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The logical test of integrated VLSI circuits is one of the main phases of their design 
and fabrication. The pseudo-exhaustive approach for the logical test of integrated circuits 
consists in partitioning the original circuits to be tested into non-overlapping subcircuits 
with a small, bounded number of subcircuits, which are then exhaustively tested in 
parallel. In this work, we present an approximate algorithm for the problem of partitioning 
integrated combinational circuits, based on the tabu search metaheuristic. The proposed 
algorithm presents several original features, such as: the use of a reduced neighborhood, 
obtained from moves involving only a subset of boundary nodes; complex moves which 
entail several resulting moves, although the variations in the cost function are easily 
computable; a bi-criteria cost function combining the number of subcircuits and the 
number of cuts, which simultaneously adds a diversification strategy to the search; and 
the use of a bin-packing heuristic as a post-optimization step. The behavior of the 
proposed algorithm was evaluated through its application to a set of benchmark circuits. 
The computational results have been compared with those obtained by the other algorithms 
in the literature, with significant improvements. The average reduction rates have been 
of the order of 30% in the number of subcircuits in the partition, and of the order of 
40% in the number of cuts. 
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partitioning, tabu search. 

1. Introduction 

The  logical  test  o f  in tegrated VLSI  circuits  is one  o f  the main phases  o f  their  

des ign  and fabricat ion.  Tes t ing  a circui t  amounts  to submit t ing it to d i f fe ren t  input  

pat terns  and check ing  whe ther  the observed  outputs  are exac t ly  those expec t ed  

accord ing  to the design of  the circuit ,  in order  to evaluate  i f  the logical  gates are 
behav ing  as expec ted  (i.e. p roduc ing  the correct ,  des i red outputs  associa ted  with 

each input  pat tern)  and to ensure  that phys ica l  faults do not  occur .  A m o n g  the 

severa l  approaches  avai lable  for  the logical  test o f  combina t iona l  circuits ,  we ma y  
find: (i) exhaus t ive  test, (ii) faul t  s imulat ion,  and (iii) p seudo-exhaus t ive  test. In the 

latter approach,  the circuit  to be tested is decomposed  into subcircuits with a relat ively 
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small, bounded number of inputs. Subsequently, each subcircuit is exhaustively 
tested. Although it does not cover all possible logical faults, this approach does not 
depend on a fault simulation model and ensures a 100% fault coverage for single 
stuck-at faults (lines always fixed at the same logical level). 

The pseudo-exhaustive approach for logical testing was introduced in the 
literature in the 1980's. The first work on this subject seems to be that of Bozorgui- 
Nesbat and McCIuskey [7]. If the original circuit is conveniently partitioned into 
non-overlapping subcircuits, this approach may be speeded up by testing all subcircuits 
in parallel. In that case, the total duration of the test will be the same as that of the 
subcircuit with the largest number of inputs. Patashnik [30] has shown that the 
decision version of the problem of optimally decomposing a combinational circuit 
into testable subcircuits is NP-complete. Suitable algorithms are needed for partitioning 
the original circuit, in order to obtain as few subcircuits as possible (to ensure a 
high fault coverage and to minimize the number of testers required) and not too 
many cuts (which would increase too much the cost of the additional hardware 
which has to be inserted at each point where the original circuit is cut). Roberts and 
Lala [32] proposed the first general heuristic for this problem. However, their 
algorithm has some drawbacks [13], due to the nature of an unsuitable implicit 
objective function which very often leads to solutions which violate the testability 
condition. New algorithms have recently been proposed by Davis-Moradkhan and 
Roucairol [ 13], with significantly better results in terms of the number of subcircuits 
in the partition. 

The main goal of this work consists in the development of a new algorithm 
for circuit partitioning based on the tabu search metaheuristic, aiming at its use in 
the framework of the pseudo-exhaustive approach for logical test. The combinational 
circuits are modelled as acyclic directed graphs. Let T be the available time for 
testing all subcircuits in parallel. In addition to the circuit to be partitioned, another 
input data for this problem is the maximum number L of inputs in each subcircuit, 
such that 2 L test patterns may be generated and applied to the largest subcircuit, and 
the results compared with those defined during the design phase, in total parallel 
time less than or equal to T. Then, the partitioning problem amounts to decomposing 
the circuit to be tested into non-overlapping subcircuits with no more than L inputs 
each, subject to some connectivity constraints. 

The paper is organized as follows. In section 2, we introduce the main aspects 
of the logical test of integrated circuits. We also give more details about the pseudo- 
exhaustive approach for logical test. The circuit decomposition problem is formulated 
in section 3, where the currently existing algorithms for this problem are reviewed. 
In section 4, we recall the basic elements of the tabu search metaheuristic and we 
propose a tailored algorithm for the circuit partitioning problem. Issues such as the 
definition of solutions, moves and their attributes, tabu and candidate lists, cost 
function and diversification, aspiration and stopping criteria are discussed in detail. 
The section concludes with the detailed presentation of the heuristic in algorithmic 
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form. Subsequently, in section 5, we present the computational results obtained 
through the application of the tabu search algorithm to a set of benchmark circuits. 
The solutions obtained by this heuristic are compared with those given by the other 
algorithms found in the literature, showing significant improvement both in the 
number of cuts and in the number of subcircuits. Finally, some conclusions are 
drawn in the last section. 

2. Pseudo.exhaustive approach for logical test 

In this section, we first give an overview of logical test procedures for 
combinational integrated circuits. A broader vision of this subject may be found in 
references [8, 29]. Next, we describe in detail the pseudo-exhaustive approach for 
logical test. 

Combinational circuits are integrated digital circuits where the output at any 
time is a function depending only on a combination of the current inputs. They 
implement Boolean functions such as z =f(x) : {0, 1 }n ~ {0, 1 }m, n and m integers, 
where x is the Boolean input vector (or pattern) and z is the Boolean output vector. 
A sequential circuit is one implementing a sequential function whose outputs depend 
not only on the current inputs, but also on previous inputs, i.e. on the current state 
of the circuit. 

The logical test of a combinational integrated circuit is a three-step procedure: 
(i) generation of input test patterns, (ii) application of the test patterns to the circuit, 
and (iii) comparison of the output vectors with the expected outputs, previously 
obtained by the application of the same input test patterns to the model of the 
circuit. Every discrepancy is an error, whose cause is called a physical fault. The 
physical faults may be classified into logical faults and parametric faults. 

Logical faults are those that change the logical function implemented by an 
element of the circuit. Many physical faults may be modelled as logical faults, e.g. 
short-circuits and open circuits between signal lines and stuck-at faults (signal lines 
permanently stuck at some specific logic value). They are also called DC faults, 
since they may be detected in a frequency smaller than the operating one. In 
this work, we consider only the detection of logical faults. The three types of logical 
faults considered here are: (i) stuck-at-0 faults (a line is fixed at the logical level 
"0"), (ii) stuck-at-1 faults (a line is fixed at the logical level "1"), and (iii) short- 
circuits between two lines. Parametric faults are those arising from changes in the 
parameters of the circuit, which depend on the technology used for its construction, 
such as the speed of signal propagation. They cannot be dealt with as 
logical faults and are also called AC faults, since they may be detected only at the 
operating frequency. In most cases, they are originated during the manufacturing 
process. 

Two major issues in the logical test of integrated circuits are their controllability 
and observability. Controllability concerns the possibility of accessing and applying 
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a complete set of input test patterns to a circuit through external inputs or control 
points. Observability is the capability of observing the responses of the circuit to 
different input vectors at some external outputs or control points. The cost of the 
required additional hardware and the time needed for testing the circuits are other 
major issues. We may find the following among the approaches available for the 
logical test of combinational circuits: 

Exhaustive test. In this type of test, all 2 n possible input patterns are applied 
to a circuit with n inputs. Its main advantage comes from the fact that it 
allows checking for any possible faults, i.e. it ensures the exhaustive coverage 
of the whole set of logical faults. However, it is not practical for large size 
circuits, due to the high number of input patterns which must be applied to 
the circuit. 

Fault simulation. This approach was proposed as an alternative to the previous 
one, aiming at the reduction in the number of test patterns which have to be 
applied to the circuit. In this case, a simulation model generates the most 
important to be detected and/or the most likely to happen faults. Next, a set 
of input patterns which allows the determination of these faults is computed 
and the behavior of the circuit is evaluated with respect to these inputs. 
Among other drawbacks of this approach, we should mention the complexity 
of the determination of both a suitable fault model and an appropriate set of 
input patterns with a large fault coverage. 

Pseudo-exhaustive test. The circuit to be tested is decomposed into subcircuits, 
each of which with a relatively small, bounded number of inputs. Subsequently, 
each subcircuit is exhaustively tested. Although it does not cover all possible 
logical faults, this approach does not depend on a fault simulation model and 
ensures the coverage of all single stuck-at faults. 

The use of fault simulation models for the generation of test patterns proved 
to be useless in the case of VLSI circuits [7], firstly because the fault model based 
on the hypothesis of the inexistence of simultaneous multiple faults is no longer 
valid, while more complex models dealing with multiple faults substantially increase 
the complexity of the generation of test patterns. The automatic generation of test 
patterns becomes very costly and, in typical cases, does not provide a sufficiently 
high fault coverage. Also, an expensive tester is required, since many test patterns 
are produced by the test generator. Moreover, many testers should be used, since 
the tester is tied up to a circuit for a long period of time. Finally, the simulation 
time increases exponentially as the circuit grows in size. 

These concerns are not recent. Design techniques appropriate for dealing 
with these difficulties have followed the increase in the rate of integration. Among 
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the main ideas, we may find the design for testability (DFT) and the autonomous 
test. A guide of design techniques aimed at circuit testability may be found in [12]. 
In the case of VLSI, these ideas evolved to the so-called built-in self-test (BIST) 
technique for the autonomous test. Additional hardware is placed inside the 
circuit to be tested, in order to reduce the complexity of the external test. This 
additional hardware (i.e. the tester) should be small when compared to the circuit 
to be tested. Moreover, it should itself be testable from outside, and should not 
degrade the performance of the original circuit. McCluskey [24,25] presented an 
overview of BIST techniques and structures used to replace functions of the external 
tester. 

BIST and DFT techniques are always recommended when field repair costs 
and tester costs are relevant issues. Moreover, the cost of testing an integrated 
circuit represents a very small fraction of its design and fabrication costs on an 
industrial scale. A cost-benefit analysis, taking into account factors such as the 
increase in the rate of coverage and the reduction in maintenance costs, points out 
considerable gains which may be obtained from the concern with circuit testability 
in VLSI design. 

Large combinational integrated circuits should then be decomposed into 
subcircuits with a small, bounded number of inputs, in such a way that each subcircuit 
may be tested exhaustively. This approach corresponds to the so-called pseudo- 
exhaustive test, which was first proposed by Bozorgui-Nesbat and McCluskey [7]. 
Circuit decomposition implies cutting some lines and, consequently, in the creation 
of new inputs and outputs, the so-called pseudo-inputs and pseudo-outputs. Lines 
are cut by selector circuits, as illustrated in figure 1. In operating mode, the test line 
stays at the logical level "0", allowing signal propagation from gate P to gate Q, 
while inhibiting the pseudo-input. On the contrary, in test model the test line 
remains at the logical level "1", habilitating the pseudo-input and inhibiting signal 
propagation from gate P to gate Q. Both in operating mode and in test mode, the 
pseudo-output may be externally observed. 

Advantages and drawbacks of the pseudo-exhaustive test approach are discussed 
in [2, 6, 27]. Among the advantages, we notice that it (i) ensures the coverage of all 
single stuck-at faults, without making use of any fault simulation model, (ii) detects 
any short-circuit fault, provided that the defective circuit remains a combinational 
one and that the short-circuit involves two lines in the same subcircuit, (iii) detects 
all multiple stuck-at faults, provided that they are non-redundant and internal to the 
same subcircuit, and (iv) does not depend on any fault model and, accordingly, is 
not limited to the detection of any specific class of faults. 

In order to allow that all subcircuits be tested in parallel, the original circuit 
has to be decomposed into non-overlapping subcircuits, i.e. it has to be partitioned 
into subcircuits with no gates in common. Then, the total duration of the test will 
be the same as that of the largest subcircuit in terms of the number of inputs. The 
circuit partitioning problem is studied in the next section. 
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Figure 1. Cut of a line and selector circuit. 

3. Circuit partitioning 

Given that the total duration of the pseudo-exhaustive test should not exceed 
a certain time T, let L be a parameter equal to the maximum number of inputs such 
that 2 L test patterns may be generated and applied to the largest subcircuit, and the 
outputs compared with the correct ones, in total time less than or equal to T. Then, 
the circuit partitioning problem consists in finding a decomposition of  the circuit 
to be tested into non-overlapping circuits with no more than L inputs and at least 
one logical gate each. 

Different objective functions may be associated with this decomposition, 
among them (i) the minimization of the number of cuts, and (ii) the minimization 
of the number of subcircuits. Very often, a good solution with respect to one 
criterion is also a good one concerning the other. However, this is not necessarily 
true and examples illustrating situations where these two objectives are conflicting 
may be easily constructed [1]. 
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The first criterion corresponds to the minimization of the cost of the additional 
hardware inserted into the circuit to be tested. We recall that each cut used to 
partition the original circuit corresponds to the insertion of a selector circuit used 
for separating the subcircuits while in test mode. Moreover, there is a limit on the 
maximum numbers of cuts, which depends on the space available on the chip and 
on the design techniques. There are several reasons for using the second criterion. 
A smaller number of subcircuits in the partition leads to a higher fault coverage 
rate. If the pseudo-exhaustive test is performed through external testers, there will 
be one tester for each subcircuit. On the other hand, if a BIST technique is used 
in the design of the circuit, each subcircuit will be tested by an embedded linear 
feedback shift register. In both cases, a smaller number of subcircuits leads to 
reduced hardware costs. 

Let G = (X, A) be the directed acyclic graph associated with a combinational 
circuit C, where X denotes the set of components (inputs, logical gates, and outputs) 
and A the set of lines used for signal propagation. The in-degree and the out-degree 
of each node v E X are denoted by d-(v) and d+(v), respectively. Given a subset 
of nodes V c X, its input-neighborhood CO-(V) is defined as the set of  nodes which 
are not in V that have at least one successor in V, i.e. co-(V) = { v ~ X I v ~ V and 
3w ~ V such that (v, w) CA}. The set of nodes X is formed by three non-empty 
disjoint subsets E, P, and S, where E is the set of inputs, P is the set of logical gates, 

~ ' q ~ l . . . _  J A 

Figure 2. Representation of a combinational circuit by a graph. 

and S is the set of  outputs of the combinational circuit C. Figure 2 illustrates a 
combinational circuit and its representation as a directed graph [13]. 

The problem of  partitioning the combinational circuit C, represented by the 
graph G = (X, A), into testable subcircuits corresponds to finding a partition of  X 
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into a non-fixed number of K subsets Xk, k = 1 . . . . .  K, such that the induced 
subgraphs Gk = (Xk, Ak) satisfy the following conditions: 

• X = U r = I X k a n d X k n X e = O ,  V k ~ : t ,  (k,e) E{1,  . . . .  K}2; 

n k + c k < L, Vk  = 1 , . . . ,  K, where n k = IX k N E I is the number of  inputs in Gk 
and Ck = Ico-(Xk) l is the number of gates in the input-neighborhood of Xk 
which originated pseudo-inputs; 

• X k n P ¢ O ,  V k =  1 . . . . .  K; and 

• G k = (Xk ,  A k )  is either a connected graph or formed by disjoint subgraphs 
satisfying the above condition, k/k = 1 . . . . .  K. 

The second condition above ensures the testability of each subcircuit involved 
in the partition. Each time an arc (i.e. a line of the original circuit) is cut, both a 
pseudo-input and a pseudo-output are created. Let G ÷ = (X ÷, A ÷) be the augmented 
graph obtained by the partitioning algorithm, with X ÷ = X u E '  u S', where E '  is 
the set of pseudo-inputs and S' is the set of pseudo-outputs. Let E ÷ = E u E '  and 
S ÷ = S u S" be, respectively, the set of inputs and outputs of G ÷. The graph G ÷ 
consists of K disjoint subgraphs G~" = (X~', m~-), k = 1 . . . . .  K, where the subsets 
X~ satisfy the above conditions. The testability condition may be represented by 
the inequality I X~ n E+I < L, k = 1 . . . . .  K. 

As an example, consider the graph in figure 3. Nodes 1 to 6 are the inputs. 
Figure 4 illustrates one solution of the partitioning problem for the parameter L = 4, 
with K =  6 subcircuits: Xt = {1, 8, 9, 13, 16}, nl = 1 and cl = 2; X2 = {15, 22, 25}, 
n2 = 0 and c2 = 2; X 3 = {23, 26}, n 3 = 0 and c3 = 4; X4 = {2, 10}, n 4 = 1 and c4 = 1; 
X5 = {24, 27},n 5 = 0 a n d c  5 = 2; andX6 = {3,4, 5 ,6,7,  11, 12, 14, 17, 18, 19, 20, 21, 28}, 
n 6 = 4 and c6 = 0. The pseudo-inputs and pseudo-outputs are denoted by pe and ps, 
respectively, and indexed from 1 to 12. 

The graph partitioning problem formulated above may also be modelled as 
a set partitioning problem with an exponential number of variables, or as a general 
0 - 1  integer programming problem with O( tX I 3) variables. However, as pointed out 
by Davis-Moradkhan [12], these formulations are not practical for real-size problems. 
Patashnik [30] has shown through a polynomial transformation from CLIQUE [15] 
that the decision version of the problem of segmenting a circuit into K testable 
subcircuits is NP-complete, as well as many restricted versions of it. Several algorithms 
have been proposed in the literature for circuit decomposition aiming at the pseudo- 
exhaustive logical test. 

The first heuristic for the circuit partitioning problem was proposed by Bhatt 
et al. [6], who gave a partitioning algorithm for circuits in which the out-degree of 
every node is less than or equal to its in-degree. Other algorithms for circuits with 
special structure are also available in the literature. Roberts and Lala [32] have 
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Figure 3. Combinational circuit to be partitioned represented by a graph. 

proposed a general heuristic based on the relaxation of the testability condition, in 
which the total violation ~r= 11L - nk - ckl is incorporated into the objective function 
as a penalty. This algorithm very often obtains solutions which greatly violate the 
testability condition. Moreover, this violation becomes larger, and many small 
subcircuits with few inputs are created, when the in-degree of the logical gates 
increases. 

Davis-Moradkhan and Roucairol [ 12-14] have proposed two heuristics, asp 
and eep, for this problem. Both heuristics are constructive and perform better than 
that of Roberts and Lala. Their time complexity is O( I P I • I A I ) and the second one 
is particularly fast. In the next section, we present a new heuristic for the circuit 
partitioning problem, based on the tabu search metaheuristic and using the eep 
algorithm of Davis-Moradkhan and Roucairol for the generation of initial solutions. 



10 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 

~~ Subcircuit 4 

Subcircuit 2 

E 
Subcircuit 1 

Subcircuit 3 

Subcircuit 5 

Figure 4. A partition into K = 6 subcircuits. 

4. A tabu search heuristic 

To give a general description of  the tabu search metaheuristic, we consider 
a general combinatorial optimization problem (P) formulated so as to 

minimize c( s ) 

subject to s E S, 
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where S is a discrete set of feasible solutions. Local search approaches for solving 
problem (P) are based on search procedures in the solution space S starting from 
an initial solution So E S. At each iteration, a heuristic is used to obtain a new 
solution s'  in the neighborhood N(s) of the current solution s, through slight changes 
in s. Every feasible solution g ~ N(s)  is evaluated according to the cost function 
c(. ), which is eventually optimized. The current solution moves smoothly towards 
better neighbor solutions, enhancing the best obtained solution s*. The basic local 
search approach corresponds to the so-called hill-descending algorithms, in which 
a monotone sequence of improving solutions is examined, until a local optimum is 
found. 

A move is an atomic change which transforms the current solution s into one 
of its neighbors, say ~-. Thus, move_value = c(~) - c(s) is the difference between the 
value of the cost function after the move and the value of the cost function before 
the move. Hill-descending algorithms always stop in the first local optimum. To 
avoid this drawback, several metaheuristics have been proposed in the literature, 
namely genetic algorithms, neural networks, simulated annealing, and tabu search [20]. 
They all have an essential common approach: the use of certain mechanisms which 
permit that the search for neighbor solutions takes directions of increasing the cost 
of the current solution in a controlled way, as an attempt to escape from local 
optima. Among them, tabu search is an adaptive procedure for solving combinatorial 
optimization problems, which guides a hill-descending heuristic to continue exploration 
without becoming confounded by the absence of improving moves, and without 
falling back into a local optimum from which it previously emerged [17-19,23].  
At every iteration, an admissible move is applied to the current solution, transforming 
it into its neighbor with the smallest cost. Moves towards a new solution that 
increase the cost function are permitted. In that case, the reverse move should be 
prohibited along some iterations, in order to avoid cycling. These restrictions are 
based on the maintenance of a short-term memory function which determines how 
long a tabu restriction will be enforced or, alternatively, which moves are admissible 
at each iteration. Figure 5 gives a procedural description of the basic tabu search 
metaheuristic. 

The tabu tenure is an important feature of the tabu search algorithm, because 
it determines how restrictive is the neighborhood search. The performance of an 
algorithm using the tabu search metaheuristic is intimately dependent on the basic 
characterizing parameters, namely the time that the short memory function enforces 
a certain move to be tabu, and the maximum number of iterations max_moves 

during which there may be no improvement in the best solution. If the tabu tenure 
is too small, the probability of cycling increases. If it is too large, there is a 
possibility that all moves from the current solution are tabu and the algorithm may 
be trapped. However, it should be pointed out that cycle avoidance is not an ultimate 
goal of the search process. In some instances, a good search path will result in 
revisiting a solution encountered before. The broader objective is to continue to 
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Algorithm Tabu-Search 
begin 

Initialize the short term memory function 
Generate the initial solution so 
8~ 8* ~--" 80 
while (number of moves without improvement < max .moves )  do 
begin 

best.move.value ,-- oo 
for each (candidate.move) do 
begin 

if  (candidate_move is admissible) then 
begin 

Obtain the neighbor solution g by applying candidate_move to the current solution s 
move_value , -  c(.~) - c(s) 
i f  (move_value < best_move_value) then 
begin 

best_move.value ~-- move_value 
s' , - -~  

end. l f  
end..if 

end_for 
if  (best.move_value > O) then update the short term memory function 
if  (e(s') < e(s ' ))  t h e n  s" *-- s '  
S ~ - . . - S  t 

end_while 
end_Tabu-Search 

Figure 5. Basic description of the tabu search metaheuristic. 

stimulate the discovery of new high-quality solutions. One implication of choosing 
stronger or weaker tabu restrictions is to render smaller or longer tabu tenures 
appropriate [21 ]. 

For large problems, in which N(s) may have too many elements, or for 
problems where these elements may be costly to examine, the aggressive choice 
orientation of tabu search makes it highly important to isolate a candidate subset 
of the neighborhood, and to examine this subset instead of the entire neighborhood [21]. 
Other advanced features, improvements and extensions to the basic tabu search 
procedure will be commented on in the next sections, in which the basic tabu search 
heuristic is specialized into a tailored algorithm for the solution of  the circuit 
partitioning problem. 

4.1. S O L U T I O N S ,  N E I G H B O R H O O D ,  A N D  C A N D I D A T E  LISTS 

Each solution s of the circuit partitioning problem for the circuit graph G = (X, A) 
is represented by the augmented graph G+= (X ÷, A÷), formed by the subgraphs 
a ~  = + + (X k , A k ), k = 1 . . . .  , K, where X + = X w E' u S ,  with E' being the set of  
pseudo-inputs and S" the set of pseudo-outputs. The subgraphs G~ = (X~', A~), 
k = 1 . . . . .  K, satisfy the following conditions: 
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X + K + + • = U k = l X  k and X k nX'~ =O, Vk~:g, (k,g) E {1 . . . . .  K}2; 

• X ~ n P ~ O ,  M k = I  . . . . .  K ; a n d  

• G~ = (X~, a~ ) is either a connected graph or formed by disjoint subgraphs 
satisfying the above condition, Vk = 1 , . . . ,  K. 

The subgraphs G~ are not enforced to satisfy the testability constraint, now written 
as t X~ n (E u E')I  < L. Accordingly, the algorithm is allowed to visit infeasible 
(i.e. non-testable) solutions. 

The neighborhood N(s) of the current solution s is formed by all solutions 
which may be obtained from s by transferring one gate from one of its subcircuits 
to another one. The target subcircuit may be either an existing one or a new 
subcircuit, characterizing in the latter case the creation of  a new subcircuit. Moving 
a gate from one subcircuit to another entails several resulting moves, which will be 
detailed in the next section. As noticed before, the neighbor solutions do not necessarily 
satisfy the testability condition. 

We define the boundary of the graph G~ = (X~ + , A k ), k = 1 . . . . .  K, associated 
with some subcircuit, as the set of gates {p ~ X~ n P IF(p)  n (E '  u S') ~ 0} (where 
F ( p )  denotes the set of predecessors and successors of node p within graph G+), 
i.e. we say that a gate belongs to the boundary of a subcircuit if it has at least one 
pseudo-input among its predecessors or one pseudo-output among its successors. 

The reduced neighborhood of the current solution s is then defined as the 
subset formed by all neighbor solutions in N(s) which may be obtained by moving 
only boundary gates. The set of moves in the reduced neighborhood is generated 
at the first iteration and is updated at each next iteration. Only candidate solutions 
in this reduced neighborhood are examined. This choice to reduce the size of the 
neighborhood is based on the idea that, most of the time, the reduction in the 
number of cuts leads to a smaller number of subcircuits. When the number of 
subcircuits cannot be reduced, we want to reduce the number of cuts. However, 
moves based on transferring non-boundary gates will necessarily increase the number 
of cuts, without any effect in the number of  subcircuits. For this reason, they may 
be discarded for the sake of accelerating the neighborhood search. As a nice 
consequence, it should be noticed that the number of admissible moves vanishes 
with the number of iterations performed by the algorithm, as far as the number of  
cuts diminishes. 

4.2. MOVES 

We have seen before that each move is characterized by taking one gate from 
the boundary of  a source subcircuit and transferring it to another subcircuit. The 
source subcircuit is necessarily one of those in the current partition, while the target 
subcircuit may be either an existing one or a new subcircuit created with this move. 
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Source subcircuit Target subclrcuit 

Before the move: 

After the mol 

Figure 6. Complete move involving all possible situations. 

Whenever a gate p is transferred from the source subcircuit to the target one, 
it carries to the target subcircuit all its inputs, pseudo-inputs and pseudo-outputs, 
entailing several resulting moves as a consequence. We illustrate in figure 6 a 
complete move, in which all the possible situations occur (only the relevant nodes 
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and links are represented in this figure). By the end of the move, five cuts are 
created (I, II, III, IV, V), while four others are eliminated (0, 3, 5, 7). The steps 
described below must be carried out during the evaluation of a move (refer to the 
specific figure for each case, as well as to figure 6 for all examples). 

• Analysis of the successors of gate p 

- Successor pseudo-outputs: each of them is moved together with p to the 
target subcircuit. If the corresponding pseudo-input already belongs to it, 
then the cut is eliminated and the original link is restored (e.g. the old cut 
(ps0, peo) is eliminated, see figure 7). 

Source Subcircuit Target Subcircuit 

Before the m o v e :  

After the m o v e :  

I a 

Figure 7. Successor pseudo-outputs. 

Successor gates: they should remain in the source subcircuit. The links 
between p and each of its successor gates in the source subcircuit are 
broken, leading to the substitution of each successor gate by a pseudo- 
output in the target subcircuit, while the corresponding pseudo-input will 
feed the successor gates in the source subcircuit (e.g. the new cut (psi, pex) 
separates p from its successor gates Ps and P9, which remain in the source 
subcircuit, see figure 8). 
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Source subcircuit Target subcircuit 

Before the m o v e :  

After the m o v e :  

Figure 8. Successor gates. 

• Analysis of the predecessors of gate p 

- Predecessor gates: as in the previous case, they should remain in the 
source subcircuit. The links between p and each of its predecessor gates 
in the source subcircuit are broken, leading to the substitution of each 
predecessor gate by a pseudo-input which will feed p in the target subcircuit, 
while the corresponding pseudo-output will be fed by the predecessor gate 
in the source subcircuit (e.g. the new cuts (psn,  peIi) and (psm, peru) 
separate p, respectively, from its predecessor gates P6 and PT, which remain 
in the source subcircuit, see figure 9). If any predecessor gate of p already 
has a successor pseudo-output whose corresponding pseudo-input belongs 
to the target subcircuit, then the link may be established through this old 
cut, without it being necessary to create a new one (e.g. gate P5 and the 
old cut (ps2, pe2)). 

- Predecessor inputs and their successor gates and pseudo-outputs: each 
predecessor input of p is moved together to the target subcircuit (see 
figure 10). If some predecessor input has other successors different from 
p itself, they are treated as the successors of p (e.g. input node e, whose 
move leads to the creation of the new cut (psw,  pew),  as well as to the 
elimination of the old cut (ps 3, pe3)). 



Source subcircuit Target subcircuit 

17 

Before themove: 

Alter the move: 

Figure 9. Predecessor gates. 

Source subchcult Target subck'cuR 

B e a m  the move: 

Aner the move: 

1 

I 

Figure 10, Predecessor inputs and their successor gates and pseudo-outputs. 
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Predecessor pseudo-inputs and their successor gates and pseudo-outputs: 
the case of the predecessor pseudo-inputs is very similar to the previous 
one. The only difference occurs when the corresponding pseudo-output 
belongs to the target subcircuit, when additional steps must be carried out 
to establish the links between the predecessors of  the pseudo-output and 
the successors of the corresponding pseudo-input (e.g. pseudo-input pe 7, 
whose move leads to the creation of the new cut (psv,  pev) due to maintaining 
P3 and P4 in the source subcircuit, as well as to the elimination of the old 
cuts (pss,  pes) and (ps7, pe7)). 

4.3. MEMORY FUNCTION, ASPIRATION AND STOPPING CRITERIA 

We adopted a flexible memory function in our tailored tabu search algorithm 
for the circuit partitioning problem. A simple, but strongly restrictive attribute is used 
to determine the tabu status of each move. Every time a non-improving move is 
performed, all other moves involving the same associated gate p will be made tabu 
for the next tabu_tenure iterations. The computation of tabu_tenure is dynamically 
performed as 

tabu_tenure = (maximum~ x { d( v) } - current_degree(v)) • ),, 

where current_degree(v) denotes the current degree of node v in the extended graph 
G ÷ = (X ÷, A+), which may vary as long as new pseudo-inputs and pseudo-outputs are 
created. The tabu tenure of each move then depends not only on the gate itself which 
was moved, but also on the current iteration. The term maximumvEx { d(v)} gives the 
maximum degree among all nodes in the original graph to be decomposed. The larger 
the degree of a gate in the current extended graph, the larger its potential to affect 
the search, since many cuts may be created or destroyed when a move involving this 
gate is performed. Accordingly, moves involving gates that are likely to more affect 
the search are made tabu for a shorter number of iterations than those involving gates 
with few adjacent nodes. The parameter ~' must be tuned and it is likely to assume 
larger values for larger graphs. 

One implication of choosing stronger or weaker tabu restrictions is to render 
shorter or longer tabu tenures appropriate [21]. Other search strategies could be 
entailed by taking other move attributes to define its tabu status, such as the less 
restrictive ones def'med by the pairs (gates, target subcircuit) or (gate, source subcircuit), 
or those more restrictive defined only by the target subcircuit or the source subcircuit. 

Occasionally, it may be interesting that the tabu status of  some moves be 
overriden as a result of more information gathered during the search. Two such 
situations have been identified in the framework of the circuit partitioning problem. 
First, the so-called aspiration criterion: a tabu move may be applied whenever it leads 
to a solution improving the best one found so far. Second, it may happen that the 
set of admissible moves at some iteration be empty, i.e. all moves are tabu: in this 
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case, the adopted solution corresponds to the reinitialization of the short-term memory 
function, getting rid of the complete tabu list and restarting the algorithm again with 
no restrictions. 

The overall computational time necessary for obtaining a good partition is not 
a major issue, since it is just a small fraction of the total time spent in the design 
of the circuit. Accordingly, here we are interested in developing a good algorithm 
in terms of solution quality, even if the computational times are long. The stopping 
criteria will then be verified whenever the number of moves without improvement 
in the best solution or the overall number of iterations attain some maximum limits. 
Those limits have been empirically set as, respectively, max_moves = 3 - I P I  and 
max iterations = [ I P I (1'2) ] .  

4.4. COST FUNCTION AND DIVERSIFICATION 

It was shown in section 3 that the number of subcircuits and the number of 
cuts are the basic criteria to be optimized in the circuit partitioning problem. As fault 
coverage and the cost of the testers are the most relevant issues, the number K of 
subcircuits in the partition is the primary criterion to be minimized. In order to guide 
the search when improving moves with respect to the primary criterion do not exist, 
the number n_cuts of cuts is also incorporated into the objective function. 

The number of subcircuits is weighted by a large constant coefficient a, in 
order to give a larger weight to the primary criterion and in such a way that improving 
moves with respect to it are not discarded due to the existence of moves reducing 
the number of cuts which increase the number of subcircuits. Andreatta [1] has 
shown that the number of cuts may be reduced by at most 2d;,~, + 1 due to a single 
move, where d~ox = maximumv~x{d-(v)}  is the largest in-degree among all nodes 
representing gates. Then, we should take a > 2d,7,~ + 1 in order to ensure that the 
first criterion be always privileged with respect to the second one. 

Small violations of the testability condition I X~" n E+I < L may be allowed 
for some subcircuits k = 1 , . . . ,  K, as far as they can be largely compensated by the 
possible reduction in the number of subcircuits. Allowing the algorithm to visit 
infeasible solutions also introduces a diversification component into the search. An 

~,K "jdeviati°n+(k) is incorporated into the objective exponential penalization term z.,k=l "- 
function as the third criterion, where deviation+(k) = maximum {0, I X~" n E+I - L} 
is the amount by which the testability condition of subcircuit G~ is violated. 

The use of an exponential penalty term is coupled with its multiplication by 
a constant weight/3, in order to completely avoid large violations. The ratio between 
the coefficients a and fl determines the maximum violation of the testability condition 
allowed for each subcircuit in the partition. A move leading to a non-testable solution 
may only be accepted if other moves reducing the number of subcircuits do not exist. 
Andreatta [1] has shown that one should take a > 2fl if the maximum allowed deviation 
from L is fixed as equal to two. Therefore, the cost function to be globally minimized 
throughout the search is 
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K 
c(s) = a K  + n_cuts + fl ~.~ 2 deviati°n÷(k), 

k=l  

where s is any solution to the circuit partitioning problem, be it feasible or not. If 
s is a feasible solution, then its cost is c(s)= ( a  + fl)K + n_cuts. 

4.5. POST-OPTIMIZATION 

A complete description of the tabu search algorithm TS-CPP for the circuit 
partitioning problem is given in figure 11, incorporating all aspects previously 
discussed in this section. Two additional procedures are incorporated as post- 
optimization steps, following the application of the tabu search heuristic: 

• Procedure make_feasible is used whenever the tabu search strategy ends the 
search failing to find an improving feasible solution, with respect to the 
initial one. This procedure builds a feasible (i.e. testable) solution from the 
best infeasible solution minimizing c(s) visited during the search. 

• Procedure pack_together is used to pack together small subcircuits appearing 
in the best feasible solution, which globally do not violate the testability 
condition. A list bin-packing heuristic is used, coupled with a mechanism to 
evaluate the possible reduction in the number of cuts whenever two subcircuits 
are packed together. 

5. Computational results 

The tabu search algorithm TS-CPP was applied to nine benchmark combinational 
circuits presented by Berglez and Fujiwara [4]. The objective was twofold: first, to 
tune the parameter values for the tabu search algorithm; second, to compare and 
evaluate its efficiency with respect to other algorithms proposed in the literature. 
In table 1, we give the basic description of each circuit: the number of inputs, gates, 
outputs, and links, as well as the maximum in-degree d~ax and the maximum out- 
degree ÷ dmax among all gates in the circuit. 

Algorithm TS-CPP was coded in C. The codes of algorithms asp and cep, 
also in C, are those kindly given by their authors, M. Davis-Moradkhan and C. 
Roucairol. Extensive numerical results obtained on a Sun SPARCstation-2 and 
reported by Andreatta [1] are available upon request from the authors. We also 
notice that the weights of the cost function have been fixed throughout all computational 
experiments at a = 50 and fl = 20. These values satisfy the conditions established 
in section 4.4 and their ratio ensures that no subcircuit will have more than L + 2 
inputs and pseudo-inputs. 
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Algor i thm T S - C P P  
begin 

Initialize the short term memory function 
Generate the initial solution so 

non_improving_moves *- 0 
current_iteration *-- 0 
best_unfeasible *-- co 
Determine the set of candidate moves in the reduced neighborhood of the current solution (boundary gates) 
while (non_improving.moves < maz_moves and  current.iteration < maz_iterations) do 
begin  

best_move_value ,-- oo 
for each (candidate.move) do 
begin 

if  (candidate.move is admissible or candidate_move satisfies the aspiration criterion) t hen  
beg in  

Obtain the neighbor solution ~ by applying candidate.move to the current solution s 
move.value  . -  ~(~) - c ( s )  

if (move.value < best.move_value) t hen  
begin  

best_move.value *-- move_value 

e n d j f  
end- l f  

end_for 
if  (best_move.value > 0) t hen  update tlle short term memory function 
i f  (e(s') < c(s ' ) )  t hen  
begin  

non-improving_moves *-- 0 
if  (solution s' is feasible) then  s* ~ s' 
else beg in  

if (c(d) < best_unfeasible) t h e n  
begin  

unfeasible.s" ~-- s t 
best.unfeasible , -  c( s') 

end . i f  
end_else 

else non.improving_moves ~ non_improving.moves + 1 
end- i f  
8 ~ 8  # 

Update the set of candidate moves in the reduced neighborhood 
current_iteration *- current. i teration + 1 

end_while 
if  (s* = so and  e(s0) > best.unfeasible) t hen  
beg in  

S / easible *"- m a k e . f e a s i b l e (  un f easible_s" ) 
if  (c ( s l , , , iu , )  < c(s')) t hen  s" ~ sl,a,lbt, 

end_if 
s" *-- paek_together(s  °) 

end_TS-CPP 

Figure 11. Tabu  search algori thm for the circuit part i t ioning problem. 
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Table I 

ISCAS benchmark circuits. 

ISCAS circuits Size Inputs Gates Outputs Links d;nax d~,~ 

C-1 small 36 153 7 432 9 9 
C-2 small 41 170 32 499 5 12 

C-3 small 60 357 26 880 4 8 

C-4 medium 41 514 32 1355 5 12 

C-5 medium 33 855 25 1908 8 16 

C-6 medium 157 I 129 140 2670 5 11 

C-7 medium 50 1647 22 3540 8 16 

C-8 large 32 2384 32 6288 2 16 

C-9 large 207 3405 108 7552 5 15 

The first part of our computational experiments was devoted to tuning the 
best parameter values and strategies for algorithm TS-CPP. Three aspects have 
been evaluated: 

• In i t ia l  so lu t i on .  For all small- and medium-size benchmark circuits, both 
algorithms asp and cep from Davis-Moradkhan and Roucairol [14] have been 
applied to the generation of the initial solution. The quality of the best solution 
found by the tabu search algorithm does not seem to be too much affected 
by the choice of either one of them. However, since the computational times 
observed for algorithm asp increase with problem size much faster than those 
of cep, only algorithm cep was applied to the large-size circuits. 

• T a b u  tenure .  The parameter ~, involved in the computation of the dynamic 
tabu tenure of each move (see section 4.3) characterizes the restrictiveness 
of the search. Larger circuits, for which a wider choice of moves is available, 
are likely to be better dealt with by taking larger tabu tenures. Accordingly, 
for the small- and medium-size circuits we have investigated the behavior of 
the tabu search algorithm by varying ~,in the range from 1 to 12. For the 
large-size circuits, we took ~y in the range from 7 to 18. As a general rule, 
we observed that the most suitable value for ~(i.e. the one leading to the best 
feasible solution among all those found with the different parameter values) 
increases with problem size (i.e. with the number of gates and links). 

° P a r t i t i o n  p a r a m e t e r  L. In fact, this is not a parameter characterizing the tabu 
search algorithm, but rather the problems themselves. Strongly constrained 
problems with small values of L are likely to be more difficult. However, the 
behavior of the tabu search algorithm does not seem to be too much affected 
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by the value of L. The observed computational times have been of the same 
order for L ranging from 15 to 20 for all benchmark circuits. The algorithm 
seems to be very robust with respect to the partition parameter. 

A sample of the numerical results obtained in this first phase is reported 
below. The computational results obtained for the medium-size circuits for L = 15 
and L = 20 are given, respectively, in tables 2 and 3. The behavior of the algorithm 
for the small- and large-size circuits, as well as for the other values of the partition 
parameter L ranging from 16 to 19, is quite the same, and the corresponding lengthy 
numerical results are omitted for the sake of space. In each of these tables, we report 
the results obtained by using each initial solution algorithm (asp and eep) and each 
value of the parameter )' (associated with the tabu tenure) in the range from 1 to 12. 
The results in the first block of rows of these tables concern the initial solutions, 
i.e. the solutions obtained by the algorithms asp and cep from Davis-Moradkhan [12]: 
the number of subcircuits, the number of cuts and the computational time in seconds. 
Next, we report the results obtained by algorithm TS-CPP for each initial solution 
algorithm and each value of the parameter )': the number of subcircuits, the number 
of cuts and the computational time in seconds. The best results (in terms of the 
number of subcircuits in the partition) among all values of ~, are reported in bold 
face type. 

We notice that the results reported in tables 2 and 3 for both the initial solution 
and the tabu search algorithms do not include the application of the pack_together 
procedure or any other similar scheme. They exactly reflect the quality of the 
solutions produced by the constructive heuristics asp and cep, against the quality 
of those produced by the use of tabu search for the solution of the circuit partitioning 
problem. 

The behavior of algorithm TS-CPP is further illustrated through the graphics 
in figures 12 to 15. The iteration counter is represented along the horizontal axis. 
For each iteration, the value c(s) of the objective function for the current solution 
s is plotted. The underlying stepwise curve gives the current weighted value aK of 
the first criterion, i.e. the number of subcircuits in the current partition. Again, we 
notice that these results do not include the application of the pack_together procedure. 
These figures illustrate the important role played by the objective function proposed 
in section 4.5. While the heuristic seems to behave as a hill-descending algorithm 
with respect to the primary criterion, the use of the more complex three-term 
objective function c(s) seems to be very appropriate. The latter leads algorithm 
TS-CPP to escape from many local optima, guiding the search towards much better 
solutions which would not be found if only the first criterion was taken into account. 

In most of the cases, the best feasible solution found by the basic tabu search 
algorithm contains several small subcircuits which may be packed together without 
violating the testability condition, leading to a smaller number of subcircuits. In 
tables 4 and 5, we report a sample of the final results obtained through the use of 
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Table 2 

Results for the medium-size circuits with L = 15. 

L = 15 C-4 C-5 C-6 C-7 

asp cep asp cep asp cep asp cep 

Initial 
solution 
algorithm 

TS-CPP 
y= 1 

TS-CPP 
7 = 2  

TS-CPP 
7 = 3  

TS-CPP 
7 = 4  

TS-CPP 
y = 5  

TS-CPP 
7 = 6  

TS-CPP 
y = 7  

TS-CPP 
7 = 8  

TS-CPP 
7 = 9  

TS-CPP 
7 = 1 0  

TS-CPP 
y=  11 

TS-CPP 
7= 12 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

34 25 36 38 52 53 68 71 
166 137 287 299 447 445 851 762 

14 4 32 7 50 16 1021 44 

34 23 34 32 50 50 65 67 
134 108 188 195 341 320 747 636 
30 28 82 89 143 146 1530 316 

34 14 34 32 49 51 65 66 
134 108 187 183 321 306 743 625 
32 66 81 89 141 209 1906 359 

34 12 34 32 49 51 64 63 
137 106 185 179 319 303 717 616 
30 68 85 89 144 154 1726 604 

13 12 24 14 47 51 64 60 
113 121 160 158 307 294 692 580 
102 62 284 296 164 208 1970 771 

16 13 15 15 47 50 64 58 
125 119 145 164 301 290 675 555 
103 52 293 302 201 158 2905 1284 

16 12 15 18 48 49 64 57 
121 115 151 160 298 279 646 544 
73 76 295 301 257 169 2966 1290 

14 13 15 15 47 48 56 59 
132 117 161 170 301 273 609 552 
61 110 207 299 149 291 2804 1331 

14 17 15 19 46 48 53 58 
140 126 164 172 285 268 570 548 
67 114 281 144 152 190 2938 1307 

15 14 16 16 40 48 50 47 
129 140 166 164 239 271 561 498 
70 83 217 227 414 182 2869 1356 

15 15 19 21 39 32 51 46 
122 149 167 159 207 211 595 480 
58 69 320 312 453 482 2918 1353 

16 14 20 17 35 36 50 59 
131 135 170 192 203 222 565 557 
63 51 313 245 448 448 1460 1312 

22 14 18 17 34 31 51 48 
130 125 164 170 209 208 573 496 
115 51 203 157 470 366 2929 1334 
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Table 3 

Results for the medium-size circuits with L = 20. 

L = 20 C-4 C-5 C-6 C-7 

asp cep asp cep asp cep asp cep 

Initial 
solution 
algorithm 

TS-CPP 
7=1  

TS-CPP 
7 = 2  

TS-CPP 
7 = 3  

TS-CPP 
) ,=4  

TS-CPP 
) ,=5  

TS-CPP 
7 = 6  

TS-CPP 
7 = 7  

TS-CPP 
) ' = 8  

TS-CPP 
? '=9  

TS-CPP 
),= I0 

TS-CPP 
),= 11 

TS-CPP 
),= 12 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts  

seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
cuts 
seconds 

subcircuits 
CUtS 

seconds 

subcircuits 
cuts 
seconds 

32 27 30 33 29 36 
149 121 258 252 292 370 

13 4 32 7 35 17 

32 27 29 30 27 33 
118 107 166 157 210 244 
29 26 91 89 116 136 

32 20 29 30 27 33 
118 83 163 150 202 238 
28 91 89 87 119 131 

10 23 29 30 27 33 
109 96 163 147 200 234 
106 36 88 92 117 197 

10 8 13 9 27 33 
110 99 126 121 198 233 
91 98 319 305 199 189 

1I 9 17 9 27 33 
120 111 135 128 195 233 
98 107 324 303 246 151 

10 9 10 19 26 32 
103 103 115 138 191 221 

78 72 298 165 139 185 

10 9 9 11 25 32 
126 109 131 133 173 220 
78 103 319 291 284 194 

I0 9 14 11 24 31 
121 102 131 138 154 204 
63 88 228 305 296 371 

13 11 11 16 22 29 
129 131 131 146 137 192 
65 84 309 317 269 347 

13 10 12 11 25 30 
101 115 131 143 181 198 
75 73 303 229 146 229 

11 10 15 12 24 28 
122 101 153 143 168 173 

82 47 327 214 261 410 

10 12 15 11 24 27 
120 118 144 142 175 180 
62 105 345 278 194 300 

47 
734 
763 

46 
664 
322 

44 
654 
538 

44 
652 
421 

44 
648 
526 

40 
536 

1401 

41 
533 
728 

36 
508 
894 

33 
479 

1229 

34 
499 

1021 

36 
509 

1024 

33 
480 
963 

31 
50O 

1257 

38 
623 

46 

38 
504 
291 

38 
495 
294 

38 
479 
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38 
427 
478 

38 
412 
624 

35 
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1191 

31 
363 
636 

29 
354 

1149 

27 
365 
757 

27 
355 
643 

25 
37O 
774 

26 
395 
698 
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circuit C.3 
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Figure 12. Cost function: circuit C-3, L = 19, 7 = 3, 
initial solution by algorithm asp. 
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circuit C.4 
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Figure 13. Cost function: circuit C-4, L =  15, 7 '=3,  
initial solution by algorithm cep. 
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circuit C.6 
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Figure 14. Cost function: circuit C-6, L = 15, 7'= 12, 
initial solution by algorithm eep. 
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circuit C.8 
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Figure 15. Cost function: circuit C-8, L = 16, 7'= 8, 
initial solution by algorithm cep. 
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Table 4 

Final results for the small- and medium-size circuits. 

C-1 C-2 C-3 C-4 C-5 C-6 C-7 

L= 15 mrl 

cep 

TS-CPP 

subcircuits 14 16 20 24 37 54 76 
cuts 148 171 215 282 472 578 1031 
cut ratio (%) 93 85 56 52 54 46 62 

subcircuits 11 13 13 12 24 42 55 
cuts t22 138 130 137 299 445 762 
cut ratio (%) 76 68 34 25 34 35 46 

subcircuits 7 8 11 10 14 26 38 
cuts 61 70 102 106 158 208 480 
cut ratio (%) 38 39 27 19 18 16 29 
cut reduction (%) 50 49 22 23 47 53 37 
subcircuit reduction (%) 36 38 t 5 17 42 38 31 

L = 17 mrl 

eep 

TS-CPP 

subcircuits 12 13 18 19 32 44 65 
cuts 136 168 219 260 445 528 978 
cut ratio (%) 85 83 57 48 51 42 59 

subcircuits 9 11 12 11 19 36 47 
cuts 109 141 126 137 278 432 726 
cut ratio (%) 68 70 33 25 32 34 43 

subcircuits 6 7 9 10 11 22 31 
cuts 54 65 79 116 138 207 432 
cut ratio (%) 34 32 21 21 16 16 26 
cut reduction (%) 50 54 37 15 50 52 40 
subcircuit reduction (%) 33 36 25 9 42 39 34 

L= 20 mrl 

cep 

TS-CPP 

subcircuits 9 13 15 17 24 37 53 
cuts 122 155 205 252 422 512 904 
cut ratio (%) 76 77 54 46 48 40 54 

subcircuits 7 9 I0 9 15 28 35 
cuts 98 124 128 121 252 370 623 
cut ratio (%) 61 61 33 22 29 29 37 

subcircuits 5 5 8 8 9 19 22 
cuts 55 55 86 99 121 177 370 
cut rato (%) 34 27 22 18 14 14 22 
cut reduction (%) 44 56 33 18 52 52 41 
subcircuit reduction (%) 29 44 20 11 40 32 37 

p rocedure  p a c k _ t o g e t h e r  coup led  with the tabu search heuris t ic  and p rocedu re  

m a k e _ f e a s i b l e ,  as descr ibed  in f igure  11. These  results ref lect  the e f fec t iveness  o f  

p rocedure  p a c k _ t o g e t h e r  as a pos t -op t imiza t ion  c o m p o n e n t  o f  a lgor i thm T S - C P P .  

In table 4, we give  the results obta ined  for  the small-  and med ium-s i ze  circui ts  

fo r  L =  15, 17, and 20 by a lgor i thms m r l  (Rober ts  and La la  [32]),  c e p  (Davis -  
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Table 5 

Final results for the large-size circuits. 

L= 15 C-8 C-9 L= 16 C-8 C-9 

cep subcircuits 52 118 cep subcircuits 50 104 
cuts 742 1527 cuts 753 1427 
cut ratio (%) 31 43 cut ratio (%) 31 41 

TS-CPP subcircuits 41 60 TS-CPP subcircuits 38 52 
cuts 561 657 cuts 552 558 
cut ratio (%) 23 19 cut ratio (%) 23 16 
cut. red. (%) 24 57 cut. red. (%) 27 61 
subcirc, red. (%) 21 49 subcirc, red. (%) 24 50 

L = 17 C-8 C-9 L = 18 C-8 C-9 

cep subcircuits 46 97 eep subcircuits 34 87 
cuts 743 1407 cuts 567 1334 
cut ratio (%) 31 40 cut ratio (%) 23 38 

TS-CPP subcircuits 36 49 TS-CPP subcircuits 31 43 
cuts 554 540 cuts 491 517 
cut ratio (%) 23 15 cut ratio (%) 20 15 
cut red. (%) 25 62 cut red. (%) 13 61 
subcirc, red. (%) 22 49 subcirc, red. (%) 9 51 

L= 19 C-8 C-9 L=20  C-8 C-9 

cep subcircuits 31 83 cep subcircuits 22 77 
cuts 541 1328 cuts 406 1297 
cut ratio (%) 22 38 cut ratio (%) 17 37 

TS-CPP subcircuits 31 42 TS-CPP subcircuits 23 38 
cuts 540 556 cuts 403 506 
cut ratio (%) 22 16 cut ratio (%) 17 14 
cut red. (%) 0 58 cut red. (%) 1 61 
subcirc, red. (%) 0 49 subcirc, red. (%) 0 51 

M o r a d k h a n  [12], and D a v i s - M o r a d k h a n  and Rouca i ro l  [14]) and T S - C P P  (using 

a lgo r i thm c e p  fo r  the genera t ion  o f  the initial solut ion) .  F o r  each  c i rcui t  and each  

a lgor i thm,  we presen t  the n u m b e r  o f  subcircui ts ,  the n u m b e r  o f  cuts,  and the rat io 

b e t w e e n  the  n u m b e r  o f  cuts  and the total  n u m b e r  o f  logical  gates  and ou tpu ts  in 

the circui t .  Fo r  a lgor i thm T S - C P P ,  we also g ive  the percen tua l  r educ t ion  in the 

n u m b e r  o f  subci rcui ts  and cuts with respec t  to the solut ion ob ta ined  by  a lgo r i t hm 

cep .  T h e  same resul ts  are r epor ted  in table  5 fo r  the la rge-s ize  c i rcui ts  f o r  L rang ing  

f r o m  15 to 20. The  resul ts  o f  a lgor i thm m r l  fo r  these circui ts  were  not  ava i lab le  

in the l i terature .  
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Number of subcircuits for L=20. 
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Figure 16. Number of subcircuits in the best solution 
found by each algorithm for the small-size circuits (L = 20). 
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To further illustrate the typical relative efficiency of the four algorithms 
investigated in this work (mrl, asp, cep, and TS-CPP), figures 16 and 17 are bar 
graphs indicating, respectively, the number of subcircuits and the number of cuts 
in the best feasible solutions found for the small-size circuits by the four algorithms 
for L = 20. 
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Number of cuts for L=20, 
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Figure 17. Number of cuts in the best solution found 
by each algorithm for the small-size circuits (L = 20). 
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6. Conclusions 

In this work, we have developed a tabu search algorithm for the circuit 
partitioning problem in the framework of the parallel pseudo-exhaustive logical test 
of  integrated combinational circuits. The main features of our algorithm are: (i) the 
use of reduced neighborhoods defined by moves involving only a subset of boundary 
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nodes, whose size vanishes with the increase in the number of iterations; (ii) complex 
moves which entail several resulting moves, although the variations in the cost 
function are easily computable; (iii) a bi-criteria cost function combining the number 
of subcircuits and the number of cuts, which simultaneously adds a diversification 
strategy to the search; and (iv) the use of a bin-packing heuristic as a post-optimization 
step. 

The numerical results reported in the last section for a set of ISCAS benchmark 
circuits point out the adequacy of the proposed approach for the solution of the 
circuit partitioning problem. The search mechanism has systematically guided the 
algorithm to improve the initial solutions and to escape from local optima. 

The solutions obtained by algorithm TS-CPP have been compared with those 
obtained by algorithm cep, the best one available so far in the literature. The 
average reduction in the number of subcircuits was approximately 30% with respect 
to the latter, while the average reduction in the number of cuts ranged from 45% 
for the small-size circuits to 37% for the large-size circuits. Especially remarkable 
are the results observed with L = 20 for the largest benchmark circuit C-9, with 
3405 gates and 7552 links, when the solution obtained by algorithm TS-CPP improved 
(i.e. reduced) by more than 50% the number of subcircuits and by more than 60% 
the number of cuts. 

The larger computational times, with respect to those observed for other 
constructive heuristics in the literature, are largely compensated by the improvements 
in the objective function, in terms of the number of subcircuits and cuts. Moreover, 
these computational times should not be even considered as large, because they 
represent a very small fraction of the overall design and fabrication costs on an 
industrial scale. The critical issue is the total duration of the test, which is kept 
within reasonable bounds through the testability condition derived from the partition 
parameter. 
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