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Recent developments in the kinetic theory of fracture of polymers

By H. H. Kausch von Schmeling

With 4 figures in & details

Introduction

The importance of a thorough understand-
ing of fracture processes need not to be
emphasized. Costly failures always have and
still do attract enough attention to this
subject. The obvious aim of the investigator
is the prediction of fracture behavior under
all kinds of foreseeable conditions or, rather,
the formulation of non-fracture conditions.
Any predictions will have to be based on
experimental results which are linked to-
gether through theoretical considerations.
The number of theoretical assumptions in
combining experimental data varies. There
will be many if a large number of material
and environmental parameters are taken
into consideration. There will be fewer if
the response of the material under one set
of conditions is taken to be a single process.
For instance the time to fracture of a strip
of rubber under constant uniaxial load can
be viewed as one function of the material
and environmental parameters or it can be
considered as the complex result of a number
of different processes, e. g. crack initiation,
slow crack growth, and rapid crack pro-
pagation. No matter which philosophy is
employed the extrapolation of a function of
one parameter into inaccessible regions of
this parameter requires a critical check of
the validity of all assumptions involved.

In the first section of this paper we will,
therefore, briefly discuss the major points
of the kinetic theory of fracture, namely the
nature of the statistically independent ele-
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ments, their performance, and how the
probabilities for failure of individual ele-
ments combine to characterize the behavior
of the whole structure.

We will then specify these conditions for
the case of oriented polymers in their glassy
state under special consideration of all
experimental evidence as the ultimate pro-
perties at break, their temperature- and
time-dependency, the formation of free
radicals, and the statistical variability in
fracture experiments. In accordance with
these conditions a statistico-mechanical
model is developed which describes the
fracture process until onset of rapid crack
propagation. Except for samples with large,
pre-existing cracks this covers essentially
the total lifetime of a sample. An equation
for the time to fracture is derived as a
function of orientation and constant uni-
axial stress. This equation is discussed and
compared with experimental results. Finally
it is investigated whether and how the
theory may be applied under other than the
specified conditions, e. g. for rubbers, and
the extensibility to time-dependent loads
and multiaxial stress. A fracture criterion is
formulated which may be called the kinetic
version of St. Venants criterion of maximum
elastic strain.

Statistical and mechanical models in the
kinetic theory of fracture

A theory of fracture usually is called a
kinetic theory if it accounts in some way for
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time-dependent changes within the material
which eventually lead to failure of the
sample under consideration. One can even
be more specific and say that the time-
dependent changes are related to and depend
on the fluctuating thermal energy of the
atoms, segments, or molecules.

Within this framework the nature of the
time-dependent processes can be quite dif-
ferent. Busse and his colleagues (4) suggested
that wviscous flow within cotton fibers deter-
mines the fatigue life of these fibers and
they used Eyrings theory of viscosity (13)
for interpretation of their data. Tobolsky
and Hyring (45) considered the “‘slippage”
of secondary bonds and the net decrease of
the number of bonds. They considered the
two cases where repair of bonds under stress
is either possible or impossible. Stuart and
Anderson (43) discussed a model involving
two independent networks and argued that
only fracture within the first network with
unsymmetrical  potential barriers between
broken and unbroken states contributes
towards failure of glasses. Zhurkov (47, 48)
among others suggested that the breakage of
primary bonds in long-chain molecules may
be the dominant cause of failure of a number
of different natural and synthetic fibres.
Prevorsek and Lyons (36) emphasized that
nucleation and growth of voids and flaws can
be attributed to the random thermal motion
of chain segments even without breakage of
any load carrying bonds. The lifetime of a
sample would then be determined by the
time it takes one flaw to grow to a critical
size. Without specification of the nature of
the time-dependent process it is sometimes
called damage (15) or probability of crack
formation (26).

The mathematical formalism of these
various theories can be conveniently com-
pared if we denote by N the number of
those elements (bonds, flow steps, nuclei,
etc.) whose time-dependent change is con-
sidered to determine the lifetime of the
sample as a whole. In its general form the
equation for the rate of change of N is
given as

N/t = — NK (o, N, T). (1]

where K is the rate of breakage or nucleation, ¢ the
stress tensor!), and 7' the absolute temperature. ~

The interpretation of K and its formula-
tion is different in the kinetic theories of

1) K is not a functional, o therefore stands only for
its components. -

different authors according to the different
statistico-mechanical models.

In a series of papers Coleman (7-9) and
Coleman and Marquardt (10, 11) propose a
“theory of breaking kinetics” for fibres.
Their approach is completely formal and
does not involve any assumptions concerning
the microstructure of the fibres. The statistic-
al considerations summarized there for “first
order ensembles” obtain new importance,
however, when applied to molecular en-
sembles. Hq. [1] for the rate of decrease of
a number N of statistically equal, independ-
ent and separately loaded fibers becomes:

dNjit = — N K 121

and is readily solved with respect to the
number N(t) of surviving fibres:

¢
N () = Nyexp [_ _[K(-r) dr] , [3]
0

where N, is the initial number of fibres.

The fraction of fibres broken after some
time #, is obviously 1 — N(t)/N, and the
cumulative distribution function of life-
times, Q (fy), therefore, is:

th
Qty) =1 —exp [— JK(T) dr] . [4]
0

The average lifetime, (1>, is solely deter-
mined by K and becomes for constant K':

(s}

i
e = K-1 5
t =5 i t Ny Kexp(— Kt)ydt =K. [5]

It may be noted that in this case the life-
expectancy of a surviving fiber is at any
time independent of N and ¢.

Kawabata and Blaiz (26) developed a
simple stochastic theory of creep failure.
They argued that the first moments of #
for an ensemble of ruptured specimens should
reveal whether K is independent of time
or not. If K depends only on initial load and
is independent of N the equation

K = (m! [ty )Hm [6]

should hold for any m, that is for any order
of moments of #. An investigation of the
variation of fracture times of a rubber
vulcanizate gave excellent agreement with
the assumption of a time-independent K
(14, 26), i. e. like in eq. [2].

Bueche and Halpin (3) have been con-
cerned with fracture of elastomers, which
they consider to be the result of the breakage
of a large number of filaments within the
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stressed specimen. While they still employ
the idea of all filaments being equivalent
and subjected to practically the same load
they introduce two important concepts, the
first being that in an area of high stress
concentration (crack tip) essentially one
small filament is strained until it ruptures
at a critical strain .. Only after rupture of
the first filament is completed in time ¢ the
rapid straining of the second filament starts
ete. The second concept concerns the visco-
elastic properties of the filament in com-
parison with those of the sample as a whole.
1t is reasoned that the same physical pro-
cesses are responsible for the creep behavior
of a filament and that of the total sample
and that it should be possible to deduce the
viscoelastic performance of a filament from
the observed creep function of the sample.
The sample will fracture at a gross strain 2,
after ¢ filaments have been broken in a
time & = qt'. The values 4, and /4. are
connected through the creep function of the
material and the stress concentration factor.
The theory allows to calculate the elongation
at break, 1, from the knowledge of the creep
function.

We may point out that the theory does
- not take into consideration any change of
the stress concentration factor s with
growing crack length or the decrease of ¢,
the time necessary to fracture one filament,
with continuing creep of the sample. It is
assumed that all filaments will have to be
stretched from practically zero elongation
to Ac. That will, in the first place, effect any
numerical values of ¢ which may be cal-
culated from fitting experimental failure
envelopes. In their calculations Bueche and
Halpin do not make use of the expected
statistical variation of fracture times ¢, which
would lead to additional information con-
cerning ¢. The time increment ' is not
actually constant but will show a variation
@ (¢') in accordance with eq. [4].

A group of ¢ filaments subject to the
statistical condition that fracture of one
filament may start once the fracture of the
preceding one is completed has an average
lifetime, {&y», of ¢t and a Poisson distribu-
tion of t:

D) dty = digft’ (B8 0 g — 1)1 (7]

The scatter of ¢ should be used, therefore,
to check the value of ¢q. No matter whether
¢’ is assumed constant or varying around an
average the theory leads to a practically
constant rate of crack growth for almost the

total length of lifetime followed by a sharp
jump to very high crack velocities immediate-
ly before failure.

Whenever an ensemble of fibres or ele-
ments is strongly interconnected the failure
of one element leads to increasing loads for
the remaining ones. Whereas the difference
is not felt very much at the beginning of
the lifetime of a large ensemble, the rates of
increase of stress or strain, the fracture
development and the remaining lifetime are
considerably changed toward the later stages
of the lifetime.

The “ideal bundle” (9) is a very good
realization of this concept. The rate equation
is changed now into:

AN/t = — NK (o/N) . (8]

Without any information on the rate func-
tion K this equation cannot be integrated.
We will, therefore, briefly turn our attention
to some experiments revealing the stress
dependency of K. We may recall that for
one value of uniaxial stress K can be deter-
mined from the breaking times of a set of
single fibres under separate identical constant
loads. The variation of these breaking times
reveals whether K is constant with time (26).
If so, K is just the inverse of the average
lifetime (eq. (6]). From a series of experiments
under different loads, o,, the function K(ay)
can be obtained. Uniaxial loading experi-
ments have been carried out for a large
number of natural (4, 30, 31, 47) and syn-
thetic (2, 7, 27, 36, 39, 48) fibres, for glasses
(43), SBR-vulcanizates (16, 26), and metals
(39, 48).

The results from all these experiments
show that a plot of log & versus g, is sort of
a sigmoidal curve with an extended linear
central section and portions of increasing
slope at higher and smaller stresses re-
spectively (29). The same results are often
plotted as stress versus the duration of the
experiment, if the strength of the material
is considered to be the dependent variable.
In fig. 1 both representations are compared.
A closer examination shows that the as-
sumption of K independent of time holds
for the linear central section only. It follows
for this section immediately that K is an
exponential function of gy:

K = wp exp (f a0) , (91

where wp and g are constant with respect to
time and uniaxial stress, o,, We may now
return to the ideal bundle or a time-depend-
ent number of primary or secondary bonds
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which share a constant stress o,. The stress
experienced by each surviving element is
Ny o,/N(t) and the rate equation becomes:

dN{dt = — N wp exp [N, f 6o/N (2)] . [10]

This equation may be solved in terms of the
exponential integral?) for constant o,:

oo

Coon B :J‘—e;dxz—Ei(—ﬁaO).
By

In eq. [11] the average of #, appears since
eq. [10] is a deterministic equation. The time
intervals A¢ necessary to produce a change
AN of N are subject to statistical variation.
It is seen from a comparison of eqgs. [5], [9]
and [11] that the average lifetime of a bundle
of fibers deviates from the lifetime of a single
fibre by a factor — E i (— B a,)/exp (— B ay),
which is equal to 1/8¢, if foy>1. The
statistical concept of coupling the per-
formance of many elements, which causes
the mentioned decrease in {t;> also reduces
the second moment of t5, M,(t). Coleman
calculated (9) that the coefficient of variation
of the lifetimes,

(<B™> — oM<t

is proportional to N,;=12 and thus approaches
zero if there are a large number (N,) of
elements per bundle or subvolume.

So far we have discussed kinetic theories
in which crack initiation and propagation
are governed by the same principle, namely
a rate controlled irreversible decrease of
load carrying elements. In accordance with
the derivation of kinetic theories of fracture
from the theory of absolute reaction-rates
the earliest approaches accounted for changes
in both directions, that is for the breakage as
well as for the reformation of bonds (45).
Eq. [1] then has to be formulated as:

dN/dt — — N Kp + (N, — N) K,

(11}

[12]

using separate rate functions for the breaking
(K»p) as well as for the reforming process (K,).
If it were attempted to interpret this situa-
tion in terms of just one rate function K as
in eq. [1], K would become highly time-
dependent even though K, and K, may be
constant with respect to time. On the basis
of this theory Stuart and Anderson (43)
explained the fatigue life of glasses over
16 decades of temperature-reduced timescale.

%) The above exponential integral — ¥ ¢ (— f o,) is
for positive arguments often also abbreviated as

B, (6 o).

The author has previously discussed (22) the
stress-lifetime curves resulting for different
time-dependent rate functions K, and K,
and also the existence of dynamic equilibria
which lead to infinite lifetimes. Tt was
pointed out that the assumption of reforming
processes would conveniently explain the
non-linear slope of the sigmoidal stress-
lifetime curve (fig. 1) at small stresses. If the
molecular fracture process happens to be
that of a main chain immediate reformation
of the same primary bond seems to be un-
likely in view of recent EPR-experiments (12)
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Fig. 1. Schematic representation of stress-lifetime

curves with emphasis on strength (upper diagram) or

lifetime (lower diagram). The dashed line indicates

change, which would result from increase in “upper
limit of strength” (22)

which indicate a rapid transfer of the free
radicals formed and a negligible rate of
recovery of a stressed specimen (Nylon 6).
The kinetic theory of Knauss (27) for
time-dependent fracture of viscoelastic ma-
terials also is based on a dynamic equilibrium
between broken and unbroken bonds. Crack
initiation then is due to a stress induced
change of the equilibrium state. Even though
it is assumed that equilibrium in the un-
stressed state exists when one half of all
bonds capable of rupture are broken it is

4%
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also stated that the point where equilibrium
is established is not important but rather
the way deviations from this reference state
occur. If the rate functions K, and K, are
functions of temperature and the amount
of energy available to a bond the change of
the equilibrium number of broken bonds in
a ‘“‘weak region” can "be calculated. The
number of newly broken bonds can be inter-
preted as a measure of the size of a defect.
It is assumed that the size of the defect
continues to grow following the same
mathematical description until it reaches a
critical value which is determined from
energy considerations. In this case shape
and size of the crack, therefore, do not in-
fluence the rate functions K and K,.

The shape of a crack has not received
special consideration in any of the above
mentioned kinetic theories. The size enters
the calculations only indirectly and only if
the increase in load with decreasing number
of elements (load sharing) is considered.
There is no question that size and shape of
a crack are of prime importance as far as the
stability of a crack is concerned. And there is
also no question that a stable crack some
time prior to reaching the critical size in-
fluences its own rate of growth.

In a series of papers Prevorsek and Lyons
(35—-38) presented a theory of crack nuclea-
tion and growth where the interdependency
of crack size and rate of growth was especial-
ly considered. They made use of the cal-
culations of Sack (40) for the decrease in
strain-free energy associated with the pre-
sence of a circular micro-crack in a con-
tinuum. The net energy to create a crack of
radius 7 is composed of this term and the
surface energy and it has a maximum at
some radius r* The value of r* is the
critical radius because any crack with
r > r* becomes unstable and propagates
rapidly. The authors assume that a crack can
grow by incorporating in its surface layer
molecular segments from the “standard state
phase”. The rate of crack growth is formulat-
ed as a function of the radius, uniaxial stress,
two activation energies and the concentra-
tions of the crack nuclei and the molecular
segments in their surrounding. The pro-
bability of fracture is then given by the
slowest step, i. e. by the smallest rate, which
is the rate of growth of a crack having
radius r*. Out of a great number of slowly
and by no means monotonically growing
cracks one will be able to reach the critical
size and cause a failure.

Summing up this brief review we may say
that three statistical concepts have been
proposed, which involve a) a number of
independent elements, b) a number of load
sharing elements, or ¢) the probability of a
single event (formation of an unstable crack).
“Mechanical”’ concepts concern stress con-
centration, viscoelastic deformation of load
carrying elements, energy required to form
new surfaces, and elastically stored energy
within a certain sample volume.

In the next section fracture of glassy
polymers is discussed and it will be attempted
to describe it within the framework of the
above concepts.

Fracture of glassy polymérs

In the previous section statistical and
mechanical models of kinetic fracture pro-
cesses have been discussed which were
applied to a large variety of polymers and
glasses and widely different modes of ex-
citation. We would like to discuss in more
detail the fracture of polymers in their
glassy state.

A polymer network in its glassy state, i. e.
below the glass transition temperature, 7',
is believed to be in a state of thermodynamic-
al non-equilibrium, but it is nevertheless a
quasi-stable state because configurational
changes take place at infinitely slow rates.
Whereas chemical crosslinks and physical
crosslinks like entanglements determine the
cohesion of a polymer in the rubbery region
intermolecular attraction through Van der
Waals forces contributes significantly to the
cohesion of a glassy polymer. These forces
are called secondary bonds or also physical
crosslinks. It may be clearly pointed out,
however, that these secondary “bonds” are
not nearly as localized or well defined as
primary bonds are. Due to the fact that the
Van der Waals attraction involves whole
segments rather than individual atoms the
binding potential varies greatly. Strong
dipol-dipol interaction and hydrogen-bonds
are a certain exception. They tend to be
more localized and more uniform in their
binding potentials. In statistical considera-
tions the concept of localized secondary bonds
has been used successfully (34, 45). It is
with this understanding that the term
“secondary bonds” will be used. Secondary
bonds at temperatures below T; are re-
markably stable as may be concluded from
the absence of a time proportional flow
component in creep of thermoplasts or
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glasses under moderate stresses (31). It may
also be deduced from the fact that failure
usually does not ocour in shear.

The energy of activation calculated from
the temperature dependency of the fracture
strength for various polymers was found to
be comparable to the binding energy of
primary bonds (47). It was thus suggested
that the breakage of primary bonds in the
chain molecules actually takes place. Further-
more, this phenomenon is considered to be
the dominant cause of the eventual failure
of these solids.

A conformation of this assumption was
obtained by Zhurkov (49), DeVries (12),
Campbell and Peterlin (5), Becht and Fischer
(1a), and the author by studying the for-
mation of free radicals during fracture of
various polymers. Using electron para-
magnetic resonance (KPR) free radicals
formed by broken polymer backbone chains
have been observed directly and also in a
more stable form after being trapped by
impurities. Constant loads up to about 609
of the fracture strength do not lead to any
detectable EPR-signal.

These findings indicate that the strength
of a polymer in its glassy state is that of a
physically crosslinked network of main
chains. Initially all primary bonds capable
of rupture are unbroken. Under load small
chain ends may be pulled loose, segments
and side groups will slip past each other,
closed loops can be opened and backbone
chains are stressed until they break or slip
past each other. In the temperature region
of brittle fracture only the breakage of main
chains provides a time-dependent accumulat-
ive damage, which will lead to fracture initi-
ation. It can safely be assumed that a small
amount of segment slippage does not decre-
ase the load carrying capability of a certain
volume element.

It seems to be an adequate approach,
therefore, to discuss the fracture strength of
a polymer in terms of the load carrying
chains. It is assumed that part of the load
is carried by extended chains which form a
statistical network. Upon  stressing of a
sample chain scission will occur only within
this network. And as stated above, the
accumulation of this effect will eventually lead
to failure of the stressed specimen. The two-
network-model of Stuart and Anderson (43)
describes this situation. We can modify it
slightly and say that the wiscoelastic proper-
ties of a polymer below its glass transition
temperature may be represented by a

“network of one-dimensional elasticelements”
embedded in a ‘“viscoelastic continuum®.
The time-dependent fracture strength will be
determined by the oriented elastic network
the response of which is modified by the
viscoelastic continuum.,

It is attempted in the next section, there-
fore, to study the performance of a well
defined, oriented elastic molecular network
under constant load. It will then be necessary
to adapt the results from these calculations
to the conditions of a real polymer network
and also to give the limitations of this theory
in terms of stress, strain and strain rate,
inhomogeneities, ete.

Time-dependent changes in an elastic network

The elastic properties and the fracture
strength of oriented polymers have been
studied extensively by Hsiao (19, 20, 33).

In the rubbery region a polymer shows
increasing orientation with increasing elonga-
tion. In a stress-free state a rubber has no
orientation. This is different with thermo-
plasts or organic glasses which can undergo
large plastic deformations (drawing at elevat-
ed temperatures or cold-drawing at much
higher stresses) and where the stress can be
removed at temperatures below T'; to leave
the material in a highly oriented quasi-stable
state. Klastic and anelastic response as well
as fracture strength depend wupon the
degree of orientation of the polymer. If one
assumes that a uniaxial plastic deformation
of a sample is an affine deformation the
orientation distribution p is described by
the Kratky-formula (28):

0 — 1 J— j} .
¢ = 57 Tost 6 + 2% sin® 077 *

[13]

where 1 is the uniaxial draw ratio.

We may, therefore, characterize the uni-
axial plastic deformation of a polymer by 4.
In accordance with the considerations of
the previous section we will neglect an-
elastic deformations of a sample as long as
they are small compared with A and as the
rate of strain does not influence stresses
measurably. The “elastic network” and the
“viscoelastic continuum” are both made up
of polymer chains and there is no way to tell
whether a particular segment belongs to one
or the other. It is reasonable, however, to
assume that those sections of a polymer
chain which form an almost straight line
for a length of 10 to 20 or more monomer units
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are subjected to larger axial forces than
chains which change their orientation in
space every few monomer units. We will,
therefore, consider long straight sections of
the polymer chains as part of the “elastic
network” and represent them by linear
elastic elements of uniform length /,. The
time-dependent fracture strength will then
depend upon the performance of the oriented,
elastic network. It was considered that such
a network on a macroscopic scale is homo-
geneous so that continuum theory of elastic-
ity may be applied to relate prescribed forces
and deformations to the state of strain of a
small subvolume. Within the subvolume the
presence of the molecular elements and their
orientation is taken into account. If the
macroscopic body is subjected to forces the
response of the material will lead to a
deformation of the elements within the
network. We assume that within the sub-
volume the strain is a continuous function?)
of the spherical coordinates 8, @, so that
the strain experienced by a certain element
in the direction of its axis is given by?)

mon=1,23 [14]

AYly = epyn Sm Sn

and the force, acting in the same direction

by

F(0, D, t) = 2 lyemn Sm Sn » [15]

where » is the spring constant of the elastic elements,
and s, 8, are components of the unit vector in the
direction of orientation identified by 6 and @ (s,
= gin 0 cos @, s, = sin 6 sin @, 3 = cos §).

If for convenience we replace forces by
local stresses, we obtain:

v (0, D, t) = E ey Sm Sn [16]

where E = xl2n;, if n; is the initial number of
elements per unit volume.

It may be emphasized again that n; will
be much smaller than the number of chains
between ‘‘secondary bonds”. This general
scheme is roughly represented in fig. 2 with
various possible orientations of the molecular
network in a material body under a pre-
scribed load, P. For uniaxial stress, o4 = 0,
and transverse symmetry about the 33-axis
eq. [16] becomes:

w(6,t) = E (cos? § — v sin? §) gy [17]

where » is the strain ratio &,/es;.

3) A discussion of the consequences following from
this and alternative assumptions is given in reference
(23).

¢) The summation convention for repeated indices
is used,

If no stress concentration has to be con-
sidered &, is equal to gy/E; where E; is the
longitudinal modulus of elasticity of the
oriented sample. It has been shown by
Hsiao (19) that the stress tensor acting on
a small volume element of the elastic network
can be calculated from eq. [17] once the
orientation distribution function, ¢, is known:

oii” = $ 0(6) F (6, 1) si 55 (8, 1) 42 [18]

where df2 is the infinitesimal solid angle and f (6, 1)
= N(0,t)/N (6, 0), the fraction of unbroken elements.

(g t)

Fig. 2. Schematic representation of oriented solid
showing areas of complete, partial and random orienta-
tion of molecular elements. P: forces acting on macro-

scopic body, o (e, f): state of stress of subvolume,
{0, D, t): local stress, acting on molecular element
The tensor o;;' acting on the elastic net-
work will differ from the stress o;; acting
on the subvolume because any forces trans-
mitted by the viscoelastic continuum are
omitted in the determination of o;;’ by
eq. [18]. Also the strain ratio v will differ for
the linear elastic network (v = 0.25 for
random orientation) and the actual polymer
sample (0.35-0.50).

As outlined, however, in the previous
section only the action of ¢;;’ is thought to
be responsible for time-dependent damage
to the elastic network. If ¢ from [17] is
introduced into [18] one obtains:

/2
o1 = 0y’ =0 = [ B 0(0) (6, ¢) [es3 sin? 0
0

+ &5, cos? 8] sin® § dO [19]
/2 ]
0w =27 [ E 0 (0) (0, 0) [en sin 0
0
+ &y, cos? 6] cos? 6 sin 0 dO . [20]
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For all elements with “orientation 0’ the
rate of rupturing of the unbroken elements
is given by the rate eq. [1] and with reference
to eq. [9] by an exponential rate function K:

dNjdt = — N wpexp[— U/RT + Sy (6,8)] [21]

where wp and f are constants, R is the gas constant,
T absolute temperature and U the activation energy.

The system of eqs. [19-21] cannot be
solved analytically. An approximation me-
thod has been proposed, however, and carried
out for randomly oriented elastic networks
(25). Without repeating details of the
method?®) it may be said that the changes of
N for a time interval A¢ as calculated from
eq. [21] are being fed back into eqs. {19, 20]
giving the corresponding changes of & (f)
and ey (1), which in turn determine the
changes of » (f). The iterative mtegration of
egs. [19-21] can be carried out numerically.
The result of this integration for an un-
oriented specimen (1 = 1),

fo=1
T ape
By 1y ~ ) FesplBy (00

[22]
is shown in fig. 3. The quantity &, is the
stress-independent part of the rate function:

@y = wp exp (— UJRT) . [23]
Also shown in fig. 3 is the stress-lifetime
curve for completely oriented specimens
(A — 00), which can be calculated according
to eq. [11]. The curve for 2 = 3 is obtained
by interpolating the other two curves in a
manner to be discussed shortly.
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Fig. 3. Time-to-break for uniaxially stressed specimen
(calculated from eq. [22])

®) Details of the method may be obtained from
reference (24) which is available upon request.

Discussion of the results

Eq. [22] describes the time to failure of
a homogeneous elastic molecular network
under constant load. It is obvious that a
real polymer sample is not a homogeneous
network, since it contains frozen-in tensions
and statistically distributed deviations from
all functions which characterize the average
state of the material (g, emn, ns). A variation
of local stress v (0,0) throughout the volume
of the sample has to be expected. If this is
so then the subvolume under maximum
stress will fail first. A different interpretation
of the same situation would be to say that
the stress concentration factor s shows a
variation throughout the sample volume.
Since s is incorporated in f this leads to a
variation of B. The response of the sample
as a whole after failure of a load carrying
subvolume depends upon the size of the
subvolume and material properties. Previous
investigations (25) have shown that an
elastic network just prior to failure under-
goes large deformations. These deformations
are shared by the ‘“‘viscoelastic continuum’.
Failure of the subvolume, therefore, will
mean the creation of a void smaller than
the subvolume, which is surrounded by a
“torus” of highly oriented, plastically de-
formed material.

If the subvolume is fairly large so that its
failure gives rise to an unstable crack (rapid
crack propagation) then the lifetime of the
subvolume becomes almost identical to the
lifetime of the sample.

If the subvolume is smaller so that the
crack resulting from its failure is not un-
stable then a period of slow crack growth
will add to the lifetime of the sample. The
theoretical and experimental investigations
of Sternstein et al. (42) and Cessna and
Sternstein (6) have shown that in Poly-
(methylmethacrylate) and Poly(styrene) the
critical diameter of the plastically deformed
ring is of the order of 2000 A. Their results,
however, still fit into the general scheme
shown in fig. 1, only that g now contains a
stress concentration factor which depends
upon the stress history of the sample.

If the subvolume is very small and
encloses but a few elastic elements the
failure of these will have no immediate
consequences. This was also indicated by
Prevorsek and Lyons (36).

Within the indicated restrictions the
curves in fig. 3 are indeed stress-lifetime
curves of real polymer samples. We observe
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the large linear portion of these curves which
is in accordance with the experimental
evidence cited on page 55. The slope of the
linear portions is proportional to (25):

dIn @y ty)df oo = — BIE; . [24]

This relationship has been used to draw the
linear portion of the curve for partially
oriented networks (1 = 3).

Whereas many experiments have been
carried out to study the influence of orienta-
tion on the lifetime of samples subjected to
constant strain rates few data are available
for samples under constant stress. The data
of Regel and Leksovsky (39) for oriented poly-
(acrylonitrile) seem to affirm the present
calculations. Direct comparison of their
data with theoretical stress-lifetime curves
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Fig. 4. Comparison of theoretical curves (dashed lines)

and experimentally determined curves of lifetimes

[solid lines, data of Regel and Leksovsky (39)]. Para-
meter is draw-ratio 4

is attempted in fig. 4. In order to transform
the abscissa § o, into o, the value of § must
be calculated from the slope of the experi-
mental curves using eq. [24]. It was as-
sumed that E/E; for 1 = 17.3 is close to
unity, 0.94 was arbitrarily adopted. This
leads to a value of 8 of 0.01 em?/kp. Similarly
the value for @ had to be determined to
transform the ordinate of In @ ¢ into log #.
By shifting the experimental curve for
2 = 17.3 close to the theoretical curve for
A —> 00 a value for log [@p (sec)] of — 25.0
was obtained. The agreement between theo-
retical and experimental curves is excellent.

The appearance of the theoretical curves in
fig. 3 in connection with eq. [24] indicates
that the lifetime of a partly-oriented spe-
cimen is predominantly determined by the
term — E¢(— Efoo/Er). It wil be of
interest, therefore, to formulate the lifetime
in terms of that expression and a correction
function C; which measures how much the

predicted lifetime will actually deviate from
the exponential integral:

Dptyy = — Bi(— E poy/E;) Oy (B oo, BlE) . [25]

The correction function C; can be calculated
for two cases, namely for unoriented spe-
cimens, 4 = 1, from the numerical solution
of eq. [22] and the tabulated values of the
exponential integral and for completely
oriented specimens (41— oo). The correction
function is a slowly varying function of
E 8 0o/ E; with values close to unity for small
arguments. For large arguments the curve for
unoriented specimens may be approximated
by:

O, (B oo, BIE)) = 1.3 + 063 EBoo/E;.  [26]
If it is assumed that for an unoriented
network of linear elements E/E; is equal
to 6 an interpolation between C; and C_
can be achieved through:

Oy =1+ 1.2[0.3 + 0.63 E B o,/E;] (E — E3)/E. [27]

In deriving eq. [27] it was assumed that Ci
transforms from O, into C_ proportional to
(B — E)/E with E; = E/6 and E_ = K.
E; as a function of 4 may be taken from
reference (23).

Extensibility of the presented kinetic theory

One of the restrictions imposed on the use
of eq. [17] is that the elastic deformation eg
is so small that no change in the orientation
distribution ¢ has to be considered. It is
sufficient, however, to require that the
change through creep of the initial, elastic
deformation during the lifetime of the sample
is small compared with A. The theory may
be applied, therefore, to rubbers under
constant load, if they show little creep, or
to rubbers stressed at a rate small enough
so that eq. [17] holds, but also large enough
that essentially all “elements’ break within
a small time interval.

The latter case is also an example for
extension of this theory to time-dependent
loads. In cyclic loading, an equivalent stress,
&, has to be used instead of ¢,. The most
common application is a sinusoidal variation
of stress:

() =0, + oy8in (wt). [28]

The stress ¢ is determined so that the rate
according to eq. [10] integrated over one
cycle is the same for o (¢) and 6. If the rate
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of fracture of molecular elements is cor-
rectly described by eq. [10] this theory
predicts the lifetime of samples under cyclic
loading also. An indication for the adequacy
of & as a substitute for o (f) was found by
several investigators (36, 39).

If the number of cycles or of repeated
loading periods independently influences the
time to fracture of a sample, as frequently
found in metals and recently also in rubbers
(17), the present theory cannot be used.

Eq. [16] forms the basis for an application
to states of multiaxial stress. The local stress,
p (0), may be changed by either the state
of stress or the orientation distribution
function. In triaxial tension, 6y; = 04y = 0y
= 0, ¥ (0) is constant and equal to 3 g, if
2 = 1. This situation is comparable to that
within a completely oriented sample where
all elements carry identical loads. In the
first quadrant of stress space (oyy, 0gg, 033)
only two points have been investigated:
(0, 0, ay) and (oy, 6y, 65). Even though many
experiments with specimen under multiaxial
stress have been carried out (21, 31), their
results cannot be related to the present in-
vestigation, since the orientation distribution
of the specimens used (pipes) is not known.
Further work on this subject is in progress.

From the consideration that the lifetime
of a partly oriented specimen subjected to
multiaxial stress is determined predominant-
ly by the rate of failure of those elements
which are oriented in the direction of
maximum strain, we would like to propose
as a failure criterion a ‘kinetic version of
St.Venant’s criterion of maximum elastic
strain”. The criterion can only be formu-
lated as an implicit function of stress.
Until further work is completed it may be
restricted to states of stress where the
largest normal component, o, has the
direction of the axis of orientation. In this
case a stress o will not lead to fracture of a
sample within ¢ if:

— Ei(— E o/l 01 (Bo, BIE) < {optp>. [29]

C, is known exactly for one- and triaxial

tensions and can be interpolated for inter-
mediate cases.
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Zusammenfassung

In der vorliegenden Arbeit werden die statistischen
und mechanischen Modelle untersucht, die der kineti-
schen Theorie des Bruches von Glisern, Thermoplasten
und Gummi zu Grunde liegen. Dabei werden die fur
Hochpolymere im glasartigen Zustand zutreffenden
Voraussetzungen angegeben. Die Ergebnisse jiingster
ESR-Versuche und die elastische, anelastische und
plastische Verformung des Polymeren werden besonders
in Betracht gezogen. Ein mathematisches Modell des
Festkorpers wird formuliert, das in Ubereinstimmung
mit den beobachteten Elgenschaften des Materials ist,
und das aus einem elastischen Netzwerk besteht, ein-
gebettet in eine viskoelastische Umgebung. Auf der
Grundlage der angegebenen Bedingungen werden fiir
einachsig belastete Proben Bruchzeiten als Funktion
der Last und des Orientierungsgrades des polymeren
Netzwerkes berechnet. Diese Bruchzeiten werden mit
experimentell bestimmten Werten verglichen.

Die Erweiterung des vorgelegten Modells auf den
Bruch von Elastomeren und auf mehrachsige oder zeit-
abhingige Spannungszustinde wird untersucht. Ein
Bruchkriterium wird vorgeschlagen, das die ,,Kineti-
sche Version von St.Venant’s Kriterium der groften
elastischen Verformung® genannt werden koénnte.
Darin wird die Bruchgefdhrlichkeit eines Spannungs-
zustandes durch die groBte Komponente der Normal-
spannung und das Verhiltnis zweier elastischer Moduln
bestimmt, nimlich das Verhiltnis des Moduls eines
Netzwerkfadens und des longitudinalen Moduls (in
Orientierungsrichtung) der Probe insgesamt.

Summary

The statistical and mechanical models underlying
the kinetic theories of fracture of glasses, thermoplasts
and rubbers are analyzed and specified for polymers in
their glassy state. Special attention is given to results
from recent electron resonance experiments, and to
the elastic, anelastic and permanent deformation of
a polymer before and during the experiment leading
to failure. A model is constructed which is in accordance
with the observed material behavior, and which
consists of an elastic molecular network embedded in
a viscoelastic continuum. On the basis of the specified
conditions times-to-break are calculated as a function
of applied load and degree of orientation of the polymer
network. The calculated times-to-break are compared
with experimental data.

The extensibility of the theory to fracture of
rubbers and to failure under multiaxial or time-
dependent stress is discussed. A fracture criterion is
proposed which may be called the , kinetic version of
St.Venant’s criterion of maximum elastic strain”, in
which the critically of a state of stress is essentially
determined by the components of normal stress and
the ratio of two longitudinal elastic moduli, namely
that of the molecular network and that of the sample
as a whole.
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