
48 Kolloid-Zeitschri/t und Zeitschrifl /i~r Polymere, Band 236 �9 Heft 1 

21) Polanyi, M., Z. Physik 7, 149 (1921). 
22) Roy, M. M., J. Text. Inst. 44, No. 3. P. T 90 

(1953). 
23) Porod, G., Fortschr. Hochpol. Forschg. 2, 363 

(1961). 
24) Kratl~y, 0., Moderne Methoden der Pflanzen- 

analyse (Berlin-Heidelberg-GSttingen 1962); Kolloid-Z. 
u. Z. Polymere 182, 7 (1962). 

25) Kratky, 0., Progress in Biophysics 13, 105 (1963). 
26) Ratho, T., B. C. Panda, Indian J. Phys. 39, 207 

(1965), 
27) Kratlcy, 0., Transactions of the Faraday 

Society No. 400, Vol. 52, Part IV. p. 558 (1956). 
28) Porod, G., (private communication 1968). 

29) KratIcy, 0., International Series of Monographs 
on Electromagnetic waves $, p. 459 (1963). 

30) Kratky, O. and G. Miholic, J. Polymer Sci., 
No. 2, 449 (1963). 

31) Kratlcy, 0., G. Porod, A. Selcora, B. Paletta, J. 
Polymer Sci. 16, 171 (1955). 

32) Guinier, A., C. R. Hebd. S6ances Acad. Sci. 
(Paris) 204, 1115 (1937); Annphys. Paris. 12, 161 
(1939); J. Chem. Phys. 40, 133 (1943). 

33) Roy, S. C. and S. Das, J. Applied Polymer Sci. 
9, 3427 (1965). 

Authors' address: 
Dr. T. Ratho and Prof. Dr. N. C. Sahu, Depart. of 

Physics, Regional Engineering College, Rourkela (India) 

From the Cali/ornia Institute o/ Technology, Pasadena, Cali]ornia 91109 (USA) 

Recent developments in the kinetic theory of  fracture of  polymers 
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Introduction 

The importance of a thorough  unders tand-  
ing of f racture  processes need not  to be 
emphasized.  Costly failures always have and 
still do a t t r ac t  enough a t t en t ion  to  this 
subject.  The  obvious aim of the invest igator  
is the predict ion of f rac ture  behavior  under  
all kinds of  foreseeable conditions or, ra ther ,  
the formula t ion  of non-f rac ture  conditions. 
Any  predict ions will have  to be based on 
exper imenta l  results which are l inked to- 
gether  th rough  theoret ical  considerations. 
The  number  of theoret ical  assumptions in 
combining exper imenta l  da ta  varies. There 
will be m a n y  if a large number  of mater ia l  
and envi ronmenta l  p a r a m e t e r s  are t aken  
into consideration. There  will be fewer if 
the  response of the  mater ia l  under  one set 
of conditions is t aken  to  be a single process. 
For  instance the  t ime to  f rac ture  of a strip 
of rubber  under  constant  uniaxial  load can 
be viewed as one funct ion of the mater ia l  
and envi ronmenta l  parameters  or it  can be 
considered as the complex result  of a number  
of different processes, e. g. crack initiation, 
slow crack growth, and rapid  crack pro- 
pagation.  No ma t t e r  which phi losophy is 
employed  the  ex t rapola t ion  of a funct ion of 
one pa ramete r  into inaccessible regions of 
this pa ramete r  requires a critical check of 
the  val id i ty  of all assumptions involved. 

In  the  first section of this paper  we will, 
therefore,  br ief ly discuss the major  points 
of  the kinetic theory  of fracture,  namely  the 
na ture  of  the stat ist ically independent  ele- 
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ments ,  their  performance,  and how the 
probabili t ies for failure of  individual  ele- 
ments  combine to characterize the behavior  
of the  whole s tructure.  

We will then  specify these conditions for 
the case of oriented polymers  in their  glassy 
s ta te  under  special consideration of  all 
exper imenta l  evidence as the  u l t imate  pro- 
perties at  break,  their  t empera ture -  and 
t ime-dependency,  the  format ion  of  free 
radicals, and the  statist ical  var iabi l i ty  in 
f rac ture  experiments .  In  accordance with 
these conditions a s tat is t ico-mechanical  
model  is developed which describes the 
f rac ture  process unti l  onset  of rapid crack 
propagat ion.  Ex cep t  for samples with large, 
pre-exist ing cracks this covers essentially 
the to ta l  lifetime of a sample. An equa t ion  
for the  t ime to  f rac ture  is der ived as a 
funct ion of or ienta t ion and constant  uni- 
axial stress. This equat ion  is discussed and 
compared  with exper imenta l  results. F inal ly  
it  is invest igated whether  and how the  
theory  m a y  be applied under  other  t h an  the  
specified conditions, e. g. for rubbers,  and 
the extensibi l i ty  to t ime-dependent  loads 
and mult iaxial  stress. A f rac ture  cri terion is 
fo rmula ted  which m a y  be called the kinetic 
version of St. Venants  criterion of m a x i m u m  
elastic strain. 

Statistical and mechanical models in the 
kinetic theory of fracture 
A theo ry  of f rac ture  usually is called a 

kinetic theory  if  it  accounts  in some way  for 
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time-dependent changes within the material 
which eventually lead to failure of the 
sample under consideration. One can even 
be more specific and say tha t  the time- 
dependent changes are related to and depend 
on the fluctuating thermal energy of the 
atoms, segments, or molecules. 

Within this framework the nature of the 
t ime-dependent processes can be quite dif- 
ferent. Busse and his colleagues (4) suggested 
that  viscous flow within cotton fibers deter- 
mines the fatigue life of these fibers and 
they used Eyrings theory of viscosity (13) 
for interpretation of their data. Tobols]cy 
and Eyring (45) considered the "slippage" 
o/ secondary bonds and the net decrease of 
the number of bonds. They considered the 
two cases where repair of bonds under stress 
is either possible or impossible. Stuart and 
Anderson (43) discussed a model involving 
two independent networks and argued that  
only /racture within the first networlc with 
unsymmetrical potential barriers between 
broken and unbroken states contributes 
towards failure of glasses. Zhurlcov (47, 48) 
among others suggested that  the brea]cage o/ 
primary bonds in long-chain molecules may 
be the dominant cause of failure of a number 
of different natural and synthetic fibres. 
Prevorselc and Lyons (36) emphasized that  
nucleation and growth o/void~s and flaws can 
be at tr ibuted to the random thermal motion 
of chain segments even without breakage of 
any load carrying bonds. The lifetime of a 
sample would then be determined by the 
time it takes one flaw to grow to a critical 
size. Without specification of the nature of 
the time-dependent process it is sometimes 
called damage (15) or probability o] crac]c 
/ormation (26). 

The mathematical formalism of these 
various theories can be conveniently com- 
pared if we denote by N the number of 
those elements (bonds, flow steps, nuclei, 
etc.) whose time-dependent change is con- 
sidered to determine the lifetime of the 
sample as a whole. In its general form the 
equation for the rate of change of N is 
given as 

dN/d t  = - -  N K  (~, N ,  T)  . [1] 

where K is the rate of breakage or nucleation, a the 
stress tensor1), and T the absolute temperature. ~ 

The interpretation of K and its formula- 
tion is different in the kinetic theories of 

1) K is no t  a functional ,  a therefore  s tands  only for 
its components .  

different authors according to the different 
statistico-mechanical models. 

In  a series of papers Coleman (7-9) and 
Coleman and Marquardt (10, 11) propose a 
" theory of breaking kinetics" for fibres. 
Their approach is completely formal and 
does not  involve any assumptions concerning 
the microstructure of the fibres. The statistic- 
al considerations summarized there for "first 
order ensembles" obtain new importance, 
however, when applied to molecular en- 
sembles. Eq. [1] for the rate of decrease of 
a number N of statistically equal, independ- 
ent and separately loaded fibers becomes: 

dN/d t  ~ - -  N K [2] 

and is readily solved with respect to the 
number N(t) of surviving fibres: 

[ i  ] N(t)=Noexp -- K(r) dr , [3] 

where N o is the initial number of fibres. 

The fraction of fibres broken after some 
time 4 is obviously 1 - N ( 6 ) / N  o and the 
cumulative distribution function of life- 
times, Q(tb), therefore, is: 

Q(4)= 1 exp - - IK( r )  dv . [4] 
0 

The average lifetime, <6}, is solely deter- 
mined by K and becomes for constant K:  

1 
~f t N o K e x p ( - - K t )  d t ~ K  - 1 .  [5] tb = - N o  0 

I t  may be noted that  in this ease the life- 
expectancy of a surviving fiber is at any 
time independent of N and t. 

Kawabata and Blatz (26) developed a 
simple stochastic theory of creep failure. 
They argued tha t  the first moments of tb 
for an ensemble of ruptured specimens should 
reveal whether K is independent of time 
or not. I f  K depends only on initial load and 
is independent of N the equation 

K - -  (m!l<t~,9)~ "~ [6] 

should hold for any m, tha t  is for any order 
of moments of tb. An investigation of the 
variation of fracture times of a rubber 
vuleanizate gave excellent agreement with 
the assumption of a t ime-independent K 
(14, 26), i. e. like in eq. [2]. 

Bueche and Halpin (3) have been con- 
cerned with fracture of elastomers, which 
they consider to be the result of the breakage 
of a large number of filaments within the 
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stressed specimen. While they still employ 
the idea of all filaments being equivalent 
and subjected to practically the same load 
they introduce two important concepts, the 
first being tha t  in an area of high stress 
concentration (crack tip) essentially one 
small filament is strained until it ruptures 
at a critical strain ~e. Only after rupture of 
the first filament is completed in time t' the 
rapid straining of the second filament starts 
etc. The second concept concerns the visco- 
elastic properties of the filament in com- 
parison with those of the sample as a whole. 
I t  is reasoned that  the same physical pro- 
cesses are responsible for the creep behavior 
of a filament and that  of the total sample 
and Chat it should be possible to deduce the 
viscoelastic performance of a filament from 
the observed creep function of the sample. 
The sample will fracture at a gross strain 2b 
after q filaments have been broken in a 
time t~ = q t' .  The values 2b and 2c are 
connected through the creep function of the 
material and the stress concentration factor. 
The theory allows to calculate the elongation 
at break, 2b, from the knowledge of the creep 
function. 

We may point out that  the theory does 
not take into consideration any change of 
the stress concentration factor s with 
growing crack length or the decrease of t', 
the time necessary to fracture one filament, 
with continuing creep of the sample. I t  is 
assumed that  all filaments will have to be 
stretched from practically zero elongation 
to 2c. That will, in the first place, effect any 
numerical values of q which may be cal- 
culated from fitting experimental failure 
envelopes. In their calculations B u e c h e  and 
H a l p i n  do not make use of the expected 
statistical variation of fracture times tb which 
would lead to additional information con- 
cerning q. The time increment t' is not 
actually constant but will show a variation 
Q (t') in accordance with eq. [4]. 

A group of q filaments subject to the 
statistical condition that  fracture of one 
filament may start once the fracture of the 
preceding one is completed has an average 
lifetime, ( tb} ,  of q t' and a P o i s s o n  distribu- 
tion of tb : 

79 (to) dtb = dtolt' (tblt') ~-~ e -t~ --  1)! [7] 

The scatter of tb should be used, therefore, 
to check the value of q. No matter  whether 
t' is assumed constant or varying around an 
average the theory leads to a practically 
constant rate of crack growth for almost the 

total length of lifetime followed by a sharp 
j amp to very high crack velocities immediate- 
ly before failure. 

Whenever an ensemble of fibres or ele- 
ments is strongly interconnected the failure 
of one element leads to increasing loads for 
the remaining ones. Whereas the difference 
is not felt very much at the beginning of 
the lifetime of a large ensemble, the rates of 
increase of stress or strain, the fracture 
development and the remaining lifetime are 
considerably changed toward the later stages 
of the lifetime. 

The "ideal bundle" (9) is a very good 
realization of this concept. The rate equation 
is changed now into: 

tiN~dr = --  N K (giN) .  IS] 

Without any information on the rate func- 
tion K this equation cannot be integrated. 
We will, therefore, briefly turn our attention 
to some experiments revealing the stress 
dependency of K. We may recall that  for 
one value of uniaxial stress K can be deter- 
mined from the breaking times of a set of 
single fibres under separate identical constant 
loads. The variation of these breaking tinges 
reveals whether K is constant with time (26). 
I f  so, K is just the inverse of the average 
lifetime (eq. [6]). From a series of experiments 
under different loads, 00, the function K(ao) 
can be obtained. Uniaxial loading experi- 
ments have been carried out for a large 
number of natural (4, 30, 31, 47) and syn- 
thetic (2, 7, 27, 36, 39, 48) fibres, for glasses 
(43), SBR-vulcanizates (16, 26), and metals 
(39, 48). 

The results from all these experiments 
show that  a plot of log tb versus o 0 is sort of 
a sigmoidal curve with an extended linear 
central section and portions of increasing 
slope at higher and smaller stresses re- 
spectively (29). The same results are often 
plotted as stress versus the duration of the 
experiment, if the s t r e n g t h  of the material 
is considered to be the dependent variable. 
In fig. 1 both representations are compared. 
A closer examination shows that  the as- 
sumption of K independent of time holds 
for the linear central section only. I t  follows 
for this section immediately that  K is an 
exponential function of 00: 

K -~ m b exp (fl o'0), [9] 

where wb and/3 are constant with respect to 
time and uniaxial stress, 00. We may now 
return to the ideal bundle or a time-depend- 
ent number of primary or secondary bonds 
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which share a constant stress a0. The stress 
experienced by each surviving element is 
N o %/N(t) and the rate equation becomes : 

dN/dt = - -  N ~b exp [No fi ao/N(t)]. [10] 

This equation may be solved in terms of the 
exponential integral 2) for constant %: 

oo 
f e- x @Obtb> = x d x ~ - -  E i ( - - / 3 a o ) .  [11] 

fl es o 

In eq. [11] the average of tb appears since 
eq. [10] is a deterministic equation. The time 
intervals At necessary to produce a change 
AN of N are subject to statistical variation. 
I t  is seen from a comparison of eqs. [5], [9] 
and [11] that  the average lifetime of a bundle 
of fibers deviates from the lifetime of a single 
fibre by a factor - E i ( - fl %)/exp ( -  /3 %), 
which is equal to 1/flao if f l a0>~l .  The 
statistical concept of coupling the per- 
formance of many elements, which causes 
the mentioned decrease in (tb} also reduces 
the second moment of tb, M2(tv). Coleman 
calculated (9) that  the coefficient of variation 
of the lifetimes, 

( ( t b  ~)  - -  (to}2)tl~/(to) 

is proportional to No-~/~ and thus approaches 
zero if there are a large number (No) of 
elements per bundle or subvolume. 

So far we have discussed kinetic theories 
in which crack initiation and propagation 
are governed by the same principle, namely 
a rate controlled irreversible decrease of 
load can'ying elements. In accordance with 
the derivation of kinetic theories of fracture 
from the theory of absolute reaction-rates 
the earliest approaches accounted for changes 
in both directions, that  is for the breakage as 
well as for the reformation of bonds (45). 
Eq. [1] then has to be formulated as: 

dN/dt - -  - -  N Kb + (No -- N) Kr  [12] 

using separate rate functions for the breaking 
(Kb) as well as for the reforming process (Kr). 
I f  it were attempted to interpret this situa- 
tion in terms of just one rate function K as 
in eq. [1], K would become highly time- 
dependent even though Kb and Kr may be 
constant with respect to time. On the basis 
of this theory Stuart and Anderson (43) 
explained the fatigue life of glasses over 
16 decades of temperature-reduced timescale. 

2) The above exponential integral --  E i (-- fi o0) is 
for positive arguments often also abbreviated as 
E1 (fl ~o). 

The author has previously discussed (22) the 
stress-lifetime curves resulting for different 
time-dependent rate functions Kb and Kr 
and also the existence of dynamic equilibria 
which lead to infinite lifetimes. I t  was 
pointed out tha t  the assumption of reforming 
processes would conveniently explain the 
non-linear slope of the sigmoidaI stress- 
lifetime curve (fig. 1) at small stresses. I f  the 
molecular fracture process happens to be 
that of a main chain immediate reformation 
of the same primary bond seems to be un- 
likely in view of recent EPR-experiments (12) 

Duration of experiment log t 6 

.~< ~ ,,Lifetime" 

S t r e s s  ~o 

Fig. 1. Schematic representation of stress-lifetime 
curves with emphasis on strength (upper diagram) or 
lifetime (lower diagram). The dashed line indicates 
change, which would result from increase in "'upper 

limit of strength" (22) 

which indicate a rapid transfer of the free 
radicals formed and a negligible rate of 
recovery of a stressed specimen (Nylon 6). 

The kinetic theory of Knauss (27) for 
time-dependent fracture of viscoelastic ma- 
terials also is based on a dynamic equilibrium 
between broken and unbroken bonds. Crack 
initiation then is due to a stress induced 
change of the equilibrium state. Even though 
it is assumed that  equilibrium in the un- 
stressed state exists when one half of all 
bonds capable of rupture arc broken it is 

4* 
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also stated that  the point where equilibrium 
is established is not important but rather 
the way deviations from this reference state 
occur. I f  the rate functions Kb and Kr are 
functions of temperature and the amount 
of energy available to a bond the change of 
the equilibrium number of broken bonds in 
a "weak region" can be  calculated. The 
number of newly broken bonds can be inter- 
preted as a measure of the size of a defect. 
I t  is assumed that  the size of the defect 
continues to grow following the same 
mathematical description until it reaches a 
critical value which is determined from 
energy considerations. In this case shape 
and size of the crack, therefore, do not in- 
fluence the rate functions Kb and Kr. 

The shape of a crack has not received 
special consideration in any of the above 
mentioned kinetic theories. The size enters 
the calculations only indirectly and only if 
the increase in load with decreasing number 
of elements (load sharing) is considered. 
There is no question that  size and shape of 
a crack are of prime importance as far as the 
stability of a crack is concerned. And there is 
also no question that  a stable crack some 
time prior to reaching the critical size in- 
fluences its own rate of growth. 

In a series of papers Prevorsek and Lyons 
(35-38) presented a theory of crack nuclea- 
tion and growth where the interdependency 
of crack size and rate of growth was especial- 
ly considered. They made use of the cal- 
culations of Sack (40) for the decrease in 
strain-free energy associated with the pre- 
sence of a circular micro-crack in a con- 
tinuum. The net energy to create a crack of 
radius r is composed of this term and the 
surface energy and it has a maximum at 
some radius r*. The value of r* is the 
criticM radius because any crack with 
r > r* becomes unstable and propagates 
rapidly. The authors assume that  a crack can 
grow by incorporating in its surface layer 
molecular segments from the "standard state 
phase". The rate of crack growth is formulat- 
ed as a function of the radius, uniaxial stress, 
two activation energies and the concentra- 
tions of the crack nuclei and the molecular 
segments in their surrounding. The pro- 
bability of fracture is then given by the 
slowest step, i. e. by the smallest rate, which 
is the rate of growth of a crack having 
radius r*. Out of a great number of slowly 
and by no means monotonically growing 
cracks one will be able to reach the critical 
size and cause a failure. 

Summing up this brief review we may say 
that  three statistical concepts have been 
proposed, which involve a) a number of 
independent elements, b) a number of load 
sharing elements, or c) the probability of a 
single event (formation of an unstable crack). 
"Mechanical" concepts concern stress con- 
centration, viscoelastic deformation of load 
carrying elements, energy required to form 
new surfaces, and elastically stored energy 
within a certain sample volume. 

In the next section fracture of glassy 
polymers is discussed and it will be attempted 
to describe it within the framework of the 
above concepts. 

Fracture of glassy polymers 
In the previous section statistical and 

mechanical models of kinetic fracture pro- 
cesses have been discussed which were 
applied to a large variety of polymers and 
glasses and widely different modes of ex- 
citation. We would like to discuss in more 
detail the fracture of polymers in their 
glassy state. 

A polymer network in its glassy state, i. e. 
below the glass transition temperature, Tg, 
is believed to be in a state of thermodynamic- 
al non-equilibrium, but it is nevertheless a 
quasi-stable state because configurational 
changes take place at infinitely slow rates. 
Whereas chemical crosslinks and physical 
crosslinks like entanglements determine the 
cohesion of a polymer in the rubbery region 
intermolecular attraction through Van der 
Waals forces contributes significantly to the 
cohesion of a glassy polymer. These forces 
are called secondary bonds or also physical 
crosslinks. I t  may be clearly pointed out, 
however, that  these secondary "bonds" are 
not nearly as localized or well defined as 
primary bonds are. Due to the fact that  the 
Van der Waals attraction involves whole 
segments rather than individual atoms the 
binding potential varies greatly. Strong 
dipol-dipol interaction and hydrogen-bonds 
are a certain exception. They tend to be 
more localized and more uniform in their 
binding potentials. In  statistical considera- 
tions the concept of localized secondary bonds 
has been used successfully (34, 45). I t  is 
with this understanding that  the term 
"secondary bonds" will be used. Secondary 
bonds at temperatures below Tg are re- 
markably stable as may be concluded from 
the absence of a time proportional flow 
component in creep of thermoplasts or 
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glasses under moderate stresses (31). I t  may 
also be deduced from the fact that  failure 
usually does not occur in shear. 

The energy of activation calculated from 
the temperature dependency of the fracture 
strength for various polymers was found to 
be comparable to the binding energy of 
primary bonds (47). I t  was thus suggested 
that  the breakage of primary bonds in the 
chain molecules actually takes place. Further- 
more, this phenomenon is considered to be 
the dominant cause of the eventual failure 
of these solids. 

A conformation of this assumption was 
obtained by Zhurlcov (49), DeVries (12), 
Campbell and Peterlin (5), Becht and Fischer 
(l a), and the author by studying the for- 
marion of free radicals during fracture of 
various polymers. Using electron para- 
magnetic resonance (EPR) free radicals 
formed by broken polymer backbone chains 
have been observed directly and also in a 
more stable form after being trapped by 
impurities. Constant loads up to about 60% 
of the fracture strength do not lead to any 
detectable EPR-signal. 

These findings indicate that  the strength 
of a polymer in its glassy state is that  of a 
physically erosslinked network of main 
chains. Initially all primary bonds capable 
of rupture are unbroken. Under load small 
chain ends may be pulled loose, segments 
and side groups will slip past each other, 
closed loops can be opened and backbone 
chains are stressed until they break or slip 
past each other. In t he  temperature region 
of brittle fracture only the breakage of main 
chains provides a time-dependent accumulat- 
ive damage, which will lead to fracture initi- 
ation. I t  can safely be assumed that  a small 
amount of segment slippage does not decre- 
ase the load carrying capability of a certain 
volume element. 

I t  seems to be an adequate approach, 
therefore, to discuss the fracture strength of 
a polymer in terms of the load carrying 
chains. I t  is assumed tha t  part of the load 
is carried by extended chains which form a 
statistical network. Upon stressing of a 
sample chain scission will occur only within 
this network. And as stated above, the 
accumulation of this effect will eventually lead 
to failure of the stressed specimen. The two- 
network-model of Stuart and Anderson (43) 
describes this situation. We can modify it 
slightly and say that  the viscoelastic proper- 
ties of a polymer below its glass transition 
temperature may be represented by a 

"network of one-dimensional elastic elements" 
embedded in a "viscoelastic continuum". 
The time-dependent fracture strength will be 
determined by the oriented elastic network 
the response of which is modified by the 
viscoelastic continuum. 

I t  is at tempted in the next section, there- 
fore, to study the performance of a well 
defined, oriented elastic molecular network 
under constant load. I t  will then be necessary 
to adapt the results from these calculations 
to the conditions of a real polymer network 
and also to give the limitations of this theory 
in terms of stress, strain and strain rate, 
inhomogeneities, etc. 

Time-dependent changes in an elastic network 

The elastic properties and the fracture 
strength of oriented polymers have been 
studied extensively by Hsiao (19, 20, 33). 

In the rubbery region a polymer shows 
increasing orientation with increasing elonga- 
tion. In a stress-free state a rubber has no 
orientation. This is different with thermo- 
plasts or organic glasses which can undergo 
large plastic deformations (drawing at elevat- 
ed temperatures or cold-drawing at much 
higher stresses) and where the stress can be 
removed at temperatures below Tr to leave 
the material in a highly oriented quasi-stable 
state. Elastic and anelastie response as well 
as fracture strength depend upon the 
degree of orientation of the polymer. I f  one 
assumes that  a uniaxial plastic deformation 
of a sample is an affine deformation the 
orientation distribution ~ is described by 
the Kratky-formula (28): 

1 x3 
0(0)-  2u [cos 20 + ~t) 3sin 20] a/2' [13] 

where 2 is the uniaxial draw ratio. 

We may, therefore, characterize the uni- 
axial plastic deformation of a polymer by 2. 
In accordance with the considerations of 
the previous section we will neglect an- 
elastic deformations of a sample as long as 
they are small compared with 2 and as the 
rate of strain does not influence stresses 
measurably. The "elastic network" and the 
"viscoelastic continuum" are both made up 
of polymer chains and there is no way to tell 
whether a particular segment belongs to one 
or the other. I t  is reasonable, however, to 
assume that  those sections of a polymer 
chain which form an ahnost straight line 
for a length of 10 to 20 or more monomer units 
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are subjected to larger axial forces than 
chains which change their orientation in 
space every few monomer units. We will, 
therefore, consider long straight sections of 
the polymer chains as part  of the "elastic 
network" and represent them by linear 
elastic elements of uniform length 10. The 
time-dependent fracture strength will then 
depend upon the performance of the oriented, 
elastic network. I t  was considered that  such 
a network on a macroscopic scale is homo- 
geneous so that  continuum theory of elastic- 
i ty  may be applied to relate prescribed forces 
and deformations to the state of strain of a 
small subvolume. Within the subvolume the 
presence of the molecular elements and their 
orientation is taken into account. I f  the 
macroscopic body is subjected to forces the 
response of the material will lead to a 
deformation of the elements within the 
network. We assume tha t  within the sub- 
volume the strain is a continuous function 3) 
of the. spherical coordinates 0, ~, so that  
the strain experienced by a certain element 
in the direction of its axis is given by 4) 

A1/lo = emn Sm Sn m, n = 1, 2, 3 [14] 

and the force, acting in the same direction 
by 

F (O, (~, t) = ~ [o Smn s m Sn , [15] 

where  ~ is t h e  spr ing cons t an t  of  the  elast ic e lements ,  
and  Sm, sn are componen t s  of  t he  u n i t  vec tor  in  the  
d i rec t ion of  o r i en ta t ion  identif ied b y  0 and  ~b (s~ 

sin 0 cos q~, s~ = sin 0 sin q~, sa = cos 0). 

I f  for convenience we replace forces by 
local stresses, we obtain: 

yJ (0, qb, t) = E stun Sm Sn [16] 

where  E = ~/02 h i ,  if  ni  is t he  ini t ia l  n u m b e r  of  
e lements  pe r  un i t  volume.  

I t  may be emphasized again that  nl will 
be much smaller than the number of chains 
between "secondary bonds". This general 
scheme is roughly represented in fig. 2 with 
various possible orientations of the molecular 
network in a material body under a pre- 
scribed load, P. For uniaxial stress, ~ = %, 
and transverse symmetry about the 33-axis 
eq. [16] becomes: 

(0 ,  t) = E ( c o s  2 0 - -  v s i n  s 0) ca3 

where  v is t h e  s t ra in  ra t io  sn /ess .  

[17] 

3) A discussion of t he  consequences  following f rom 
th i s  an d  a l t e rna t ive  a s sumpt ions  is g iven  in reference 
(23). 

~) The  s u m m a t i o n  conven t ion  for r epea t ed  indices 
is used, 

I f  no stress concentration has to be con- 
sidered s33 is equal to %/E~ where E~ is the 
longitudinal modulus of elasticity of the 
oriented sample. I t  has been shown by 
Hsiao (19) that  the stress tensor acting on 
a small volume element of the elastic network 
can be calculated from eq. [17] once the 
orientation distribution function, ~, is known : 

aij" ~ ~ e ( O ) / ( O , t ) s i s j ~ p ( O , t )  dr2 [18] 

where  dr9 is the  inf ini tes imal  solid angle and  / ( 0 ,  t) 
N ( O ,  t ) /N(O,  0), t he  f rac t ion of u n b r o k e n  elements .  

Fig. 2. Schemat ic  r ep resen ta t ion  of or iented solid 
showing areas of complete,  pa r t i a l  and  r a n d o m  or ienta-  
t ion  of molecular  e lements .  P :  forces ac t ing on macro-  
scopic body,  ~ ( s , t ) :  s t a te  of  stress of  subvolume,  

(0, ~b, t): local stress, ac t ing  on  molecular  e l ement  

The tensor a~i' acting on the elastic net- 
work will differ from the stress a~j acting 
on the subvolume because any forces trans- 
mitted by the viscoelastic continuum are 
omitted in the determination of a~j' by 
eq. [18]. Also the strain ratio v will differ for 
the linear elastic network (~ = 0.25 for 
random orientation) and the actual polymer 
sample (0.35-0.50). 

As outlined, however, in the previous 
section only the action of alj' is thought to 
be responsible for time-dependent damage 
to the elastic network. I f  ~0 from [17] is 
introduced into [18] one obtains: 

0"11+ = 0"22 + = 0 = S E ~ (0 )  ] ( 0 ,  t) [~:11 sin2 0 
0 

+ s3s cos 2 0J sin 3 0 dO [19] 

a3a' : 2 z S E ~ (0 ) / (0 ,  t) [elz sin s 0 
0 

+ sss cos 2 0] cos 2 0 sin 0 dO.  [20] 
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For  all elements with "or ien ta t ion  0" the  
ra te  of rup tur ing  of the unbroken  elements 
is given by  the ra te  eq. [1] and with reference 
to  eq. [9] by  an exponent ia l  ra te  funct ion K :  

d N / d t =  -- N w b e x p [ - -  U/RT + f l~(O,t)]  [21] 

where COb and fl are constants,  R is the  gas constant,  
T absolute temperature  and U the act ivat ion energy. 

The system of eqs. [19-21] cannot  be 
solved analytical ly.  An approximat ion  me- 
thod  has been proposed,  however,  and carried 
out  for r andomly  oriented elastic networks  
(25). Wi thou t  repeat ing details of the  
me thod  5) it  m a y  be said t ha t  the  changes of  
N for a t ime interval  At as calculated f rom 
eq. [21] are being fed back into eqs. [19, 20] 
giving the  corresponding changes of s n (t) 
and  e~a (t), which in tu rn  determine the 
changes of W (t). The  i tera t ive  integrat ion of 
eqs. [19 21] can be carried out  numerically.  
The result  of this in tegrat ion for an un- 
or iented specimen (2 = 1), 

/~ 
f dl (o, t) 

<g~, 65 = [ exp [fl V~ (0, t)] [22] 
o 

is shown in fig. 3. The quan t i ty  05~ is the 
s t ress- independent  pa r t  of the rate  function : 

c~b = -  (o b exp (--  U/RT) . [23] 

Also shown in fig. 3 is the stress-lifetime 
curve for comI)letely oriented specimens 
(). ~ oo), which can be calculated according 
to eq. [ l l ] .  The  curve for 2 = 3 is obta ined 
by  interpolat ing the  other  two curves in a 
manner  to be discussed shortly.  

z~ 

E ' 

o 02 0,a 0,6 0,8 1,0 
"~ U n i o x i a l  5fro55 fl~o 

Fig. 3. Time-to-break for uniaxially stressed specimen 
(calculated from eq. [22]) 

5) Details of the method may be obtained from 
reference (24) which is available upon request. 

Discussion of the results 

Eq.  [22] describes the  t ime to failure of  
a homogeneous  elastic molecular  ne twork  
under  cons tant  load. I t  is obvious t h a t  a 
real po lymer  sample is no t  a homogeneous  
network,  since it  contains frozen-in tensions 
and stat is t ical ly d is t r ibuted deviat ions f rom 
M1 fimctions which characterize the average 
s ta te  of the  mater ia l  (Q, Stun, nd. A var ia t ion  
of local stress ~0 (0,0) t h roughou t  the volume 
of  the  sample has to be expected.  I f  this is 
so then  the  subvolume under  m a x i m u m  
stress will fail first. A different in te rpre ta t ion  
of  the same si tuat ion would be to say  tha t  
the stress concentra t ion factor  s shows a 
var ia t ion  th roughou t  the sample volume. 
Since s is incorpora ted  in fl this leads to a 
var ia t ion  of  ft. The  response of the sample 
as a whole af ter  failure of a load carrying 
subvolume depends upon the size of  the 
subvolume and material  propert ies.  Previous  
invest igat ions (25) have shown th a t  an 
elastic ne twork  just  prior  to  failure under-  
goes large deformations.  These deformat ions  
are shared b y  the  "viscoelastic con t inuum" .  
Fai lure  of the  subvolume,  therefore,  will 
mean  the  creat ion of a void smaller t han  
the subvolume,  which is sur rounded by  a 
" to rus"  of highly oriented, plast ical ly de- 
formed material .  

I f  the subvolume is fair ly large so t h a t  its 
failure gives rise to  an unstable  crack (rapid 
crack propagat ion)  then  the  l ifetime of the 
subvolume becomes ahnost  identical  to  the  
lifetime of the  sample. 

I f  the  subvolume is smaller so t h a t  the 
crack result ing from its failure is not  un- 
stable then  a period of slow crack growth  
will add to  the lifetime of the sample. The 
theoret ical  and exper imenta l  invest igat ions 
of Sternstein et  al. (42) and Cessna and 
Sternstein (6) have  shown th a t  in Poly-  
(methylmethacry la te )  and Poly(s tyrene)  the 
critical d iameter  of the plastically deformed 
ring is of  the  order  of 2000 A. Their  results, 
however,  still fit into the  general scheme 
shown in fig. 1, only t h a t  fl now contains a 
stress concent ra t ion  factor  which depends 
upon the  stress his tory  of the  sample. 

I f  the  subvolume is ve ry  small and 
encloses bu t  a few elastic elements the 
failure of these will have  no immedia te  
consequences. This was also indicated b y  
Prevorsek and Lyons (36). 

With in  the indicated restr ict ions the  
curves in fig. 3 are indeed stress-lifetime 
curves of real po lymer  samples. We observe 
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the large linear portion of these curves which 
is in accordance with the experimental 
evidence cited on page 55. The slope of the 
linear portions is proportional to (25): 

d In ~b tb/dfl Oo = -- E/E~. [24] 

This relationship has been used to draw the 
linear portion of the curve for partially 
oriented networks (2 = 3). 

Whereas many experiments have been 
carried out to study the influence of orienta- 
tion on the lifetime of samples subjected to 
constant strain rates few data are available 
for samples under constant stress. The data 
o f  Regel and Le/csovsky (39) for oriented poly- 
(acrylonitrile) seem to affirm the present 
calculations. Direct comparison of their 
data with theoretical stress-lifetime curves 

8 

~O- L~ 

\ 

~ 0 ~  \~- ,0  \ c o  

12,52\ \\ 
\ 
\ , �9 \ \  

I - - t  ~ I / I -~ 
i 

I0 20 30 r x70 2 kp/cm 2 
Uniaxial 3fre55 6" 

Fig. 4. Comparison of theoretical curves (dashed lines) 
and experimentally determined curves of lifetimes 
[solid lines, data of Regel and Leksovsky (39)]. Para- 

meter is draw-ratio ;t 

is at tempted in fig. 4. In order to transform 
the abscissa fl % into % the value of fl must 
be calculated from the slope of the experi- 
mental curves using eq. [24]. I t  was as- 
sumed tha t  E/E~ for 2 = 17.3 is close to 
unity, 0.94 was arbitrarily adopted. This 
leads to a value of fl of 0.01 cm2/kp. Similarly 
the value for ~b had to be determined to 
transform the ordinate of In ~b to into log t~. 
By shifting the experimental curve for 
2 = 17.3 close to the theoretical curve for 
A -~ c~ a value for log [5~ (sec)] of - 25.0 
was obtained. The agreement between theo- 
retical and experimental curves is excellent. 

The appearance of the theoretical curves in 
fig. 3 in connection with eq. [24] indicates 
tha t  the lifetime of a partly-oriented spe- 
cimen is predominantly determined by the 
term - E i  ( - E f l a o / E ~ ) .  I t  will be of 
interest, therefore, to formulate the lifetime 
in terms of that  expression and a correction 
function C~ which measures how much the 

predicted lifetime will actually deviate from 
the exponential integral: 

( ~ b  tb) = - -  E i ( - -  E fl %/E~) C~ (fl o~, E/E~) . [25] 

The correction function C~ can be calculated 
for two cases, namely for unoriented spe- 
cimens, 2 = 1, from the numerical solution 
of eq. [22] ~nd the tabulated values of the 
exponential integral and for completely 
oriented specimens (2--~ co). The correction 
function is a slowly varying function of 
E fl ao/E~ with values close to unity for small 
arguments. For large arguments the curve for 
unoriented specimens may be approximated 
by: 

C~ (fl 00, E/E~) = 1.3 + 0.63 E fl %/E~ . [26] 

I f  it is assumed tha t  for an unorientcd 
network of linear elements E/E~ is equal 
to 6 an interpolation between C 1 and Coo 
can be achieved through: 

C2 ~ 1 4- 1.2 [0.3 d- 0.63 E fl oo/E~] (E -- E~)/E. [27] 

In deriving eq. [27] it was assumed that  C~ 
transforms from C 1 into Coo proportional to 
( E -  E~)/E with E~ = E l6  and E = E. 
E~ as a function of A may be taken from 
reference (23). 

Extens ib i l i ty  o f  the  presented  k inet ic  theory  

One of the restrictions imposed oil the use 
of eq. [17] is that  the elastic deformation %~ 
is so small that  no change in the or, ientation 
distribution @ has to be considered. I t  is 
sufficient, however, to require that  the 
change through creep of the initial, elastic 
deformation during the lifetime of the sample 
is small compared with 2. The theory may 
be applied, therefore, to rubbers under 
constant load, if they show little creep, or 
to rubbers stressed at a rate small enough 
so that  eq. [17] holds, but also large enough 
that  essentially all "elements" break within 
a small time interval. 

The latter case is also an example for 
extension of this theory to time-dependent 
loads. In cyclic loading, an equivalent stress, 
e, has to be used instead of %. The most 
common application is a sinusoidal variation 
of stress: 

o (t) = % + ol sin (~o t). [28] 

The stress e is determined so that  the rate 
according to eq. [10] integrated over one 
cycle is the same for a (t) and e. I f  the rate 
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of f rac ture  of molecular  elements  is cor- 
rec t ly  described by  eq. [10] this theory  
predicts  the lifetime of samples under  cyclic 
loading also. An indicat ion for the  adequacy  
of e as a subst i tu te  for a (t) was found b y  
several invest igators  (36, 39). 

I f  the number  of  cycles or of repea ted  
loading periods independent ly  influences the  
t ime to  f rac ture  of a sample, as f requent ly  
found in metals and recent ly  also in rubbers  
(17), the present  theory  cannot  be used. 

Eq.  [16] forms the basis for an applicat ion 
to states of multiaxial stress. The local stress, 

(0), m a y  be changed by  ei ther the state  
of stress or the or ienta t ion dis t r ibut ion 
function.  In  triaxiM tension, ~n = g22 = ~aa 
= %, ~o (0) is constant  and equal to 3 % if 

= 1. This s i tuat ion is comparable  to t h a t  
within a completely oriented sample where 
all elements carry identical  loads. In  the 
first quadran t  of stress space (~11, ~22, gas) 
only two points have been invest igated:  
(0, 0, %) and (%, % %). Even  though  m a n y  
exper iments  with specimen under  mult iaxiM 
stress have been carried out  (21, 31), their  
results cannot  be related to the present  in- 
vestigation, since the or ienta t ion dis tr ibut ion 
of the  specimens used (pipes) is not  known. 
F u r t h e r  work on this subject  is in progress. 

F r om the  consideration t ha t  the  lifetime 
of a par t ly  oriented specimen subjected to 
mult iaxial  stress is de termined predominant -  
ly by  the rate  of failure of those elements 
which are oriented in the direction of 
m a x i m u m  strain, we would like to  propose 
as a failure criterion a "kinet ic  version of 
St. Venant's criterion of m a x i m u m  elastic 
s t ra in" .  The criterion can only be formu- 
la ted as an implicit  funct ion of  stress. 
Unti l  fur ther  work is completed it may  be 
restr ic ted to states of stress where the 
largest  normM component ,  %, has the 
direct ion of the axis of orientat ion.  In  this 
case a stress ~ will not  lead to f rac ture  of a 
sample within tb if: 

- -  E i ( - -  E fi ~o/Ez) . C~ (fl g, E/Ex)  < <Nb tb> . [29] 

C~ is known exac t ly  for  one- and tr iaxial  
tensions and can be in terpola ted  for inter- 
media te  cases. 
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Zusammen/assung 

In  der vorliegenden Arbeit  werden die st~tistischen 
und  mechanisehen Modelle untersucht ,  die der kineti- 
schen Theorie des Bruches yon Gl~tsern, Thermoplasten 
und  Gummi zu Grunde liegen. D~bei werden die ffir 
Hochpolymere im glasartigen Zustand zutreffenden 
Voraussetzungen angegeben. Die Ergebnisse j i ingster 
ESR-Versuche und  die elastische, anelastische und  
p]astische Verformung des Polymeren werden besonders 
in Betracht  gezogen. Ein  mathematisehes ~r des 
FestkSrpers wird formuliert,  das in ~bere ins t immung 
mit  den beobachteten Eigenschaften des Materials ist, 
und das aus einem elastischen Netzwerk besteht,  ein- 
gebet tet  in eine viskoelastische Umgebung. Auf  der 
Grundlage der angegebenen Bedingungen werden ffir 
einaehsig belastete Proben Bruchzeiten als ~'unk$ion 
der Last  und des Orientierungsgrades des polymeren 
Netzwerkes berechnet. Diese Bruchzeiten werden mit  
experimentell bes t immten ~Verten verglichen. 

Die Erweiterung des vorgelegten Modells auf  den 
Bruch yon Elastomeren und  auf  mehrachsige oder zeit- 
abh~tngige Spannungszusti~nde wird untersucht .  Ein 
Bruchkri ter ium wird vorgeschlagen, das die ,,Kineti- 
sche Version yon St.Venant's Kriter ium der gr6Bten 
elastischen Verformung" genannt  werden kSnnte. 
Darin wird die Bruchgef~hrlichkeit eines Spannungs- 
zustandes durch die gr6Bte Komponente  der Normal- 
spannung und  das Verhgltnis zweier elastischer Moduln 
best immt,  ngmlich das Verh~ltnis des Moduls eines 
Netzwerkfadens und  des longitudinalen Modu]s (in 
Orientierungsrichtung) der Probe insgesamt. 

Summary 

The statistical and  mechanical models underlying 
the kinetic theories of fracture of glasses, thermoplasts  
and rubbers are analyzed and specified for polymers in 
their  glassy state. Special a t tent ion is given to results 
from recent electron resonance experiments, and to 
the elastic, anelastic and permanent  deformation of 
a polymer before and during the experiment leading 
to f~ilure. A model is constructed which is in accordance 
with the observed material  behavior,  and which 
consists of an elastic molecular network embedded in 
a viscoelastic continuum. On the  basis of the specified 
conditions t imes-to-break are calculated as a function 
of applied load and degree of orientat ion of the polymer 
network. The calculated t imes-to-break are compared 
with experimental  data.  

The extensibility of the theory to fracture of 
rubbers and to failure under  multi~xial or time- 
dependent  stress is discussed. A fracture criterion is 
proposed which may be called ~he ,,kinetic version of 
St.Venant's criterion of maximum elastic s train",  in 
which the  critically of a state of stress is essentially 
determined by  the components of normal stress and 
the ratio of two longitudinal  elastic moduli, namely 
t h a t  of the  molecular network and t h a t  of the  sample 
as a whole. 
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