
gfid153 15 × 15 25 6.12 4 1 3 2 191 113.6

gfid154 15 × 15 50 6.32 7 2 5 4 200 311.9
gfid155 15 × 15 50 5.90 6 2 5 3 188 306.8
grid156 15 × 15 50 6.10 7 2 5 4 185 305.2

grid157 15 × 15 75 6.12 9 3 7 5 200 454.7
gfid158 15 × 15 75 6.15 9 3 7 5 200 475.6
grid159 I5 × 15 75 5.89 9 3 7 5 199 415.7

gridl510 15 × 15 100 5.96 12 3 9 7 201 761.2
gfidl511 15 × 15 I00 5.69 11 3 8 6 214 876.2
gfidl512 15 × 15 100 5.60 11 3 8 6 201 826.2

and solve (3.3) and (3.4) exact ly using branch and cut. The branch and cut p rocedure

is descr ibed in Chopra et al. [2]. This gives us accurate lower bounds for (3.1) and

(3.2), respect ively .

The computa t iona l runs are on an I B M R S 6 0 0 0 (powers ta t ion 520). All

a lgor i thms were coded in FORTRAN.

Tables l (a) (grid graphs) and l (b) (randomly generated graphs) conta in the

results o f solving (3.1) for each problem. Here, we try to ident i fy the m i n i m u m

excess capac i ty needed to obtain a legal solution. The var ious head ings for tables

l (a) and l (b) are descr ibed below.

S. Chopra, Packing Steiner trees in a graph 165

Table l(b)

Randomly generated graphs.

Problem I VI IEI k nsize u~ ul u~ ul iter time

gl00101 100 300 100 6.25 8 1 3 3 10 1.5

g100102 100 300 100 6.64 5 1 2 2 18 2.9

g100103 I00 300 100 6.72 10 1 3 3 1 0.6

g100104 100 500 100 6.41 5 0 0 0 I 0.6

g100105 100 500 100 6.20 5 0 1 0 166 19.9

g100106 100 500 100 6,39 5 0 1 0 111 13.9

g100201 100 300 200 6.39 14 2 7 7 1 1.1

g100202 100 300 200 6.40 13 2 8 8 4 1.9

g100203 100 300 200 6.47 11 2 6 6 6 3.9

g100204 100 500 200 6.68 6 1 2 2 40 36.3

g100205 I00 500 200 6.44 12 I 2 2 I 4.2

g100206 100 500 200 6.41 3 1 2 1 232 131.1

g100301 100 300 300 6.44 14 4 9 9 7 9,9

g100302 100 300 300 6.30 10 4 9 8 165 195.5

g100303 100 300 300 6.46 10 4 9 8 212 215.7

g100304 100 500 300 6.44 8 2 4 3 245 212.5

g100305 100 500 300 6.41 16 2 5 5 1 2.1

g100306 100 500 300 6.59 10 2 4 3 184 164.0

g200201 200 1000 200 6.34 6 0 1 1 1 3.8

g200202 200 I000 200 6.88 7 0 0 0 I 4.6

g200203 200 I000 200 6.42 5 0 0 0 1 3,7

g200204 200 600 200 6.68 4 1 3 2 382 570.0

g200205 200 600 200 6.45 12 1 3 3 1 5.9

g200206 200 600 200 6.30 12 1 5 5 1 3.6

g200401 200 1000 400 6.36 11 0 2 2 1 7.5

g200402 200 1000 400 6.57 14 0 1 I 1 13.1

g200403 200 1000 400 6.63 3 0 1 0 170 586.0

g200404 200 600 400 6.62 17 3 9 9 1 7.5

g200405 200 600 400 6,53 22 3 13 13 1 7.6

g200406 200 600 400 6.60 24 3 8 8 1 8.0

166 S. Chopra, Packing Steiner trees in a graph

k = number of nets in netlist.

size = size of grids for grid graphs (table l(a)).

nsize = average net size.

u~" = best upper bound for excess capacity without running packing heuristic.

u~ = best upper bound for excess capacity after running packing heuristic.

uL = best lower bound for excess capacity without running partition heuristic
(this is obtained as [~-], where ~ is the Lagrangian lower bound).

u2 = best lower bound for excess capacity after running partition heuristic.

iter = number of subgradient iterations.

time = total time taken (including input and output) in minutes.

As can be seen from tables 1 (a) and 1 (b), the packing and partition heuristics
prove to be quite effective. In each problem, the packing heuristic lowers the upper
bound. The partition heuristic raises the lower bound in 47 of the 54 problems
attempted. In the rectilinear grid graphs, the gap between the upper and lower bound
was reduced to 1 for 13 of the 24 problems attempted, and 2 for the rest. For the
randomly generated problems, 21 of the 30 problems resulted in the optimal solution
for the excess capacity. In the remaining instance, the gap was reduced to I.

The results in tables l(a) and l(b) do not fully indicate the benefit of using
subgradient optimization to solve the LP-relaxation since most of the gap is closed
using the packing and partitioning heuristic. To judge the effect, we also ran the
same set of problems using only the packing and partitioning heuristics. The results

Table 2

Problem GAP1 GAP2

gfidl01 2 1
gridl02 1 1
gridl03 1 1

gfidl04 2 1
gfidl05 3 2
gfidl06 3 1

gfidl07 2 2
gridl08 3 2
gridl09 3 1

gfidl010 3 1
gndl011 3 1
gridl012 3 2

are given in table 2. GAP1 indicates the difference between the upper and lower
bounds when only the heuristics were run. GAP2 indicates the difference when the

S. Chopra, Packing Steiner trees in a graph 167

Table 3(a)

Grid graphs,

Problem lbl lb ub % imp % gap iter time

gndl01 350 683 820 70.8 20.0 184 10.6
gridl02 644 792 1030 38.3 30.0 204 7.9
gridl03 295 512 600 71.1 17.2 196 6,3

gridl04 1143 1420 1810 41.5 27.5 192 14.3
gddl05 839 1290 1530 65.3 18.6 165 10.8
gndl06 1023 1360 1460 77.1 7.4 154 10.0

gfidl07 1558 1770 2610 20.1 47.4 152 11.3
gridl08 1868 2010 3050 12.0 51.7 154 15.9
gfidl09 1402 2312 2620 74.7 13.3 205 21.3

gfidl010 1817 2818 3710 52.9 31.7 193 27.2
gfidl011 1810 2512 3260 48.4 29.7 255 34.9
gddl012 1812 2740 3240 64.8 18.2 197 28.1

gridl51 567 743 770 86.7 3.6 164 16.4
grid152 837 968 1030 67.9 6.4 185 23.3
grid153 644 748 1050 25.6 40.4 152 21.6

gnd154 1301 1587 2170 32.9 36.7 184 50.6
gfid155 1246 1432 1650 46,0 15.2 152 35.8
gnd156 1643 1972 2800 28.4 41.9 152 41.8

gfid157 2677 2983 4060 22.1 36.1 152 65.2
gnd158 2340 2743 3880 26.2 41.4 206 84.4
gfid159 2490 2818 3560 30.6 26.3 152 51.2

gfidl510 3220 3612 4760 25.5 31.8 152 78.2
gndl511 3021 3432 4860 22.3 41.6 165 82.9
gfidl512 3100 3592 4860 27.9 35.3 180 86.9

heuristics were run together with subgradient optimization. In 9 out of 12 instances,
we found that using the subgradient optimization and heuristics resulted in a smaller
gap than using the heuristics alone.

Tables 3(a) (grid graphs) and 3(b) (randomly generated graphs) contain the
results of solving (3.2) for each problem. For the instances that (3.1) has been
solved to optimality, the excess capacity u* is known with precision. In other
instances, we use the best known upper bound as u*. This guarantees us a feasible
solution to (3.2). One trivial lower bound for (3.2) can be obtained by ignoring the
capacity constraints and simply finding a minimum length Steiner tree for each net
to be assigned routing. The length of such a routing is clearly a lower bound for

168 S. Chopra, Packing Steiner trees in a graph

Table 3(b)

Randomly generated graphs

Problem lbl lb ub % imp % gap iter time

gl00101 3446 4110 4468 64.9 8.7 309 45.5
g100102 3533 4547 5088 65.2 11,9 307 45.5
g100103 3546 4386 4731 70.9 7.9 301 45.5
g100104 2365 3485 4070 65.7 16.8 267 48.5
glOO105 2289 2991 3289 70.2 10.0 292 48.0
glOO106 2374 3012 3364 64.6 11.6 277 45.6

g100201 6889 8520 9168 71.5 7,6 265 72.2
g100202 6747 8116 8708 69.8 7.3 273 69.9
g100203 6909 8911 9959 65.6 11.8 272 77.4
g100204 5080 7430 8650 65.8 16.4 304 112.1
gi00205 4787 7066 8073 69.3 14.2 347 115.8
g100206 4854 7153 8364 65.6 16.9 313 111.8

g100301 10222 1 3 7 4 7 16350 57.5 18.9 285 116.7
g100302 9990 1 3 3 8 2 14933 68.6 11.6 333 131.3
g100303 10311 13870 16664 56.0 20,1 321 130.8
g100304 7232 1 0 6 2 7 12398 65.7 16.7 335 168.5
g100305 7280 9944 11088 70.0 11.5 361 181.6
g100306 7462 1 1 1 1 8 15187 47.3 36.6 354 191.2

g200201 3680 4219 4621 57.3 9.5 247 251.9
g200202 6114 8133 8978 70.5 10,4 342 352.2
g200203 5817 7453 8287 66.2 11,2 308 294.7
g200204 8 5 5 1 1 0 6 3 9 12206 57.1 14.7 279 265.9
g200205 8213 1 0 2 4 5 11479 62.2 12.0 358 321.9
g200206 8124 9008 9740 54.7 8.1 259 222.8

g200401 11530 1 5 8 6 5 17733 69.9 11.8 308 721.5
g200402 11755 1 7 3 5 7 20295 65.6 16,9 304 715.7
g200403 12013 17574 20007 69.6 13.8 329 730.3
g200404 17047 20788 22547 68.0 8.5 369 662.4
g200405 16708 18414 19560 59.8 6.2 323 627.8
g200406 16686 20663 23182 61.2 12.2 348 641.8

the length o f the op t i m a l rout ing. The length o f this rou t ing is l i s ted as l b l

in tab le 3. A c o m p a r i s o n o f the gap be t ween the uppe r bound and the bes t l o w e r

bound and the u p p e r bound and lb l gives a m e a s u r e o f the e f f e c t i v e n e s s o f our

l o w e r b o u n d i n g procedure . The var ious head ings for tables 3(a) and 3(b) are as
fo l lows :

S. Chopra, Packing Steiner trees in a graph 169

Ib l = length of routing with minimum length Steiner
trees for each net, ignoring capacity constraints.

lb = best lower bound obtained from Lagrangian
relaxation.

ub = best upper bound obtained.

% imp = 1 0 0 (/ b - l b l) l (u b - I b l) = percent improvement in gap by subgradient
procedure.

% gap = 100(ub - lb)lIb = percent gap remaining.

i ter = number of subgradient iterations.

t ime = time in minutes.

In the problems considered so far, all nets were of size between three and ten.
For comparison, we solved six problems where all nets were of size two. The edge
capacities were uniformly generated to be either 1 or 2. The Steiner tree problem
in this case reduces to a shortest path problem which can be solved in polynomial
time. The results are contained in tables 4 and 5. The headings for tables 4 and 5

Table 4

Problem I V I I E I k nsize u~ ul u~ u2 iter time

g100107 100 300 100 2 5 0 1 1 1 0.1
g100108 100 300 100 2 4 0 3 3 1 0.1
g100109 100 300 100 2 3 0 1 0 145 3.2
gl00110 100 500 100 2 2 0 0 0 1 0.1
gl00111 100 500 100 2 3 0 0 0 1 0.1
g100112 100 500 I00 2 3 0 0 0 1 0.1

Table 5

Problem lb 1 lb ub % imp % gap iter time

glOO107 1024 1189 1213 87.3 2.0 441 12.4
g 100108 1026 1067 1068 97.6 0.1 342 8.3
g100109 997 1142 1156 91.2 1.2 448 12.2
glO0110 710 874 919 78.4 5.1 449 16.1
glOOl 11 712 881 892 93.9 1.2 484 17.3
glOOl12 718 889 918 85.5 3.3 361 13.0

are as for tables 1 and 3, respectively. The gap between the upper and lower bounds
was fairly small in this case (the largest gap is about 5 percent).

170 S. Chopra, Packing Steiner trees in a graph

5. Conclusions and further research

The object of this study was to use integer programming foundations to
obtain good lower and upper bounds for UGR. The results from section 4 seem
encouraging in this regard, particularly when finding the minimum excess capacity
required to obtain a legal solution. When searching for a minimum length solution,
we would like to point out that the simple lower bound obtained by ignoring
capacity constraints (listed under lbl in tables 3 and 5) would have been a poor
lower bound. The subgradient procedure used by us significanly raises this lower
bound. If the LP-relaxation itself could be solved exactly, we would obtain an even
better lower bound. However, using cutting planes to solve even the smallest problems
considered by us (9000 variables) would have been very time comsuming. Thus, the
subgradient procedure seems reasonable. Good lower bound solutions are also more
likely to provide good upper bound solutions upon application of heuristics such
as the packing heuristic. This was the case in our study where the packing heuristic,
when applied to the solution giving lbl, rarely resulted in a feasible solution and
gave poor (or no) upper bounds. The packing heuristic when applied to the solutions
giving the lower bound lb, on the other hand, results in fairly good upper bounds.
The packing heuristic we use is very simple. It may be worthwhile to try more
sophisticated heuristics.

We have not considered the multi-commodity flow formulation of section 2.5
in our computational experiments. However, this may be worth pursuing if a good
dual ascent procedure can be devised. The comparison of course would be
between the dual ascent procedure and the Lagrangian relaxation we have
considered.

Given the encouraging results, we feel there are two avenues that need to be
explored further. The major advantage of relaxing the capacity constraints in a
Lagrangian fashion is that the remaining problem is the solution of k independent
Steiner tree problems. To exploit this structure, we plan to test an implementation
of our procedure on a parallel machine. This would allow us to solve exactly the
Steiner tree problems at each iteration in a reasonable amount of time. We feel this
should further allow us to lower the gap.

Another avenue to be pursued further is formulation (2.9). Given its strength
in providing lower bounds, we plan to use a column generation scheme to bring in
Steiner tree variables as needed in solving the LP-relaxation of (2.9).

Finally, we feel that improvement can be made in the partition and packing
heuristic. In the problems that we were unable to find the optimal excess capacity,
we were able to close the gap to within two. In each of these cases, the number of
edges with load higher than u2 was very small (varied from 0.5% to 2% of the
edges). We feel that the upper bound was tight in these instances, but the lower
bound could not be raised any further by the partition heuristic. An improved
heuristic would be useful in obtaining optimal solutions.

S. Chopra, Packing Steiner trees in a graph 171

Acknowledgement

The author thanks Edgar Gorres for help with the computational results.

References

[1] J.E. Beasley, An SST-based algorithm for the Steiner Tree problem in graphs, Networks 19(1989)
1-16.

[2] S. Chopra, E. Gorres and M.R. Rao, Solving the Steiner Tree problem on a graph using branch and
cut, ORSA J. Comp. 4(1992)320-335.

[3] M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems, Manag.
Sci. 27(1981)1-18.

[4] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks (Princeton University Press, Princeton, NJ,
1962).

[5] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness
(Freeman, San Francisco, 1979).

[6] M. Gr6tschel, L, Lovasz and A. Schrijver, The ellipsoid method and its consequences in combinatorial
optimization, Combinatorica 1(1981)169-191.

[7] M. Gr6tschel, A. Martin and R. Weismantel, Packing Steiner trees: Polyhedral investigations, Konrad-
Zuse-Zentrum ffir Informationstechnik Berlin, Preprint SC 92-8 (1992).

[8] M. Gr6tschel, A. Martin and R. Weismantel, Packing Steiner tress: A cutting plane algorithm and
computational results, Konrad-Zuse-Zentrum ftir Informationstechnik Berlin, Preprint SC 92-9 (1992).

[9] C.Y. Lee, An algorithm for path connection and its applications, IRE Trans. Electron. Comp. EC-
10(1961)346-365.

[10] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout (Wiley, 1990).
[11] T. Lengauer and M. Lligering, Integer program formulations of global routing and placement problems,

Research Report, University of Paderborn, Germany.
[12] B. Korte, H.J. Pr6mel and A. Steger, Steiner trees in VLSI layout, in: Paths, Flows, and VLSI-

Layout, ed. B. Korte, L. Lovasz, H.J. Prfmel and A. Schrijver (Springer, 1990).
[13] A. Martin, Packen von Steinerb~umen: Polyredrische Studien und Anwendung, Ph.D. Thesis,

Technische Universit~t Berlin (1992).
[14] E.F. Moore, Shortest path through a maze, in: Proc. Int. Syrup. on Switching Circuits (Harvard

University Press, 1959) pp. 285-292.
[15] A.P.C. Ng, P. Raghavan and C.D. Thompson, Experimental results for a linear program global

router, Comp. Art. Int. 6(1987)229-242.
[16] P. Raghavan and C.D. Thompson, Randomized rounding: A technique for provably good algorithms

and algorithmic proofs, Combinatorica 7(1987)365-374.
[17] M.B. Richey and R.G. Parker, On multiple Steiner subgraph problems, Networks 16(1986)423-438.
[18] H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math.

Japonica 24(1980)573-577.
[19] R.T. Wong, A dual ascent approach for Steiner Tree problems on a directed graph, Math. Progr.

28(1984)271-287.

