
Annals of Operations Research 50(1994)I-36 1

A graph partitioning heuristic for the parallel pseudo-
exhaustive logical test of VLSI combinational circuits

Alexandre A. Andreat ta and Celso C. Ribeiro

Department of Computer Science, Catholic University of Rio de Janeiro,
Rua Marquis de Sao Vicente 225, Rio de Janeiro 22453, Brazil

E-mail: { andreatta,celso } @inf.puc-rio.br

The logical test of integrated VLSI circuits is one of the main phases of their design
and fabrication. The pseudo-exhaustive approach for the logical test of integrated circuits
consists in partitioning the original circuits to be tested into non-overlapping subcircuits
with a small, bounded number of subcircuits, which are then exhaustively tested in
parallel. In this work, we present an approximate algorithm for the problem of partitioning
integrated combinational circuits, based on the tabu search metaheuristic. The proposed
algorithm presents several original features, such as: the use of a reduced neighborhood,
obtained from moves involving only a subset of boundary nodes; complex moves which
entail several resulting moves, although the variations in the cost function are easily
computable; a bi-criteria cost function combining the number of subcircuits and the
number of cuts, which simultaneously adds a diversification strategy to the search; and
the use of a bin-packing heuristic as a post-optimization step. The behavior of the
proposed algorithm was evaluated through its application to a set of benchmark circuits.
The computational results have been compared with those obtained by the other algorithms
in the literature, with significant improvements. The average reduction rates have been
of the order of 30% in the number of subcircuits in the partition, and of the order of
40% in the number of cuts.

Keywords: Integrated circuits, VLSI design, logical test, circuit partitioning, graph
partitioning, tabu search.

1. Introduction

The logical test o f in tegrated VLSI circuits is one o f the main phases o f their

des ign and fabricat ion. Tes t ing a circui t amounts to submit t ing it to d i f fe ren t input

pat terns and check ing whe ther the observed outputs are exac t ly those expec t ed

accord ing to the design of the circuit , in order to evaluate i f the logical gates are
behav ing as expec ted (i.e. p roduc ing the correct , des i red outputs associa ted with

each input pat tern) and to ensure that phys ica l faults do not occur . A m o n g the

severa l approaches avai lable for the logical test o f combina t iona l circuits , we ma y
find: (i) exhaus t ive test, (ii) faul t s imulat ion, and (iii) p seudo-exhaus t ive test. In the

latter approach, the circuit to be tested is decomposed into subcircuits with a relat ively

© J.C. Baltzer AG, Science Publishers

2 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

small, bounded number of inputs. Subsequently, each subcircuit is exhaustively
tested. Although it does not cover all possible logical faults, this approach does not
depend on a fault simulation model and ensures a 100% fault coverage for single
stuck-at faults (lines always fixed at the same logical level).

The pseudo-exhaustive approach for logical testing was introduced in the
literature in the 1980's. The first work on this subject seems to be that of Bozorgui-
Nesbat and McCIuskey [7]. If the original circuit is conveniently partitioned into
non-overlapping subcircuits, this approach may be speeded up by testing all subcircuits
in parallel. In that case, the total duration of the test will be the same as that of the
subcircuit with the largest number of inputs. Patashnik [30] has shown that the
decision version of the problem of optimally decomposing a combinational circuit
into testable subcircuits is NP-complete. Suitable algorithms are needed for partitioning
the original circuit, in order to obtain as few subcircuits as possible (to ensure a
high fault coverage and to minimize the number of testers required) and not too
many cuts (which would increase too much the cost of the additional hardware
which has to be inserted at each point where the original circuit is cut). Roberts and
Lala [32] proposed the first general heuristic for this problem. However, their
algorithm has some drawbacks [13], due to the nature of an unsuitable implicit
objective function which very often leads to solutions which violate the testability
condition. New algorithms have recently been proposed by Davis-Moradkhan and
Roucairol [13], with significantly better results in terms of the number of subcircuits
in the partition.

The main goal of this work consists in the development of a new algorithm
for circuit partitioning based on the tabu search metaheuristic, aiming at its use in
the framework of the pseudo-exhaustive approach for logical test. The combinational
circuits are modelled as acyclic directed graphs. Let T be the available time for
testing all subcircuits in parallel. In addition to the circuit to be partitioned, another
input data for this problem is the maximum number L of inputs in each subcircuit,
such that 2 L test patterns may be generated and applied to the largest subcircuit, and
the results compared with those defined during the design phase, in total parallel
time less than or equal to T. Then, the partitioning problem amounts to decomposing
the circuit to be tested into non-overlapping subcircuits with no more than L inputs
each, subject to some connectivity constraints.

The paper is organized as follows. In section 2, we introduce the main aspects
of the logical test of integrated circuits. We also give more details about the pseudo-
exhaustive approach for logical test. The circuit decomposition problem is formulated
in section 3, where the currently existing algorithms for this problem are reviewed.
In section 4, we recall the basic elements of the tabu search metaheuristic and we
propose a tailored algorithm for the circuit partitioning problem. Issues such as the
definition of solutions, moves and their attributes, tabu and candidate lists, cost
function and diversification, aspiration and stopping criteria are discussed in detail.
The section concludes with the detailed presentation of the heuristic in algorithmic

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 3

form. Subsequently, in section 5, we present the computational results obtained
through the application of the tabu search algorithm to a set of benchmark circuits.
The solutions obtained by this heuristic are compared with those given by the other
algorithms found in the literature, showing significant improvement both in the
number of cuts and in the number of subcircuits. Finally, some conclusions are
drawn in the last section.

2. Pseudo.exhaustive approach for logical test

In this section, we first give an overview of logical test procedures for
combinational integrated circuits. A broader vision of this subject may be found in
references [8, 29]. Next, we describe in detail the pseudo-exhaustive approach for
logical test.

Combinational circuits are integrated digital circuits where the output at any
time is a function depending only on a combination of the current inputs. They
implement Boolean functions such as z =f(x) : {0, 1 }n ~ {0, 1 }m, n and m integers,
where x is the Boolean input vector (or pattern) and z is the Boolean output vector.
A sequential circuit is one implementing a sequential function whose outputs depend
not only on the current inputs, but also on previous inputs, i.e. on the current state
of the circuit.

The logical test of a combinational integrated circuit is a three-step procedure:
(i) generation of input test patterns, (ii) application of the test patterns to the circuit,
and (iii) comparison of the output vectors with the expected outputs, previously
obtained by the application of the same input test patterns to the model of the
circuit. Every discrepancy is an error, whose cause is called a physical fault. The
physical faults may be classified into logical faults and parametric faults.

Logical faults are those that change the logical function implemented by an
element of the circuit. Many physical faults may be modelled as logical faults, e.g.
short-circuits and open circuits between signal lines and stuck-at faults (signal lines
permanently stuck at some specific logic value). They are also called DC faults,
since they may be detected in a frequency smaller than the operating one. In
this work, we consider only the detection of logical faults. The three types of logical
faults considered here are: (i) stuck-at-0 faults (a line is fixed at the logical level
"0"), (ii) stuck-at-1 faults (a line is fixed at the logical level "1"), and (iii) short-
circuits between two lines. Parametric faults are those arising from changes in the
parameters of the circuit, which depend on the technology used for its construction,
such as the speed of signal propagation. They cannot be dealt with as
logical faults and are also called AC faults, since they may be detected only at the
operating frequency. In most cases, they are originated during the manufacturing
process.

Two major issues in the logical test of integrated circuits are their controllability
and observability. Controllability concerns the possibility of accessing and applying

4 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

a complete set of input test patterns to a circuit through external inputs or control
points. Observability is the capability of observing the responses of the circuit to
different input vectors at some external outputs or control points. The cost of the
required additional hardware and the time needed for testing the circuits are other
major issues. We may find the following among the approaches available for the
logical test of combinational circuits:

Exhaustive test. In this type of test, all 2 n possible input patterns are applied
to a circuit with n inputs. Its main advantage comes from the fact that it
allows checking for any possible faults, i.e. it ensures the exhaustive coverage
of the whole set of logical faults. However, it is not practical for large size
circuits, due to the high number of input patterns which must be applied to
the circuit.

Fault simulation. This approach was proposed as an alternative to the previous
one, aiming at the reduction in the number of test patterns which have to be
applied to the circuit. In this case, a simulation model generates the most
important to be detected and/or the most likely to happen faults. Next, a set
of input patterns which allows the determination of these faults is computed
and the behavior of the circuit is evaluated with respect to these inputs.
Among other drawbacks of this approach, we should mention the complexity
of the determination of both a suitable fault model and an appropriate set of
input patterns with a large fault coverage.

Pseudo-exhaustive test. The circuit to be tested is decomposed into subcircuits,
each of which with a relatively small, bounded number of inputs. Subsequently,
each subcircuit is exhaustively tested. Although it does not cover all possible
logical faults, this approach does not depend on a fault simulation model and
ensures the coverage of all single stuck-at faults.

The use of fault simulation models for the generation of test patterns proved
to be useless in the case of VLSI circuits [7], firstly because the fault model based
on the hypothesis of the inexistence of simultaneous multiple faults is no longer
valid, while more complex models dealing with multiple faults substantially increase
the complexity of the generation of test patterns. The automatic generation of test
patterns becomes very costly and, in typical cases, does not provide a sufficiently
high fault coverage. Also, an expensive tester is required, since many test patterns
are produced by the test generator. Moreover, many testers should be used, since
the tester is tied up to a circuit for a long period of time. Finally, the simulation
time increases exponentially as the circuit grows in size.

These concerns are not recent. Design techniques appropriate for dealing
with these difficulties have followed the increase in the rate of integration. Among

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 5

the main ideas, we may find the design for testability (DFT) and the autonomous
test. A guide of design techniques aimed at circuit testability may be found in [12].
In the case of VLSI, these ideas evolved to the so-called built-in self-test (BIST)
technique for the autonomous test. Additional hardware is placed inside the
circuit to be tested, in order to reduce the complexity of the external test. This
additional hardware (i.e. the tester) should be small when compared to the circuit
to be tested. Moreover, it should itself be testable from outside, and should not
degrade the performance of the original circuit. McCluskey [24,25] presented an
overview of BIST techniques and structures used to replace functions of the external
tester.

BIST and DFT techniques are always recommended when field repair costs
and tester costs are relevant issues. Moreover, the cost of testing an integrated
circuit represents a very small fraction of its design and fabrication costs on an
industrial scale. A cost-benefit analysis, taking into account factors such as the
increase in the rate of coverage and the reduction in maintenance costs, points out
considerable gains which may be obtained from the concern with circuit testability
in VLSI design.

Large combinational integrated circuits should then be decomposed into
subcircuits with a small, bounded number of inputs, in such a way that each subcircuit
may be tested exhaustively. This approach corresponds to the so-called pseudo-
exhaustive test, which was first proposed by Bozorgui-Nesbat and McCluskey [7].
Circuit decomposition implies cutting some lines and, consequently, in the creation
of new inputs and outputs, the so-called pseudo-inputs and pseudo-outputs. Lines
are cut by selector circuits, as illustrated in figure 1. In operating mode, the test line
stays at the logical level "0", allowing signal propagation from gate P to gate Q,
while inhibiting the pseudo-input. On the contrary, in test model the test line
remains at the logical level "1", habilitating the pseudo-input and inhibiting signal
propagation from gate P to gate Q. Both in operating mode and in test mode, the
pseudo-output may be externally observed.

Advantages and drawbacks of the pseudo-exhaustive test approach are discussed
in [2, 6, 27]. Among the advantages, we notice that it (i) ensures the coverage of all
single stuck-at faults, without making use of any fault simulation model, (ii) detects
any short-circuit fault, provided that the defective circuit remains a combinational
one and that the short-circuit involves two lines in the same subcircuit, (iii) detects
all multiple stuck-at faults, provided that they are non-redundant and internal to the
same subcircuit, and (iv) does not depend on any fault model and, accordingly, is
not limited to the detection of any specific class of faults.

In order to allow that all subcircuits be tested in parallel, the original circuit
has to be decomposed into non-overlapping subcircuits, i.e. it has to be partitioned
into subcircuits with no gates in common. Then, the total duration of the test will
be the same as that of the largest subcircuit in terms of the number of inputs. The
circuit partitioning problem is studied in the next section.

6 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Two intemonnecfed subcircuits

• p [

I
i
i

Subcircuit B

['!

! i

i i

i i

Subcircuit A

Subcircuir B

in~r~d hara~,~m (setaaor circuit)

P , . s t p s e u d ~ , i n p . (p e) ~

1:
I

- pseudo-output (ps) Subcitcuit A

Figure 1. Cut of a line and selector circuit.

3. Circuit partitioning

Given that the total duration of the pseudo-exhaustive test should not exceed
a certain time T, let L be a parameter equal to the maximum number of inputs such
that 2 L test patterns may be generated and applied to the largest subcircuit, and the
outputs compared with the correct ones, in total time less than or equal to T. Then,
the circuit partitioning problem consists in finding a decomposition of the circuit
to be tested into non-overlapping circuits with no more than L inputs and at least
one logical gate each.

Different objective functions may be associated with this decomposition,
among them (i) the minimization of the number of cuts, and (ii) the minimization
of the number of subcircuits. Very often, a good solution with respect to one
criterion is also a good one concerning the other. However, this is not necessarily
true and examples illustrating situations where these two objectives are conflicting
may be easily constructed [1].

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 7

The first criterion corresponds to the minimization of the cost of the additional
hardware inserted into the circuit to be tested. We recall that each cut used to
partition the original circuit corresponds to the insertion of a selector circuit used
for separating the subcircuits while in test mode. Moreover, there is a limit on the
maximum numbers of cuts, which depends on the space available on the chip and
on the design techniques. There are several reasons for using the second criterion.
A smaller number of subcircuits in the partition leads to a higher fault coverage
rate. If the pseudo-exhaustive test is performed through external testers, there will
be one tester for each subcircuit. On the other hand, if a BIST technique is used
in the design of the circuit, each subcircuit will be tested by an embedded linear
feedback shift register. In both cases, a smaller number of subcircuits leads to
reduced hardware costs.

Let G = (X, A) be the directed acyclic graph associated with a combinational
circuit C, where X denotes the set of components (inputs, logical gates, and outputs)
and A the set of lines used for signal propagation. The in-degree and the out-degree
of each node v E X are denoted by d-(v) and d+(v), respectively. Given a subset
of nodes V c X, its input-neighborhood CO-(V) is defined as the set of nodes which
are not in V that have at least one successor in V, i.e. co-(V) = { v ~ X I v ~ V and
3w ~ V such that (v, w) CA}. The set of nodes X is formed by three non-empty
disjoint subsets E, P, and S, where E is the set of inputs, P is the set of logical gates,

~ ' q ~ l . . . _ J A

Figure 2. Representation of a combinational circuit by a graph.

and S is the set of outputs of the combinational circuit C. Figure 2 illustrates a
combinational circuit and its representation as a directed graph [13].

The problem of partitioning the combinational circuit C, represented by the
graph G = (X, A), into testable subcircuits corresponds to finding a partition of X

8 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

into a non-fixed number of K subsets Xk, k = 1 K, such that the induced
subgraphs Gk = (Xk, Ak) satisfy the following conditions:

• X = U r = I X k a n d X k n X e = O , V k ~ : t , (k,e) E{1, K}2;

n k + c k < L, Vk = 1 , . . . , K, where n k = IX k N E I is the number of inputs in Gk
and Ck = Ico-(Xk) l is the number of gates in the input-neighborhood of Xk
which originated pseudo-inputs;

• X k n P ¢ O , V k = 1 K; and

• G k = (Xk , A k) is either a connected graph or formed by disjoint subgraphs
satisfying the above condition, k/k = 1 K.

The second condition above ensures the testability of each subcircuit involved
in the partition. Each time an arc (i.e. a line of the original circuit) is cut, both a
pseudo-input and a pseudo-output are created. Let G ÷ = (X ÷, A ÷) be the augmented
graph obtained by the partitioning algorithm, with X ÷ = X u E ' u S', where E ' is
the set of pseudo-inputs and S' is the set of pseudo-outputs. Let E ÷ = E u E ' and
S ÷ = S u S" be, respectively, the set of inputs and outputs of G ÷. The graph G ÷
consists of K disjoint subgraphs G~" = (X~', m~-), k = 1 K, where the subsets
X~ satisfy the above conditions. The testability condition may be represented by
the inequality I X~ n E+I < L, k = 1 K.

As an example, consider the graph in figure 3. Nodes 1 to 6 are the inputs.
Figure 4 illustrates one solution of the partitioning problem for the parameter L = 4,
with K = 6 subcircuits: Xt = {1, 8, 9, 13, 16}, nl = 1 and cl = 2; X2 = {15, 22, 25},
n2 = 0 and c2 = 2; X 3 = {23, 26}, n 3 = 0 and c3 = 4; X4 = {2, 10}, n 4 = 1 and c4 = 1;
X5 = {24, 27},n 5 = 0 a n d c 5 = 2; andX6 = {3,4, 5 ,6,7, 11, 12, 14, 17, 18, 19, 20, 21, 28},
n 6 = 4 and c6 = 0. The pseudo-inputs and pseudo-outputs are denoted by pe and ps,
respectively, and indexed from 1 to 12.

The graph partitioning problem formulated above may also be modelled as
a set partitioning problem with an exponential number of variables, or as a general
0 - 1 integer programming problem with O(tX I 3) variables. However, as pointed out
by Davis-Moradkhan [12], these formulations are not practical for real-size problems.
Patashnik [30] has shown through a polynomial transformation from CLIQUE [15]
that the decision version of the problem of segmenting a circuit into K testable
subcircuits is NP-complete, as well as many restricted versions of it. Several algorithms
have been proposed in the literature for circuit decomposition aiming at the pseudo-
exhaustive logical test.

The first heuristic for the circuit partitioning problem was proposed by Bhatt
et al. [6], who gave a partitioning algorithm for circuits in which the out-degree of
every node is less than or equal to its in-degree. Other algorithms for circuits with
special structure are also available in the literature. Roberts and Lala [32] have

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 9

Figure 3. Combinational circuit to be partitioned represented by a graph.

proposed a general heuristic based on the relaxation of the testability condition, in
which the total violation ~r= 11L - nk - ckl is incorporated into the objective function
as a penalty. This algorithm very often obtains solutions which greatly violate the
testability condition. Moreover, this violation becomes larger, and many small
subcircuits with few inputs are created, when the in-degree of the logical gates
increases.

Davis-Moradkhan and Roucairol [12-14] have proposed two heuristics, asp
and eep, for this problem. Both heuristics are constructive and perform better than
that of Roberts and Lala. Their time complexity is O(I P I • I A I) and the second one
is particularly fast. In the next section, we present a new heuristic for the circuit
partitioning problem, based on the tabu search metaheuristic and using the eep
algorithm of Davis-Moradkhan and Roucairol for the generation of initial solutions.

10 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

~~ Subcircuit 4

Subcircuit 2

E
Subcircuit 1

Subcircuit 3

Subcircuit 5

Figure 4. A partition into K = 6 subcircuits.

4. A tabu search heuristic

To give a general description of the tabu search metaheuristic, we consider
a general combinatorial optimization problem (P) formulated so as to

minimize c(s)

subject to s E S,

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 11

where S is a discrete set of feasible solutions. Local search approaches for solving
problem (P) are based on search procedures in the solution space S starting from
an initial solution So E S. At each iteration, a heuristic is used to obtain a new
solution s' in the neighborhood N(s) of the current solution s, through slight changes
in s. Every feasible solution g ~ N(s) is evaluated according to the cost function
c(.), which is eventually optimized. The current solution moves smoothly towards
better neighbor solutions, enhancing the best obtained solution s*. The basic local
search approach corresponds to the so-called hill-descending algorithms, in which
a monotone sequence of improving solutions is examined, until a local optimum is
found.

A move is an atomic change which transforms the current solution s into one
of its neighbors, say ~-. Thus, move_value = c(~) - c(s) is the difference between the
value of the cost function after the move and the value of the cost function before
the move. Hill-descending algorithms always stop in the first local optimum. To
avoid this drawback, several metaheuristics have been proposed in the literature,
namely genetic algorithms, neural networks, simulated annealing, and tabu search [20].
They all have an essential common approach: the use of certain mechanisms which
permit that the search for neighbor solutions takes directions of increasing the cost
of the current solution in a controlled way, as an attempt to escape from local
optima. Among them, tabu search is an adaptive procedure for solving combinatorial
optimization problems, which guides a hill-descending heuristic to continue exploration
without becoming confounded by the absence of improving moves, and without
falling back into a local optimum from which it previously emerged [17-19,23].
At every iteration, an admissible move is applied to the current solution, transforming
it into its neighbor with the smallest cost. Moves towards a new solution that
increase the cost function are permitted. In that case, the reverse move should be
prohibited along some iterations, in order to avoid cycling. These restrictions are
based on the maintenance of a short-term memory function which determines how
long a tabu restriction will be enforced or, alternatively, which moves are admissible
at each iteration. Figure 5 gives a procedural description of the basic tabu search
metaheuristic.

The tabu tenure is an important feature of the tabu search algorithm, because
it determines how restrictive is the neighborhood search. The performance of an
algorithm using the tabu search metaheuristic is intimately dependent on the basic
characterizing parameters, namely the time that the short memory function enforces
a certain move to be tabu, and the maximum number of iterations max_moves

during which there may be no improvement in the best solution. If the tabu tenure
is too small, the probability of cycling increases. If it is too large, there is a
possibility that all moves from the current solution are tabu and the algorithm may
be trapped. However, it should be pointed out that cycle avoidance is not an ultimate
goal of the search process. In some instances, a good search path will result in
revisiting a solution encountered before. The broader objective is to continue to

12 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Algorithm Tabu-Search
begin

Initialize the short term memory function
Generate the initial solution so
8~ 8* ~--" 80
while (number of moves without improvement < max .moves) do
begin

best.move.value ,-- oo
for each (candidate.move) do
begin

if (candidate_move is admissible) then
begin

Obtain the neighbor solution g by applying candidate_move to the current solution s
move_value , - c(.~) - c(s)
i f (move_value < best_move_value) then
begin

best_move.value ~-- move_value
s' , - -~

end. l f
end..if

end_for
if (best.move_value > O) then update the short term memory function
if (e(s') < e(s ')) t h e n s" *-- s '
S ~ - . . - S t

end_while
end_Tabu-Search

Figure 5. Basic description of the tabu search metaheuristic.

stimulate the discovery of new high-quality solutions. One implication of choosing
stronger or weaker tabu restrictions is to render smaller or longer tabu tenures
appropriate [21].

For large problems, in which N(s) may have too many elements, or for
problems where these elements may be costly to examine, the aggressive choice
orientation of tabu search makes it highly important to isolate a candidate subset
of the neighborhood, and to examine this subset instead of the entire neighborhood [21].
Other advanced features, improvements and extensions to the basic tabu search
procedure will be commented on in the next sections, in which the basic tabu search
heuristic is specialized into a tailored algorithm for the solution of the circuit
partitioning problem.

4.1. S O L U T I O N S , N E I G H B O R H O O D , A N D C A N D I D A T E LISTS

Each solution s of the circuit partitioning problem for the circuit graph G = (X, A)
is represented by the augmented graph G+= (X ÷, A÷), formed by the subgraphs
a ~ = + + (X k , A k), k = 1 , K, where X + = X w E' u S , with E' being the set of
pseudo-inputs and S" the set of pseudo-outputs. The subgraphs G~ = (X~', A~),
k = 1 K, satisfy the following conditions:

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic I3

X + K + + • = U k = l X k and X k nX'~ =O, Vk~:g, (k,g) E {1 K}2;

• X ~ n P ~ O , M k = I K ; a n d

• G~ = (X~, a~) is either a connected graph or formed by disjoint subgraphs
satisfying the above condition, Vk = 1 , . . . , K.

The subgraphs G~ are not enforced to satisfy the testability constraint, now written
as t X~ n (E u E')I < L. Accordingly, the algorithm is allowed to visit infeasible
(i.e. non-testable) solutions.

The neighborhood N(s) of the current solution s is formed by all solutions
which may be obtained from s by transferring one gate from one of its subcircuits
to another one. The target subcircuit may be either an existing one or a new
subcircuit, characterizing in the latter case the creation of a new subcircuit. Moving
a gate from one subcircuit to another entails several resulting moves, which will be
detailed in the next section. As noticed before, the neighbor solutions do not necessarily
satisfy the testability condition.

We define the boundary of the graph G~ = (X~ + , A k), k = 1 K, associated
with some subcircuit, as the set of gates {p ~ X~ n P IF(p) n (E ' u S') ~ 0} (where
F (p) denotes the set of predecessors and successors of node p within graph G+),
i.e. we say that a gate belongs to the boundary of a subcircuit if it has at least one
pseudo-input among its predecessors or one pseudo-output among its successors.

The reduced neighborhood of the current solution s is then defined as the
subset formed by all neighbor solutions in N(s) which may be obtained by moving
only boundary gates. The set of moves in the reduced neighborhood is generated
at the first iteration and is updated at each next iteration. Only candidate solutions
in this reduced neighborhood are examined. This choice to reduce the size of the
neighborhood is based on the idea that, most of the time, the reduction in the
number of cuts leads to a smaller number of subcircuits. When the number of
subcircuits cannot be reduced, we want to reduce the number of cuts. However,
moves based on transferring non-boundary gates will necessarily increase the number
of cuts, without any effect in the number of subcircuits. For this reason, they may
be discarded for the sake of accelerating the neighborhood search. As a nice
consequence, it should be noticed that the number of admissible moves vanishes
with the number of iterations performed by the algorithm, as far as the number of
cuts diminishes.

4.2. MOVES

We have seen before that each move is characterized by taking one gate from
the boundary of a source subcircuit and transferring it to another subcircuit. The
source subcircuit is necessarily one of those in the current partition, while the target
subcircuit may be either an existing one or a new subcircuit created with this move.

14 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Source subcircuit Target subclrcuit

Before the move:

After the mol

Figure 6. Complete move involving all possible situations.

Whenever a gate p is transferred from the source subcircuit to the target one,
it carries to the target subcircuit all its inputs, pseudo-inputs and pseudo-outputs,
entailing several resulting moves as a consequence. We illustrate in figure 6 a
complete move, in which all the possible situations occur (only the relevant nodes

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 15

and links are represented in this figure). By the end of the move, five cuts are
created (I, II, III, IV, V), while four others are eliminated (0, 3, 5, 7). The steps
described below must be carried out during the evaluation of a move (refer to the
specific figure for each case, as well as to figure 6 for all examples).

• Analysis of the successors of gate p

- Successor pseudo-outputs: each of them is moved together with p to the
target subcircuit. If the corresponding pseudo-input already belongs to it,
then the cut is eliminated and the original link is restored (e.g. the old cut
(ps0, peo) is eliminated, see figure 7).

Source Subcircuit Target Subcircuit

Before the m o v e :

After the m o v e :

I a

Figure 7. Successor pseudo-outputs.

Successor gates: they should remain in the source subcircuit. The links
between p and each of its successor gates in the source subcircuit are
broken, leading to the substitution of each successor gate by a pseudo-
output in the target subcircuit, while the corresponding pseudo-input will
feed the successor gates in the source subcircuit (e.g. the new cut (psi, pex)
separates p from its successor gates Ps and P9, which remain in the source
subcircuit, see figure 8).

16 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Source subcircuit Target subcircuit

Before the m o v e :

After the m o v e :

Figure 8. Successor gates.

• Analysis of the predecessors of gate p

- Predecessor gates: as in the previous case, they should remain in the
source subcircuit. The links between p and each of its predecessor gates
in the source subcircuit are broken, leading to the substitution of each
predecessor gate by a pseudo-input which will feed p in the target subcircuit,
while the corresponding pseudo-output will be fed by the predecessor gate
in the source subcircuit (e.g. the new cuts (psn, peIi) and (psm, peru)
separate p, respectively, from its predecessor gates P6 and PT, which remain
in the source subcircuit, see figure 9). If any predecessor gate of p already
has a successor pseudo-output whose corresponding pseudo-input belongs
to the target subcircuit, then the link may be established through this old
cut, without it being necessary to create a new one (e.g. gate P5 and the
old cut (ps2, pe2)).

- Predecessor inputs and their successor gates and pseudo-outputs: each
predecessor input of p is moved together to the target subcircuit (see
figure 10). If some predecessor input has other successors different from
p itself, they are treated as the successors of p (e.g. input node e, whose
move leads to the creation of the new cut (psw, pew), as well as to the
elimination of the old cut (ps 3, pe3)).

Source subcircuit Target subcircuit

17

Before themove:

Alter the move:

Figure 9. Predecessor gates.

Source subchcult Target subck'cuR

B e a m the move:

Aner the move:

1

I

Figure 10, Predecessor inputs and their successor gates and pseudo-outputs.

18 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Predecessor pseudo-inputs and their successor gates and pseudo-outputs:
the case of the predecessor pseudo-inputs is very similar to the previous
one. The only difference occurs when the corresponding pseudo-output
belongs to the target subcircuit, when additional steps must be carried out
to establish the links between the predecessors of the pseudo-output and
the successors of the corresponding pseudo-input (e.g. pseudo-input pe 7,
whose move leads to the creation of the new cut (psv, pev) due to maintaining
P3 and P4 in the source subcircuit, as well as to the elimination of the old
cuts (pss, pes) and (ps7, pe7)).

4.3. MEMORY FUNCTION, ASPIRATION AND STOPPING CRITERIA

We adopted a flexible memory function in our tailored tabu search algorithm
for the circuit partitioning problem. A simple, but strongly restrictive attribute is used
to determine the tabu status of each move. Every time a non-improving move is
performed, all other moves involving the same associated gate p will be made tabu
for the next tabu_tenure iterations. The computation of tabu_tenure is dynamically
performed as

tabu_tenure = (maximum~ x { d(v) } - current_degree(v)) •),,

where current_degree(v) denotes the current degree of node v in the extended graph
G ÷ = (X ÷, A+), which may vary as long as new pseudo-inputs and pseudo-outputs are
created. The tabu tenure of each move then depends not only on the gate itself which
was moved, but also on the current iteration. The term maximumvEx { d(v)} gives the
maximum degree among all nodes in the original graph to be decomposed. The larger
the degree of a gate in the current extended graph, the larger its potential to affect
the search, since many cuts may be created or destroyed when a move involving this
gate is performed. Accordingly, moves involving gates that are likely to more affect
the search are made tabu for a shorter number of iterations than those involving gates
with few adjacent nodes. The parameter ~' must be tuned and it is likely to assume
larger values for larger graphs.

One implication of choosing stronger or weaker tabu restrictions is to render
shorter or longer tabu tenures appropriate [21]. Other search strategies could be
entailed by taking other move attributes to define its tabu status, such as the less
restrictive ones def'med by the pairs (gates, target subcircuit) or (gate, source subcircuit),
or those more restrictive defined only by the target subcircuit or the source subcircuit.

Occasionally, it may be interesting that the tabu status of some moves be
overriden as a result of more information gathered during the search. Two such
situations have been identified in the framework of the circuit partitioning problem.
First, the so-called aspiration criterion: a tabu move may be applied whenever it leads
to a solution improving the best one found so far. Second, it may happen that the
set of admissible moves at some iteration be empty, i.e. all moves are tabu: in this

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 19

case, the adopted solution corresponds to the reinitialization of the short-term memory
function, getting rid of the complete tabu list and restarting the algorithm again with
no restrictions.

The overall computational time necessary for obtaining a good partition is not
a major issue, since it is just a small fraction of the total time spent in the design
of the circuit. Accordingly, here we are interested in developing a good algorithm
in terms of solution quality, even if the computational times are long. The stopping
criteria will then be verified whenever the number of moves without improvement
in the best solution or the overall number of iterations attain some maximum limits.
Those limits have been empirically set as, respectively, max_moves = 3 - I P I and
max iterations = [I P I (1'2)] .

4.4. COST FUNCTION AND DIVERSIFICATION

It was shown in section 3 that the number of subcircuits and the number of
cuts are the basic criteria to be optimized in the circuit partitioning problem. As fault
coverage and the cost of the testers are the most relevant issues, the number K of
subcircuits in the partition is the primary criterion to be minimized. In order to guide
the search when improving moves with respect to the primary criterion do not exist,
the number n_cuts of cuts is also incorporated into the objective function.

The number of subcircuits is weighted by a large constant coefficient a, in
order to give a larger weight to the primary criterion and in such a way that improving
moves with respect to it are not discarded due to the existence of moves reducing
the number of cuts which increase the number of subcircuits. Andreatta [1] has
shown that the number of cuts may be reduced by at most 2d;,~, + 1 due to a single
move, where d~ox = maximumv~x{d-(v)} is the largest in-degree among all nodes
representing gates. Then, we should take a > 2d,7,~ + 1 in order to ensure that the
first criterion be always privileged with respect to the second one.

Small violations of the testability condition I X~" n E+I < L may be allowed
for some subcircuits k = 1 , . . . , K, as far as they can be largely compensated by the
possible reduction in the number of subcircuits. Allowing the algorithm to visit
infeasible solutions also introduces a diversification component into the search. An

~,K "jdeviati°n+(k) is incorporated into the objective exponential penalization term z.,k=l "-
function as the third criterion, where deviation+(k) = maximum {0, I X~" n E+I - L}
is the amount by which the testability condition of subcircuit G~ is violated.

The use of an exponential penalty term is coupled with its multiplication by
a constant weight/3, in order to completely avoid large violations. The ratio between
the coefficients a and fl determines the maximum violation of the testability condition
allowed for each subcircuit in the partition. A move leading to a non-testable solution
may only be accepted if other moves reducing the number of subcircuits do not exist.
Andreatta [1] has shown that one should take a > 2fl if the maximum allowed deviation
from L is fixed as equal to two. Therefore, the cost function to be globally minimized
throughout the search is

20 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

K
c(s) = a K + n_cuts + fl ~.~ 2 deviati°n÷(k),

k=l

where s is any solution to the circuit partitioning problem, be it feasible or not. If
s is a feasible solution, then its cost is c(s)= (a + fl)K + n_cuts.

4.5. POST-OPTIMIZATION

A complete description of the tabu search algorithm TS-CPP for the circuit
partitioning problem is given in figure 11, incorporating all aspects previously
discussed in this section. Two additional procedures are incorporated as post-
optimization steps, following the application of the tabu search heuristic:

• Procedure make_feasible is used whenever the tabu search strategy ends the
search failing to find an improving feasible solution, with respect to the
initial one. This procedure builds a feasible (i.e. testable) solution from the
best infeasible solution minimizing c(s) visited during the search.

• Procedure pack_together is used to pack together small subcircuits appearing
in the best feasible solution, which globally do not violate the testability
condition. A list bin-packing heuristic is used, coupled with a mechanism to
evaluate the possible reduction in the number of cuts whenever two subcircuits
are packed together.

5. Computational results

The tabu search algorithm TS-CPP was applied to nine benchmark combinational
circuits presented by Berglez and Fujiwara [4]. The objective was twofold: first, to
tune the parameter values for the tabu search algorithm; second, to compare and
evaluate its efficiency with respect to other algorithms proposed in the literature.
In table 1, we give the basic description of each circuit: the number of inputs, gates,
outputs, and links, as well as the maximum in-degree d~ax and the maximum out-
degree ÷ dmax among all gates in the circuit.

Algorithm TS-CPP was coded in C. The codes of algorithms asp and cep,
also in C, are those kindly given by their authors, M. Davis-Moradkhan and C.
Roucairol. Extensive numerical results obtained on a Sun SPARCstation-2 and
reported by Andreatta [1] are available upon request from the authors. We also
notice that the weights of the cost function have been fixed throughout all computational
experiments at a = 50 and fl = 20. These values satisfy the conditions established
in section 4.4 and their ratio ensures that no subcircuit will have more than L + 2
inputs and pseudo-inputs.

A . A . A n d r e a t t a , C . C . R i b e i r o , A g r a p h p a r t i t i o n i n g h e u r i s t i c 21

Algor i thm T S - C P P
begin

Initialize the short term memory function
Generate the initial solution so

non_improving_moves *- 0
current_iteration *-- 0
best_unfeasible *-- co
Determine the set of candidate moves in the reduced neighborhood of the current solution (boundary gates)
while (non_improving.moves < maz_moves and current.iteration < maz_iterations) do
begin

best_move_value ,-- oo
for each (candidate.move) do
begin

if (candidate.move is admissible or candidate_move satisfies the aspiration criterion) t hen
beg in

Obtain the neighbor solution ~ by applying candidate.move to the current solution s
move.value . - ~(~) - c (s)

if (move.value < best.move_value) t hen
begin

best_move.value *-- move_value

e n d j f
end- l f

end_for
if (best_move.value > 0) t hen update tlle short term memory function
i f (e(s') < c(s ')) t hen
begin

non-improving_moves *-- 0
if (solution s' is feasible) then s* ~ s'
else beg in

if (c(d) < best_unfeasible) t h e n
begin

unfeasible.s" ~-- s t
best.unfeasible , - c(s')

end . i f
end_else

else non.improving_moves ~ non_improving.moves + 1
end- i f
8 ~ 8 #

Update the set of candidate moves in the reduced neighborhood
current_iteration *- current. i teration + 1

end_while
if (s* = so and e(s0) > best.unfeasible) t hen
beg in

S / easible *"- m a k e . f e a s i b l e (un f easible_s")
if (c (s l , , , iu ,) < c(s')) t hen s" ~ sl,a,lbt,

end_if
s" *-- paek_together(s °)

end_TS-CPP

Figure 11. Tabu search algori thm for the circuit part i t ioning problem.

22 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Table I

ISCAS benchmark circuits.

ISCAS circuits Size Inputs Gates Outputs Links d;nax d~,~

C-1 small 36 153 7 432 9 9
C-2 small 41 170 32 499 5 12

C-3 small 60 357 26 880 4 8

C-4 medium 41 514 32 1355 5 12

C-5 medium 33 855 25 1908 8 16

C-6 medium 157 I 129 140 2670 5 11

C-7 medium 50 1647 22 3540 8 16

C-8 large 32 2384 32 6288 2 16

C-9 large 207 3405 108 7552 5 15

The first part of our computational experiments was devoted to tuning the
best parameter values and strategies for algorithm TS-CPP. Three aspects have
been evaluated:

• In i t ia l so lu t i on . For all small- and medium-size benchmark circuits, both
algorithms asp and cep from Davis-Moradkhan and Roucairol [14] have been
applied to the generation of the initial solution. The quality of the best solution
found by the tabu search algorithm does not seem to be too much affected
by the choice of either one of them. However, since the computational times
observed for algorithm asp increase with problem size much faster than those
of cep, only algorithm cep was applied to the large-size circuits.

• T a b u tenure . The parameter ~, involved in the computation of the dynamic
tabu tenure of each move (see section 4.3) characterizes the restrictiveness
of the search. Larger circuits, for which a wider choice of moves is available,
are likely to be better dealt with by taking larger tabu tenures. Accordingly,
for the small- and medium-size circuits we have investigated the behavior of
the tabu search algorithm by varying ~,in the range from 1 to 12. For the
large-size circuits, we took ~y in the range from 7 to 18. As a general rule,
we observed that the most suitable value for ~(i.e. the one leading to the best
feasible solution among all those found with the different parameter values)
increases with problem size (i.e. with the number of gates and links).

° P a r t i t i o n p a r a m e t e r L. In fact, this is not a parameter characterizing the tabu
search algorithm, but rather the problems themselves. Strongly constrained
problems with small values of L are likely to be more difficult. However, the
behavior of the tabu search algorithm does not seem to be too much affected

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 23

by the value of L. The observed computational times have been of the same
order for L ranging from 15 to 20 for all benchmark circuits. The algorithm
seems to be very robust with respect to the partition parameter.

A sample of the numerical results obtained in this first phase is reported
below. The computational results obtained for the medium-size circuits for L = 15
and L = 20 are given, respectively, in tables 2 and 3. The behavior of the algorithm
for the small- and large-size circuits, as well as for the other values of the partition
parameter L ranging from 16 to 19, is quite the same, and the corresponding lengthy
numerical results are omitted for the sake of space. In each of these tables, we report
the results obtained by using each initial solution algorithm (asp and eep) and each
value of the parameter)' (associated with the tabu tenure) in the range from 1 to 12.
The results in the first block of rows of these tables concern the initial solutions,
i.e. the solutions obtained by the algorithms asp and cep from Davis-Moradkhan [12]:
the number of subcircuits, the number of cuts and the computational time in seconds.
Next, we report the results obtained by algorithm TS-CPP for each initial solution
algorithm and each value of the parameter)': the number of subcircuits, the number
of cuts and the computational time in seconds. The best results (in terms of the
number of subcircuits in the partition) among all values of ~, are reported in bold
face type.

We notice that the results reported in tables 2 and 3 for both the initial solution
and the tabu search algorithms do not include the application of the pack_together
procedure or any other similar scheme. They exactly reflect the quality of the
solutions produced by the constructive heuristics asp and cep, against the quality
of those produced by the use of tabu search for the solution of the circuit partitioning
problem.

The behavior of algorithm TS-CPP is further illustrated through the graphics
in figures 12 to 15. The iteration counter is represented along the horizontal axis.
For each iteration, the value c(s) of the objective function for the current solution
s is plotted. The underlying stepwise curve gives the current weighted value aK of
the first criterion, i.e. the number of subcircuits in the current partition. Again, we
notice that these results do not include the application of the pack_together procedure.
These figures illustrate the important role played by the objective function proposed
in section 4.5. While the heuristic seems to behave as a hill-descending algorithm
with respect to the primary criterion, the use of the more complex three-term
objective function c(s) seems to be very appropriate. The latter leads algorithm
TS-CPP to escape from many local optima, guiding the search towards much better
solutions which would not be found if only the first criterion was taken into account.

In most of the cases, the best feasible solution found by the basic tabu search
algorithm contains several small subcircuits which may be packed together without
violating the testability condition, leading to a smaller number of subcircuits. In
tables 4 and 5, we report a sample of the final results obtained through the use of

24 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Table 2

Results for the medium-size circuits with L = 15.

L = 15 C-4 C-5 C-6 C-7

asp cep asp cep asp cep asp cep

Initial
solution
algorithm

TS-CPP
y= 1

TS-CPP
7 = 2

TS-CPP
7 = 3

TS-CPP
7 = 4

TS-CPP
y = 5

TS-CPP
7 = 6

TS-CPP
y = 7

TS-CPP
7 = 8

TS-CPP
7 = 9

TS-CPP
7 = 1 0

TS-CPP
y= 11

TS-CPP
7= 12

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

34 25 36 38 52 53 68 71
166 137 287 299 447 445 851 762

14 4 32 7 50 16 1021 44

34 23 34 32 50 50 65 67
134 108 188 195 341 320 747 636
30 28 82 89 143 146 1530 316

34 14 34 32 49 51 65 66
134 108 187 183 321 306 743 625
32 66 81 89 141 209 1906 359

34 12 34 32 49 51 64 63
137 106 185 179 319 303 717 616
30 68 85 89 144 154 1726 604

13 12 24 14 47 51 64 60
113 121 160 158 307 294 692 580
102 62 284 296 164 208 1970 771

16 13 15 15 47 50 64 58
125 119 145 164 301 290 675 555
103 52 293 302 201 158 2905 1284

16 12 15 18 48 49 64 57
121 115 151 160 298 279 646 544
73 76 295 301 257 169 2966 1290

14 13 15 15 47 48 56 59
132 117 161 170 301 273 609 552
61 110 207 299 149 291 2804 1331

14 17 15 19 46 48 53 58
140 126 164 172 285 268 570 548
67 114 281 144 152 190 2938 1307

15 14 16 16 40 48 50 47
129 140 166 164 239 271 561 498
70 83 217 227 414 182 2869 1356

15 15 19 21 39 32 51 46
122 149 167 159 207 211 595 480
58 69 320 312 453 482 2918 1353

16 14 20 17 35 36 50 59
131 135 170 192 203 222 565 557
63 51 313 245 448 448 1460 1312

22 14 18 17 34 31 51 48
130 125 164 170 209 208 573 496
115 51 203 157 470 366 2929 1334

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 25

Table 3

Results for the medium-size circuits with L = 20.

L = 20 C-4 C-5 C-6 C-7

asp cep asp cep asp cep asp cep

Initial
solution
algorithm

TS-CPP
7=1

TS-CPP
7 = 2

TS-CPP
7 = 3

TS-CPP
) ,=4

TS-CPP
) ,=5

TS-CPP
7 = 6

TS-CPP
7 = 7

TS-CPP
) ' = 8

TS-CPP
? '=9

TS-CPP
),= I0

TS-CPP
),= 11

TS-CPP
),= 12

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts

seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
cuts
seconds

subcircuits
CUtS

seconds

subcircuits
cuts
seconds

32 27 30 33 29 36
149 121 258 252 292 370

13 4 32 7 35 17

32 27 29 30 27 33
118 107 166 157 210 244
29 26 91 89 116 136

32 20 29 30 27 33
118 83 163 150 202 238
28 91 89 87 119 131

10 23 29 30 27 33
109 96 163 147 200 234
106 36 88 92 117 197

10 8 13 9 27 33
110 99 126 121 198 233
91 98 319 305 199 189

1I 9 17 9 27 33
120 111 135 128 195 233
98 107 324 303 246 151

10 9 10 19 26 32
103 103 115 138 191 221

78 72 298 165 139 185

10 9 9 11 25 32
126 109 131 133 173 220
78 103 319 291 284 194

I0 9 14 11 24 31
121 102 131 138 154 204
63 88 228 305 296 371

13 11 11 16 22 29
129 131 131 146 137 192
65 84 309 317 269 347

13 10 12 11 25 30
101 115 131 143 181 198
75 73 303 229 146 229

11 10 15 12 24 28
122 101 153 143 168 173

82 47 327 214 261 410

10 12 15 11 24 27
120 118 144 142 175 180
62 105 345 278 194 300

47
734
763

46
664
322

44
654
538

44
652
421

44
648
526

40
536

1401

41
533
728

36
508
894

33
479

1229

34
499

1021

36
509

1024

33
480
963

31
50O

1257

38
623

46

38
504
291

38
495
294

38
479
333

38
427
478

38
412
624

35
368

1191

31
363
636

29
354

1149

27
365
757

27
355
643

25
37O
774

26
395
698

26 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

circuit C.3

1300

1200

ilO0

1000

900

800

Jl

700

G00

L
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

iterations

Figure 12. Cost function: circuit C-3, L = 19, 7 = 3,
initial solution by algorithm asp.

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 27

circuit C.4

1900

1800

1700

1600

1500

C

o 1400
S

t

1300
f
U

n 1200

C

t
i 1100

0

n 1000

900

800

700

L.
1

l L
'I

!1 !1
I tl II

600

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

iterations

Figure 13. Cost function: circuit C-4, L = 15, 7 '=3,
initial solution by algorithm cep.

28 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

circuit C.6

4300

4100

3900

3700

3500

3300

3100

2900

2700

2500

2300

2100

\.

L-

~J

-L_
L~

B00]GO0 2,100 3200 4000 4800 5600 0100 7200 S000 BB00 95001020010800

itezatiom

Figure 14. Cost function: circuit C-6, L = 15, 7'= 12,
initial solution by algorithm eep.

A.A. Andreatta, C.C~ Ribeiro, A graph partitioning heuristic 29

circuit C.8

5000

4800

4600

4400

4200

c 4000
o

$

t 3BOO

{
3600 u

n

c 3400
t
i

3200
o

n

3000

2800

2600

2400

2200

1000 2000 3000 |000 5000 6000 7000

iteratioes

Figure 15. Cost function: circuit C-8, L = 16, 7'= 8,
initial solution by algorithm cep.

8000

30 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Table 4

Final results for the small- and medium-size circuits.

C-1 C-2 C-3 C-4 C-5 C-6 C-7

L= 15 mrl

cep

TS-CPP

subcircuits 14 16 20 24 37 54 76
cuts 148 171 215 282 472 578 1031
cut ratio (%) 93 85 56 52 54 46 62

subcircuits 11 13 13 12 24 42 55
cuts t22 138 130 137 299 445 762
cut ratio (%) 76 68 34 25 34 35 46

subcircuits 7 8 11 10 14 26 38
cuts 61 70 102 106 158 208 480
cut ratio (%) 38 39 27 19 18 16 29
cut reduction (%) 50 49 22 23 47 53 37
subcircuit reduction (%) 36 38 t 5 17 42 38 31

L = 17 mrl

eep

TS-CPP

subcircuits 12 13 18 19 32 44 65
cuts 136 168 219 260 445 528 978
cut ratio (%) 85 83 57 48 51 42 59

subcircuits 9 11 12 11 19 36 47
cuts 109 141 126 137 278 432 726
cut ratio (%) 68 70 33 25 32 34 43

subcircuits 6 7 9 10 11 22 31
cuts 54 65 79 116 138 207 432
cut ratio (%) 34 32 21 21 16 16 26
cut reduction (%) 50 54 37 15 50 52 40
subcircuit reduction (%) 33 36 25 9 42 39 34

L= 20 mrl

cep

TS-CPP

subcircuits 9 13 15 17 24 37 53
cuts 122 155 205 252 422 512 904
cut ratio (%) 76 77 54 46 48 40 54

subcircuits 7 9 I0 9 15 28 35
cuts 98 124 128 121 252 370 623
cut ratio (%) 61 61 33 22 29 29 37

subcircuits 5 5 8 8 9 19 22
cuts 55 55 86 99 121 177 370
cut rato (%) 34 27 22 18 14 14 22
cut reduction (%) 44 56 33 18 52 52 41
subcircuit reduction (%) 29 44 20 11 40 32 37

p rocedure p a c k _ t o g e t h e r coup led with the tabu search heuris t ic and p rocedu re

m a k e _ f e a s i b l e , as descr ibed in f igure 11. These results ref lect the e f fec t iveness o f

p rocedure p a c k _ t o g e t h e r as a pos t -op t imiza t ion c o m p o n e n t o f a lgor i thm T S - C P P .

In table 4, we give the results obta ined for the small- and med ium-s i ze circui ts

fo r L = 15, 17, and 20 by a lgor i thms m r l (Rober ts and La la [32]), c e p (Davis -

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 31

Table 5

Final results for the large-size circuits.

L= 15 C-8 C-9 L= 16 C-8 C-9

cep subcircuits 52 118 cep subcircuits 50 104
cuts 742 1527 cuts 753 1427
cut ratio (%) 31 43 cut ratio (%) 31 41

TS-CPP subcircuits 41 60 TS-CPP subcircuits 38 52
cuts 561 657 cuts 552 558
cut ratio (%) 23 19 cut ratio (%) 23 16
cut. red. (%) 24 57 cut. red. (%) 27 61
subcirc, red. (%) 21 49 subcirc, red. (%) 24 50

L = 17 C-8 C-9 L = 18 C-8 C-9

cep subcircuits 46 97 eep subcircuits 34 87
cuts 743 1407 cuts 567 1334
cut ratio (%) 31 40 cut ratio (%) 23 38

TS-CPP subcircuits 36 49 TS-CPP subcircuits 31 43
cuts 554 540 cuts 491 517
cut ratio (%) 23 15 cut ratio (%) 20 15
cut red. (%) 25 62 cut red. (%) 13 61
subcirc, red. (%) 22 49 subcirc, red. (%) 9 51

L= 19 C-8 C-9 L=20 C-8 C-9

cep subcircuits 31 83 cep subcircuits 22 77
cuts 541 1328 cuts 406 1297
cut ratio (%) 22 38 cut ratio (%) 17 37

TS-CPP subcircuits 31 42 TS-CPP subcircuits 23 38
cuts 540 556 cuts 403 506
cut ratio (%) 22 16 cut ratio (%) 17 14
cut red. (%) 0 58 cut red. (%) 1 61
subcirc, red. (%) 0 49 subcirc, red. (%) 0 51

M o r a d k h a n [12], and D a v i s - M o r a d k h a n and Rouca i ro l [14]) and T S - C P P (using

a lgo r i thm c e p fo r the genera t ion o f the initial solut ion) . F o r each c i rcui t and each

a lgor i thm, we presen t the n u m b e r o f subcircui ts , the n u m b e r o f cuts, and the rat io

b e t w e e n the n u m b e r o f cuts and the total n u m b e r o f logical gates and ou tpu ts in

the circui t . Fo r a lgor i thm T S - C P P , we also g ive the percen tua l r educ t ion in the

n u m b e r o f subci rcui ts and cuts with respec t to the solut ion ob ta ined by a lgo r i t hm

cep . T h e same resul ts are r epor ted in table 5 fo r the la rge-s ize c i rcui ts f o r L rang ing

f r o m 15 to 20. The resul ts o f a lgor i thm m r l fo r these circui ts were not ava i lab le

in the l i terature .

32 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

Number of subcircuits for L=20.

16

16

15

14

1]

1l

It

10

9

8

7

6

6

S

4

]

2

1

0

C-1 C-2 c-3

Figure 16. Number of subcircuits in the best solution
found by each algorithm for the small-size circuits (L = 20).

'~ ~'1

| cep

To further illustrate the typical relative efficiency of the four algorithms
investigated in this work (mrl, asp, cep, and TS-CPP), figures 16 and 17 are bar
graphs indicating, respectively, the number of subcircuits and the number of cuts
in the best feasible solutions found for the small-size circuits by the four algorithms
for L = 20.

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 33

Number of cuts for L=20,

225

213

200

188

175

163

150

I)8

125

113

I00

88

75

63

50

)8

25

13

0

122.0

205.0

ISS.O

147.0

129.0
m ~ 124.o

98.0

C-I 0-2 C-)

Figure 17. Number of cuts in the best solution found
by each algorithm for the small-size circuits (L = 20).

ll srl

II asp

I c e p

tam

6. Conclusions

In this work, we have developed a tabu search algorithm for the circuit
partitioning problem in the framework of the parallel pseudo-exhaustive logical test
of integrated combinational circuits. The main features of our algorithm are: (i) the
use of reduced neighborhoods defined by moves involving only a subset of boundary

34 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

nodes, whose size vanishes with the increase in the number of iterations; (ii) complex
moves which entail several resulting moves, although the variations in the cost
function are easily computable; (iii) a bi-criteria cost function combining the number
of subcircuits and the number of cuts, which simultaneously adds a diversification
strategy to the search; and (iv) the use of a bin-packing heuristic as a post-optimization
step.

The numerical results reported in the last section for a set of ISCAS benchmark
circuits point out the adequacy of the proposed approach for the solution of the
circuit partitioning problem. The search mechanism has systematically guided the
algorithm to improve the initial solutions and to escape from local optima.

The solutions obtained by algorithm TS-CPP have been compared with those
obtained by algorithm cep, the best one available so far in the literature. The
average reduction in the number of subcircuits was approximately 30% with respect
to the latter, while the average reduction in the number of cuts ranged from 45%
for the small-size circuits to 37% for the large-size circuits. Especially remarkable
are the results observed with L = 20 for the largest benchmark circuit C-9, with
3405 gates and 7552 links, when the solution obtained by algorithm TS-CPP improved
(i.e. reduced) by more than 50% the number of subcircuits and by more than 60%
the number of cuts.

The larger computational times, with respect to those observed for other
constructive heuristics in the literature, are largely compensated by the improvements
in the objective function, in terms of the number of subcircuits and cuts. Moreover,
these computational times should not be even considered as large, because they
represent a very small fraction of the overall design and fabrication costs on an
industrial scale. The critical issue is the total duration of the test, which is kept
within reasonable bounds through the testability condition derived from the partition
parameter.

References

[1] A.A. Andreatta, A graph partitioning heuristic for the parallel pseudo-exhaustive logical test of VLSI
combinational circuits, M.Sc. Dissertation, Department of Electrical Engineering, Catholic University
of Rio de Janeiro (1994), in Portuguese.

[2] E.C. Archambeau and E.J. McCluskey, Fault coverage of pseudo-exhaustive testing, Digest of
Papers of the 14th Int. Conf. on Fault-Tolerant Computing (IEEE, 1984) pp. 141-145.

[3] Z. Barzilai, D. Coppersmith and A.L. Rosenberg, Exhaustive generation of bit patterns with applications
to VLSI self-testing, IEEE Trans. Computers C-32(1983)190-193.

[4] F. Berglez and H. Fujiwara, A neutral netlist of 10 combinational benchmark circuits and a target
translator in FORTRAN, Paper presented at the special session on ATPG and Fault Simulation, Int.
Symp. on Circuits and Systems, Kyoto (IEEE, 1985).

[5] Z. Barzitai, J. Savir, G. Mankowsky and M.G. Smith, The weighted syndrome sums approach to
VLSI testing, IEEE Trans. Computers C-30(1981)996-1001.

[6] S.N. Bhatt, F.R.K. Chung and A.L. Rosenberg, Partitioning circuits for improved testability, Proc.
4th MIR Conf. on Advanced Research in VLSI (MIT, Cambridge, 1986) pp. 91-106.

A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic 35

[7] S. Bozorgui-Nesbat and E.J. McCluskey, Structured design for testability to eliminate test pattern
generation, Digest of Papers of the lOth Int. Syrup. on Fault-Tolerant Computing 0EEE, 1980) pp.
158-163.

[8] M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital Systems (Computer
Science Press, Woodland Hills, 1976).

[9] E. Calia and A. Lioy, Test generation in a distributed environment, Research Report, Instituto
Politecnico di Torino (1991).

[10] C.L. Chen, Linear dependencies in linear feedback shift registers, IEEE Trans. Computers
C-35(1986)1086-1088.

[11] M. Davis-Moradkhan, The problem of partitioning the nodes of a graph and its applications in VLSI
technology: An overview, Rapport MASI 90.08, Laboratoire MASI, Universit~ Pads VI (1990).

[12] M. Davis-Moradkhan, Partitioning problems in VLSI technology, Doctorate Thesis, Universit~ Paris
VI (1993), in French.

[13] M. Davis-Moradkhan and C. Roucairol, Comparison of two heuristics for partitioning combinational
circuits for parallel pseudo-exhaustive testing, Rapport MASI 92.25, Laboratoire MASI, Universit6
Paris VI (1992).

[14] M. Davis-Moradkhan and C. Roucairol, Graph partitioning applied to the problem of logic testing
of VLSI combinational circuits, Rapport MASI 92.41, Laboratoire MASI, Universit6 Pads VI
(1992).

[15] M.R. Garey and D.S. Johnson, Strong NP-completeness results: Motivation, examples and implications,
J. ACM 25(1978)499-508.

[16] F. Glover, Future paths for integer programming and links to artificial intelligence, Comp. Oper. Res.
13(1986)533-549.

[17] F. Glover, Tabu search- Part I, ORSA J. Comput. 1(1989)190-206.
[18] F. Glover, Tabu search-Part II, ORSA J. Comput. 2(1990)4-32.
[19] F. Glover, Tabu search: A tutorial, Interfaces 20(1990)74-94.
[20] F. Glover and H.J. Greenberg, New approaches for heuristic search: A bilateral linkage with artificial

intelligence, Euro. J. Oper. Res. 39(1989)119-130.
[21] F. Glover and M. Laguna, Tabu search, in: Modern Heuristic Techniques for Combinatorial Problems,

ed. C.R. Reeves (Blackwell, London, 1993) pp. 70-150.
[22] A. Hertz and D. de Werra, Using tabu search for graph coloring, Computing 29(1987)345-351.
[23] A. Hertz and D. de Werra, The tabu search metaheuristic: How we used it, Ann. Math. Art. Int.

1(1990)111-121.
[24] E.J. McCluskey, Built-in self-test techniques, IEEE Design Test Comp. 2(1985)21-28.
[25] E.J. McCluskey, Built-in self-test structures, IEEE Design Test Comp. 2(1985)29-36.
[26] E.J. McCluskey and S. Bozorgui-Nesbat, Design for autonomous test, IEEE Trans. Computers C-

30(1981)866-874.
[27] S.D. Millman and E.J. McCluskey, Detecting bridging faults with stuck-at test sets, Proc. Int. Test

Conf. (IEEE, 1988) pp. 773-783.
[28] Y. Min and Z. Li, Pseudo-exhaustive testing strategy for large combinational circuits, Comp. Syst.

Sci. Eng. 1(1986)213-220.
[29] E.I. Muehldorf and A.D. Savkar, LSI logic testing - An overview, IEEE Trans. Computers

C-30(1981)1-17.
[30] O. Patashnik, Optimal circuit segmentation for pseudo-exhaustive testing, Doctorate Thesis, Department

of Computer Science, Stanford University (1990).
[31] C.V. Ramamoorthy and R.C. Cheung, Design of fault tolerant computing systems, in: Applied

Computation Theory: Analysis, Design, Modeling, ed. R.T. Yeh (Prentice-Hall, Englewood Cliffs,
1976) pp. 286-296.

[32] M.W. Roberts and P.K. Lala, An algorithm for the partitioning of logic circuits, IEEE Proc.
G 131(1984)113-118.

36 A.A. Andreatta, C.C. Ribeiro, A graph partitioning heuristic

[33] S.C. Seth, B.B. Bhattacharaya and V.D. Agrawal, An exact analysis for efficient computation of
random-pattern testability in combinational circuits, Digest of Papers of the 16th Int. Symp. on Fault-
Tolerant Computing Systems (IEEE, 1986) pp. 318-323.

[34] I. Shperling and E.J. McCluskey, Circuit segmentation for pseudo-exhaustive testing via simulated
annealing, Proc. Int. Test Conf. (IEEE, 1987) pp. 58-66.

[35] J.G. Udell and E.J. McCluskey, Efficient circuit segmentation for pseudo-exhaustive test, Proc. IEEE
Int. Conf. on Computer-Aided Design (IEEE, 1987) pp. 148-151.

[36] L.T. Wang and E.J. McCluskey, Condensed linear feedback shift register (LFSR) testing - A pseudo-
exhaustive test technique, IEEE Trans. Computers C-35(1986)367-369.

