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Determination and Interpretation of  Preferred 
Orientation with Texture Goniometry: An 

Application of Indicators to Maximum Entropy 
Pole- to Orientation-Density Inversion ~ 

H. Schaeben z and H. Siemes z 

The prahability density fimction of orientations of crystals generally cannot be measured directly 
without destruction of the specinwn. Therefore it is usual practice to sample pole density.fimctions 
of several er3'stal fi)rms in diffraction experiments with a texture goniometer. Determining a rea- 
sonable orientation densi~.' fimetion from e.werimental pole density fir is then the crucial 
prerequisite of quantitative texture attalvsis. This mathematical problem may be addressed as a 
tomographie inversion problenl specified by the crystal and statistical specimen symmetries and the 
properties of the diffraction experiment. Its solution with ma_rimum entropy pr~,rred orientation 
portion and mgl.i'itrlUm uniform portion is proposed because it yields the most conservative orientation 
density fimction with systematically reduced correlation effects, thus avoiding artificial texture 
"ghost" components caused by the specific properties of the diffraction experiment. 

KEY WORDS: preferred crystal orientation, texture goniometry, quantitative texture analysis. 
inversion of diffraction pole density functions, entropy optimization, quartzite fabric, 

I N T R O D U C T I O N  

Anisotropic behavior of single phase polycrystalline material is controlled by its 
constituent crystal grains and their spatial orientation within the specimen. Thus, 
the statistical distribution of crystal orientations is a simple mathematical ap- 
proach of describing and quantifying anisotropy. 

The orientation-density function generally cannot be measured directly 
without destruction of the specimen. Therefore it is usual practice to sample 
pole-density functions of several distinct reflections in X-ray or neutron diffrac- 
tion experiments with a texture goniometer. Determining a reasonable orienta- 
tion-density function from experimental pole-density functions then is the crucial 
prerequisite of quantitative texture analysis. This mathematical problem of t e x -  
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ture goniometry is an inverse projection problem because the measured pole- 
density functions represent mean orientation densities of the specimen along 
given lines of integration in some orientation space; it also may be addressed 
as a tomographic inversion problem specified by the crystal and statistical spec- 
imen symmetries and the properties of the diffraction experiment itself. Math- 
ematically it reads as a Fredholm integral equation of first type. 

The inversion problem of texture goniometry was tackled conventionally 
by transform methods, that is harmonic series expansions. Because of the spe- 
cifics of the problem these methods are unable to recover the part of the ori- 
entation-density function represented by the odd terms of the harmonic series 
expansion. In this situation, discrete methods have been developed primarily 
because they are capable of incorporating additional information, especially the 
nonnegativity of the orientation-density function to be determined, as truly con- 
stitutive elements of an inversion procedure. The discrete approach leads to a 
system of linear equations which is large, sparse, structureless, highly (col- 
umn)rank deficient, and may be inconsistent. 

Its solution with maximum entropy preferred orientation portion and max- 
imum uniform portion is proposed because it yields the nonnegative orientation- 
density function as close (with respect to entropy) to the uniform probability 
density as possible subject to its being consistent with the given experimental 
pole-density function data, that is the orientation-density function with system- 
atically reduced correlation effects, thus avoiding artificial texture "ghos t"  com- 
ponents caused by the specific properties of the diffraction experiment. Mathe- 
matically, the maximum entropy solution is characterized as the particular one 
around which all solutions are concentrated. The principle of maximum entropy 
has been referred to as "principle of maximum objectivity," "principle of  
minimum bias ,"  "principle of minimum prejudice," "principle of maximum 
honesty," etc. (cf. Kapur, 1983). 

The discrete approach also provides the option to determine an upper and 
lower bound for the orientation density of each texture component resulting in 
a numerical "confidence interval" for each individual component and eventually 
in a "variation width" of the entire set of feasible orientation-density functions. 
Yet another option is that the initial system of linear equations can be replaced 
by a system of inequalities if measurement errors are supposedly large and have 
to be taken into account explicitly. 

In comparison with the harmonic method the major advantages of the dis- 
crete approach may be summarized that entropy optimization results in the most 
conservative feasible orientation density function and that further confidence 
intervals or variation width aid in a safe, that is conservative interpretation. In 
view of the fact that orientation-density functions calculated from pole-density 
functions depend to a large extent on additional heuristic or mathematical m o d -  
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eling assumptions involved to specify it, confidence intervals and variation width 
may prove most substantial when the initial "real world" problem itself is an 
inverse one like reconstructing the geological deformation history from observed 
patterns of preferred orientations in rocks. 

Mathematical Description of Macroscopic Anisotropy by the 
Orientation-Density Function 

Materials with polycrystalline structure are composed of crystallites of var- 
ious size, shape, and crystallographic orientation. Each crystal's orientation 
(denoted g) can be defined with respect to external coordinates by a rotation, 
that is, by three angles. Orientations of crystals can be determined with optical, 
electron or X-ray diffraction, and other techniques. Orientations within a spec- 
imen of a polycrystalline material may be described summarily with an orien- 
tation distribution which can be uniform or display preferred orientation. If the 
orientation distribution of the crystals is not uniform, the material generally will 
be anisotropic because of the anisotropy of crystal properties. Macroscopic an- 
isotropy thus is a fundamental property of all polycrystalline materials. 

Based on the orientation-density function as a constitutive variable of the 
polycrystalline state of matter, model calculations of physical properties as well 
as of texture development have attained increasing interest. This applies to 
virtually all types of anisotropic physical properties such as elastic, plastic, 
electric, magnetic, thermal, optical, and chemical properties as well as to various 
types of solid state processes such as primary crystallization, plastic deforma- 
tion, recrystallization, or phase transformation. 

The determination and interpretation of preferred orientation of crystals in 
deformed polycrystalline aggregates--here referred to as texture analysis--has 
been of longstanding concern to both material scientists and geologists (Wenk, 
1985; Wenk and others, 1988). 

Texture Analysis in Geosciences 

The major objectives of texture analysis in metallurgy and in geosciences, 
however, are different not only with respect to the investigated materials. 

In metallurgy, it typically addresses problems such as what pattern of pre- 
ferred crystal orientation is caused by a given process, and refers to process 
control in the laboratory or quality control in production to guarantee a required 
preferred crystal orientation and corresponding macroscopic physical properties. 

In geosciences, it typically is applied to the more difficult problem of which 
process(es) caused an observed pattern of preferred crystal orientation in rocks 
and aims at an interpretation of the kinematics and dynamics of geological 
processes including a consistent reconstruction of the geological deformation 
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history. The solution to this problem cannot be achieved by texture analysis 
only but requires a complete study of the microstructure and the entire geologic 
situation on different scales. Quantitative texture analysis in geosciences can but 
add an additional parameter to narrow down the multiple ambiguities of the 
geological problem. Therefore, this parameter itself should be conservatively 
estimated. 

Although the typical metallurgical problems may be characterized as direct 
problems, the typical geoscientific problems are inverse problems. 

The statistical distribution of orientations of crystal grains of the contrib- 
uting phases within the specimen of a polycrystalline material is a simple math- 
ematical approach to describe and quantify preferred crystal orientation; the 
orientation-density function is the basic entity of quantitative texture analysis. 
Employing more advanced statistics such as spatial correlation functions of 
crystal orientations would result in a sophisticated orientation distribution anal- 
ysis in the sense of Sander's axis distribution analysis (Achsenverteilungsanalyse 
or AVA) (cf. Sander, 1934, 1948-50; Wenk and Trommsdorff, 1965; Braun, 
1972). 

However, even the basic orientation density function generally cannot be 
measured directly without destruction of the specimen. Furthemaore, the mea- 
surement of individual crystal orientations is rather expensive in temas of either 
manpower of the human operator or automated equipment (cf. Schwarzer, 1991 : 
Kunze and others, 1993; Adams, Wright, and Kunze, 1993). Therefore, it is 
usual practice to measure pole-density functions of several distinct reflections 
in X-ray or neutron diffraction experiments with a texture goniometer. Deter- 
mining a reasonable orientation-density function from experinaental pole-density 
functions then is the crucial prerequisite of quantitative texture analysis. Thus, 
at the center of the inverse geoscientific problem is an inverse mathematical 
problem. 

This communication is concerned with the interpretation of orientation- 
density functions calculated from normal diffraction pole-density functions in 
general, and with the interpretation of orientation-density functions beyond the 
scope of quantitative texture analysis in metallurgy in particular. The general 
idea is that a geological orientation-density function should be a conservative 
estimate because it should provide an interpretation as sate (objective, unbiased, 
unprejudiced, honest, etc.) as possible given the pole-density function data. 
Thus, motivated by the objectives and purposes of quantitative texture analysis 
in geosciences mathematical methods and additional mathematical modeling 
assumptions should be applied which actually provide a conservative solution 
that allows sate interpretation, for example, in terms of the total number of 
recovered components of preferred orientation and their corresponding (inte- 
grated) density. 
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Geophysical Significance of Preferred Crystal Orientation 

In order to interpret seismic data with some confidence it is necessary to 
know physical properties of these materials at pressures and temperatures at 
which they occur in the Earth's crust. They have to be measured in the labo- 
ratory. Among others, one topic of concern is the anisotropy of deformed rocks. 
Mylonites, deformed during ductile deformation, comprise large volumes of the 
Earth's crust and are expected to have anisotropic elastic properties. During 
ductile deformation minerals attain preferred orientation either by intracrystalline 
slip, by dynamic recrystallization, or by some other mechanism or a combination 
of all of them (Wenk, 1985). 

Because component minerals are elastically anisotropic an aggregate with 
preferred orientation is also anisotropic. The relationship between texture and 
velocity anisotropy for instance has been established quantitatively for mantle 
peridotites and dunities (e.g.,  Crosson and Lin, 1971: Baker and Carter, 1972) 
and metals (e.g., Morris, 1969). 

Implications of fault rocks and anisotropy on interpretation of seismic data 
include that travel times are not related by some simple function to distance 
(depth) but depend on the local geologic structure, and it is not clear which 
properties are responsible to produce a reflector surface. Compositional layering 
(e.g., Hale and Thompson, 1982), folding of layered structures, and anisotropy 
(e.g., Jones, 1985) have been suggested. Recently, Jones and Nut (1982, 1984) 
and Fountain, Hurich, and Smithson (1984) demonstrated that my[onite layers 
indeed can be seismic reflectors. Unless elastic properties are known for rocks 
composing the crustal segment of interest, interpretation of reflection seismic 
data is ambiguous. 

This is where quantitative texture analysis may enter as it provides an 
additional way to characterize rocks. Systematic investigations may provide the 
answers to such questions of general geophysical interest as "'is it possible to 
distinguish between cataclastic and ductile rocks from seismic properties'?" or 
"can we distinguish compositional layering and anisotropy?" (Wenk, 1985). 
For a more detailed discussion of this topic, the reader is referred to Mainprice 
and Nicolas (1989). 

THE INVERSION P R O B L E M  OF TEXTURE G O N I O M E T R Y  

In most applications one does not measure individual orientations but den- 
sity distributions of particular lattice planes (hk l )  �9 3 on continuous pole figures 
by diffraction experiments. Pole figures can be defined as graphical represen 
tations of the joint probability density function of normals to crystallographic 
lattice planes, that is, of poles. In order to obtain infom~ation about the orien- 
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tation distribution, it is necessary to deconvolute density information contained 
in measured pole figures. This process is termed "pole-figure inversion.'" It is 
done mathematically with various methods, and for that it is necessary to rep- 
resent the orientation distribution by an orientation-density function f ( g ) .  De- 
pending on the method, the recovered orientation-density functionfis  continuous 
or a step function. Correspondingly, the pole distribution displayed in a pole 
figure is represented by a pole-density function. This inversion is not trivial, 
and some information about the orientation-density function cannot be retrieved 
without making additional mathematical modeling assumptions (Wenk and oth- 
ers, 1988). 

Fundamental Projection Formula of  Texture Goniometry 

The unit sphere in u is denoted by S q -  i q and q - 1 indicate the 
topological dimension, respectively. [It should be noted that Mfiller (1966) and 
Watson (1983) use the notation S q C q.] Let SO(3) denote the special or- 
thogonal group of proper rotations g in 3. The fundamental equation relating 
an orientation density functionfdefined on some set G C SO(3) of orientations 
g and its corresponding pole density function Pn of the crystal form h = {h,,, Im 
= 1 . . . . .  Mh} C S 2defined f o r r ~ S  3 C 2 may be written as 

65h[f(g)](r) = ((Phf)(r) = C I K(h,  r; g ) f ( g ) d t , ( g )  = Ph(r) (1) 
d G 

with g ~ G and dz,(g) the invariant Lebesgue volume element of the orientation 
space G. and with some normalization factor C > 0 such that 

f ~ P d r ) d s ( r ) =  1 

when 

f r . f ( g ) d z , ( g )  = 1 

where ds(r) denotes the invariant Lebesgue surface element of S 2 C 3 and 
$2~ = {r ~ !1 Ilrll = 1. r~ >__ 0} the upper unit sphere in 3 including its 
boundary. The distributional kernel K(h,  r; g) of the integral operator (Ph defined 
by Equation (I) may be written as 

M/d2 

K(h, r; g) = ~] [~5(h,,, - gr) + 6(h,,, + gr)] (2) 
t ~ t -  [ 

with h,, ~ S ~ .  m = 1 . . . . .  Mh/2,  where M h denotes the multiplicity of the 
crystal form h; for crystallographic terms the reader is refered to (Niggli, 1924, 
1928). 
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By definition. Equation (1). Ph(r) = P h ( - r ) .  that is a pole-density function 
of any crystal form is an even (antipodally symmetric)  function regardless of 
the class of crystal symmetry.  Thus. it may be thought of  as a function defined 
on the upper (lower) unit hemisphere or equivalently on the two-dimensional  
projective plane (cf. Friedel .  I913; Laue. I9 t6 .  194I). 

Equation (2) may be read as K defining some one-dimensional  lines 
Gh,,,(r) = {g E GIh,,, = gr} .  m = 1 . . . . .  M h, of integration which in turn 
define the actual projection from G onto S+,  The integration paths are consti- 
tuted of all proper  rotations g ~ G mapping a given direction r 6 S~ on one of 
the symmetrical ly equivalent directions h,,, ~ S+,  m = 1 . . . . .  Mh/2, or 
-h, , ,  E S~ ,  respectively 

Mh/2 Mh/2 

Ph(r) = ~ ( ~ h , , , f ) ( r ) =  ,~ ((Ph,, ,f+ (P-h,, ,f)(r)  
m -  I m -  I 

Mh f Mh 

= C ~, f ( g )d t , ( g )  = f~ ~ ((Ph,,,f)(r) (3) 
m = I {t,'~.GIh,,, = g r}  m = I 

The set { g 6 G Ih,,, = gr} may be represented as the set of two successive 
rotations in terms of  Euler angles. The first is a fixed rotation g~ = g~(so, O, O) 
given in terms of the spherical coordinates (0,  so), 0 ~ [0, r l ,  so ~ [0, 2 r ) ,  of 
r mapping r onto e 3 = (0, 0, 1), and the second is a variable rotation g i = 
gr (c~ .... {3 .... co) given in terms of  the spherical coordinates (/3 .... c~,,,), {3,,, 
[0, r l ,  ~,,, 6 [0, 2rr), of h,,, and a variable angle co ~ [0, 270 mapping e 3 onto 
h,,, for all co ~ [0. 2~) 

{g E G[h,,, = gr} = {g2'(cz,,,, {3,,. co)g.(so. O. O)tco 6 [0. 27r)} (4) 

with 

. { / c ~ 1 7 6  sin s o c o s 0  - s  O 0 )  

M(g~) = ~ - sin so cos ,p (5) 

\ c o s  so sin t9 sin so sin 0 cos 0 / 

and 

M(g.  t) = M, (g2)  = 

c o s  c o s  fl,,, cos  to - s in  s in  otm o~ m 

Sil l  Or,,, COS ~m COS to + c o s  0~,,, s i l l  co 

- s i n / 3  m c o s  co 

Thus, switching to another notation 

P({3, c~; O, SO) = C ~ f(g~. t(c~m, {3,., co)gl(so, O, O))dco 
= I (0 ,  2 r )  

- c o s c ~ m c o s f l . . , s i n w  - s i n ~ , . , c o s c 0  c o s c ~ . , s i n f l ~ " ~  

- s i n  c~,,, c o s  flm s in  to + cos  ~ , .  c o s  to s i n c ~ m s i n C 3 m ]  ( 6 )  

s in  fl,. s in  ~ c o s  ft., / 

(7) 
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Therefore, pole-density functions may be read as some line integrals and 
its values may be interpreted as means along these lines in G. Equation (1) also 
may be characterized as Fredholm integral equation of first type. 

The mathematical problem of quantitative texture analysis is to recover a 
reasonable approximate f o f f  from experimental pole-density functions accord- 
ing to Equation (1). The quantities actually measured are defined by Equation 
( l l ) .  

Similar to this specific mathematical problem of texture goniometry, prob- 
lems of mathematical tomography generally can be formulated as a Fredholm 
integral equation of the first type and were tackled conventionally by transform 
methods associated with Radon or Fourier type transforms or corresponding 
infinite series expansions (cf. Louis, 1989). 

In texture analysis this approach has been pursued systematically by Bunge 
and coworkers (see Bunge, 1982) and received widespread acceptance: it is 
referred to as harmonic series expansion method. An orientation-density function 
calculated by the harmonic method generally is not nonnegative and generally 
exhibits local peaks representing components of preferred orientation which 
cannot be associated with crystal grains of the specimen and which do not 
correspond to its physical properties; these deviations from the (elusive) "'true" 
orientation-density function wcre termed "'ghosts" and are mathematical arti- 
facts introduced by the method itself. 

The explanation of "ghos t"  phenomena in orientation-density functions 
recovered with the harmonic method led to its major revision and a fundamental 
clarification of the mathematical texture problem (Matthies, 1982). Its major 
result may be summarized as follows. Because of the specifics of the normal 
diffraction experiment which cannot distinguish between the (mathematically 
distinct) upper and lower side of a crystallographic lattice plane, a pole-density 
function always is even implying that its odd Fourier coefficients with respect 
to spherical harmonics vanish. Therefore, the harmonic method basically is 
unable to recover the odd Fourier coefficients of the orientation-density function 
with respect to generalized spherical harmonics. The harmonic method is neither 
capable of applying the nonnegativity constraints on both pole-density functions 
and orientation-density function in a direct and constructive way but as a cor- 
rective device only. 

The Indicator Approach to Pole-Density Function Inversion 

Let g(N) = {G,,In = 1 . . . . .  N} be a partition o f G  C SO(3) into volume 
elements of equal volume (for notational simplicity), and let 

I10 if g ~ G , ,  ~ g ( N )  

x~"(g) = l c , , ( g ) =  otherwise (8) 
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denote the indicator function with respect to G,, 6 g(N) .  For every N 6 the 
set {X~,"} is an orthonormal total system of functions defined on G with respect 
to the weight function vo l ;  ~(G,,). where vol~(G,,) denotes the three-dimensional 
finite volume of G,, C G. Thus, every square integrable f u n c t i o n f ~  s  can 
be approximated abitrarily by a linear combination of indicator functions. The 
set {X~'} is closed. The analog is true for a partition ~ (P)  = {Zplp = 1. 
. . . .  P} of S~ and corresponding indicator functions lz,,(r) with respect to 
~2(S~).  The coefficients of the linear combination are referred to as Fourier 
coefficients with respect to indicators and weights, and the linear combination 
is referred to as Fourier ortbogonal series expansion with respect to indicators. 

The Fourier coefficients of  an orientation-density function f with respect to 
the set of volume indicators now are defined as 

= f f ( g ) d v ( g )  >_ O. n = 1 . . . . .  N,  N = l ,  2 . . . .  (9) 
0 Gll 

and f 6  <E~-(SO(3)) is associated with 

N 

f ( g )  lira ~ r c,,,. "/vo" - ,,~'u (g~ 13(G,,) (10) 

Analogously, the Fourier coefficients of a pole-density function Ph with respect 
to the set of  surface indicators are defined as 

r 
yp(h) = ~ Ph(r)ds(r) --> 0, p = 1 . . . . .  P,  P = 1, 2 . . . .  (11) 

d Z t , 

and Ph(r) ~ s is associated with the infinite series 

P 

fib(r) - lira ~ yp(h) lz , , (r ) /vol2(Zv)  (12) 
p ~ p = l  

where volz(Z p) denotes the two-dimensional finite volume of Zp C S~_. 
The Fourier coefficients have the obvious interpretation of yp(h) /vo l2 (Z  v) 

as mean diffracted intensity of the surface patch Zp, p = 1 . . . . .  P ,  and 
Ep e= lYt, = 1; analogously x,,/vo[3(G,,) as mean orientation density of the orien- 
tation box G,,, n = 1 . . . . .  N,  and E~= ~x,, = 1. 

Practical applications are confined to the partial sums 

N 

f ( g )  = ~ x , , x~" (g ) / vo l3 (G, )  (13) 
r  I 
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P 

/~h(r) = ~_~ y p ( h ) l z . ( r ) / v o l . _ ( Z p )  
p = l  

with sufficiently large N and P ,  respectively. 

(14) 

Indicator  Or ienta t ion  Ghosts  

Indicator functions which only can take on the values 0 or 1 are neither 
even nor odd. Let h ~ Zp: ~ Z;(P) be fixed: applying the projection (Ph to 1 c .... 
with g,,. E G,,,, such that g . . r  = h for some r e Z:,, 6 ~5(P) yields 

(Ph[lc.,,(g)](r) :/: lz,,:(h)lz,,,(r) (15) 

That is. the indicator 1~.,, of  the orientation box G,,. containing an orientation 

g,,,, rotating r 6 Zp, C S'- into h 6 Zr,. " C S 2 generally is not projected by (Ph 
onto the indicator lz. ' of  the surface patch Zv,  of an arbitrary partition ~5(P). 
that is, canonical partitions do not seem to exist. 

Nevertheless, the pole-density functions corresponding to the indicators 
(n} XN of the orientation boxes G,, are defined as 

= ( ( ~ h ~ N  ,l~, ) 

Mh/_ ~ 

I -- (n) , = ~ {6(h,. gr) + 6(h,. + gr)}xN (g)d~(g) r 0 (16) 
m = I ,.] G 

(n = 1 . . . . .  N) 

which have been termed "'elementary pole figures" by Ruer (1976). These 
,e,,,Nb do not provide a mathematically well- elementary pole-density functions '~h 

S 2 2 behaved system of functions defined on or S + respectively, because they are 
neither orthogonal nor linearly independent. 

The latter should become plausible by the following argument. Let the 
crystal form h have symmetrically equivalent constituents h, . . . . .  hM~h~ ordered 
such t ha th  .... i = - h i ,  i = 1 . . . . .  m . m  = M(h)/2.  Now le tg l  ~G,,,  ~r 
such that g l h i  = r i, g l h . , + ,  = - r  i, i = 1 . . . . .  m .  Then an orientation g2 r 
G., exists with g2h~ = - r ~ ,  i = 1 . . . . .  m. for some permutation a of the 
set {1 . . . . .  m } ,  and g2{h} = g,{h}.  Hence, E'~ ~-'u~ - E~ '~:ul (cf. Schaeben, 
1984). 

Then, with Equation (1) and (16) 

((~hf)(r) = (PhI,~=ix,,x~:)(g)/vol3(Gn)l(r) 
N 

= ~ x , , I~ '~NI(r) /voI_a(G, , )  (17) 
n = l  
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From this argument it should be plausible that the x, ->- 0 are not determined 
uniquely by Equation (17), but that at least N / 2  can be selected arbitrarily 
provided xn > 0 (n = 1 . . . . .  N). In contrast to the harmonic analysis it now 
is no longer obvious which of the unknowns x~ to select as free parameters. 
Thus, it does not make sense to say that the undeterminable portion of an 
orientation-density function cannot be represented by indicators; the implication 
of the harmonic series expansion to split an orientation-density function into an 
even uniquely determined and an odd undeterminable portion no longer seems 
to be reasonable. Using indicators, an undeterminable portion, which makes 
(non)sense by its own, does not exist. The representation and apparition of ghost 
orientations depends on the representation of an orientation-density function 
itself. 

Comparing Equation (14) and (17) leads to the system of linear equations 

N 

yp(h) = ~ 7rt,,,(h)x,,, p = 1 . . . . .  P (18) 
n =  I 

with matrix elements 7rm,(h), p = 1 . . . . .  P, n = l . . . . .  N, defined by 

7rp,,(h) = C ~ 1~; .. . .  ( g ) d t , ( g ) d s ( r )  (19) 
Zr, G, ,  m = I '~ 

and constraints 

and 

0 <_ x,, <_ 1, n = 1 . . . . .  N (20) 

N 

x. = 1 (21) 
n =  I 

l ~ n ( m )  It should be noted that the elementary pole figures ~h are the column 
vectors of the matrix 7rpN(h). Equation (18) reads in matrix notation 

7r(h)x = y(h) (22) 

Subject to constraints (20) and (21), Equation (22) is the fundamental projection 
equation of texture goniometry in terms of Fourier coefficients with respect to 
indicators. 

The matrix 7r(h) is large, sparse, column-rank deficient, and without struc- 
ture, the augmented matrix (rr(h), y(h)) may be inconsistent. It requires addi- 
tional mathematical modeling assumptions to uniquely specify a particular so- 
lution. They usually are formulated as an optimization problem with an 
appropriate objective function. The candidate favored here is the entropy func- 
tional 

N 

S ( x  I . . . . .  XN) = -- ~ X,, In X,, (23) 
t l =  I 
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all feasible orientation density functions is defined by 

0 <_ l(g) <_ f ( g )  <_ u(g),  g ~ G 

a s  

S c h a e b e n  a n d  S i e m e s  

Variation Width of Feasible Orientation-Density Functions 

Adapting the continuous notation of  Equation (1), the variation width of 

(24) 

I 1 I l(g)l'tdt'(g)l I/q' Vq(f; ~ )  = vol3(G) c lu(g) - 
q e 11 (25) 

i N lllq 
Vq(x; %(P), C~(N), {Y) = ,,~, [u,, - /,,1 q , q ~ (29) 

with I, u 

subject to 

7r(h)x = y(h), x,, >_ 0, n = 1 . . . . .  N, 

N 

x,, = I 
n =  l 

where e,, denotes the nth unit vector of  N 

"r given by the sequence of  2N optimization problems 

rain F,, = rain e,,x = l,,, resp. max F,, = max e,,x = u,,, 

n = 1 . . . . .  N (30) 

(31) 

a s  

with l(g), u(g) defined pointwise for each g ~ G by 

I(g) = i n f f ( g ) ,  g ~ G (26) 

u(g) = s u p f ( g ) ,  g ~ G (27) 
le:T 

where '3: denotes the set of  all feasible orientation-density functions with respect 
to a given set of  experimental pole-density functions Ph of  crystal forms h. It 
should be noted that the functions I(g) and u(g) are not probability density 

functions, and hence not orientation-density functions. Furthermore, it is em- 
phasized that they depend on the available set of pole-density functions. 

In the notation of  indicators [Eq. (22)] of  Equation (1) the data dependent 

variation width of  feasible orientation-density functions is defined by 

0 <_ I,, <_ x,, <_ u,,, n = 1 . . . . .  N (28) 
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It is emphasized that the bounds I and u depend on the given set of pole- 
density functions and the discretization, that is on the partitions ~5(P) of the 
hemisphere S~_ C 3 of poles, and Cd(N) of the orientation space G C SO(3). 

Each individual optimization problem of the sequence (30) is a problem of 
linear programming (LP) with an extremely simple linear objective function. 

Maximum Entropy Solution of  Pole-Density Inversion with Indicators 

The maximum entropy solution may be addressed as the feasible orienta- 
tion-density function, which is most uniform with respect to entropy, that is 
which is most conservative with the least content of information consistent with 
the available pole density function data. The actual solution is achieved by the 
maximum entropy preferred orientation portion in the sense of (23). and con- 
straints (20). (21), and (22), and maximum uniform portion. 

The maximum entropy solution is also the most safely balanced solution 
in the sense of the Backus-Gilbert formalism (Backus and Gilbert, 1967, 1968, 
1970: Parker, 1977: Kitsch, Schomburg, and Berendt, 1988), that is it delivers 
the best resolution given the partitions (G,)  of G and (Zp) of $2.. 

The corresponding optimization problems may be solved by general pur- 
pose large-scale mathematical programming algorithms involving the simplex 
method, a quasi Newton method, the reduced-gradient method, and a projected 
Lagrangian method or by a special purpose algorithm (Lent, 1976: Lent and 
Censor, 1989: Schaeben. 1988, 1991). 

This special purpose algorithm supplemented by additionally incorporating 
a simple minimum density adjustment reads 

I 
0 if 7rp,,,(h) =# 0 and yp : 0 

.m~ m = 1 . . . . .  N (32) 
-L, = _1 otherwise 

v 

where v denotes the number of a priori zero components of x m~, 

I( ,,h, . . . . . . .  X m  = N - -  =lk, max(x',,~ ~, b) 
pEt.,,,ih~ 2,, = I ~rm,(h)-t ,, 

m = 1 . . . . .  N (33) 

with L,,,(h) = {plTr/,,,,(h) #: 0} denoting the set of numbers referring to the 
nonzero elements of the nzth column vector of 7r(h), and relaxation parameters 
0 < Pk <<- 1. and 

2 Ikl = ~ xl~+l~e/ + ~ ,t-lk'el (34) 
/ < m I _> m 

b usually is selected to be the smallest normalized measured intensity y,,,.,. 
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This augmented algorithm does not provide the maximum entropy solution 
of the inversion problem, but the maximum entropy solution conditional to the 
heuristic maximum uniform portion adjustment. 

It applies immediately to complete or incomplete pole density functions as 
well as to simultaneous processing of several pole-density functions of different 
crystal forms h. The necessary nonnegativity of the orientation-density function 
to be recovered is a truly constitutive element, possible zero components in the 
pole-density function are exactly and efficiently accounted for, uniform pole- 
density functions give a uniform orientation-density function. Furthermore, it is 
numerically stable and straightforward. 

CASE STUDY OF A Q U A R T Z  TEXTURE 

R e s o l u t i o n  o f  C o i n c i d e n c e s  

In geoscientific applications of quantitative texture analysis, such as a com- 
plete fabric analysis in terms of crystallographic orientations rather than crys- 
tallographic axes, another difficulty may arise which here is exemplified for 
quartz. Because of coincidences or partial superpositions of peaks in the dif- 
fraction diagram, that is the result of identical or experimentally undistinguish- 
able Bragg angles, only superposed pole-density functions can be measured with 
the goniometer. In the situation of quartz and for l r 0 and h ~ k, only the 
superposed ( h k i l )  + ( k h i l )  - pole-density functions can be experinaentally de- 
termined. If their relative weighs ~3, are known, different crystal forms with 
indentical distances of crystal lattice planes are taken into account by 

/3#r(h "1) x ~ ~ (h ''~' = /~,y p = y ( h * )  (35)  
I i = l  

with E~= ~ /3, = I. The k + 1st iteration of the generalized algorithm (33) then 
reads 

= max(x,, , Y m i n )  x,,, [ ~ 1  ,k, p E L,n 

]-~ ]--~ ] yp(h*) ]r~/~'~rP""hl'h~ Ik, 
= - -  max(x .... Ymi,) (36) 

i : ,  , ~ ,  .... [_ y~,k'(h*) | ) 

with ylk~(h*) = [Z~_ ~3r(h.l)] ~ikl. 
From (36) it is obvious that the 7r(h*) matrix E~= 1 /3i7r(hI/I) corresponding 

to the superposed pole-density functions need not be calculated but that another 
geometric mean with respect to the weighs /3 i will do. The geometric mean 
stems from the definition (23) of entropy and the concept of maximum entropy. 
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Practical Application and Results 

Quartzite fabrics (Fig. I) are of considerable interest in structural geology 
because they should aid in a consistent reconstruction of the deformation history 
which generated the observed pattern of preferred orientation, that is, in iden- 
tifying and interpreting the deformation mechanisms, the shape of the finite 
strain ellipsoid, and the strain path or kinematic framework (cf. Schmid and 
Casey, 1986). 

Analysis and interpretation of the complete fabric in terms of crystal ori- 
entations, that is in terms of the distribution of the major crystal forms, is 
accomplished by the interpretation of a conservative estimate of the orientation- 
density function determined from normal diffraction pole-density functions. For 
quartz usually the pole-density functions of the crystal forms a(110), m(100), 
and of the superposition of the forms r(101) and z(011) weighed by their struc- 
ture factors 0.7 and 0.3, respectively, are measured incompletely in the range 
of 0 to roughly 80 degrees polar angle. From these data the program MENTEX 
(Maximum ENtropy TEXture) written in major parts by the first author and 
jointly developed into a comprehensive package for quantitative texture analysis 
by the authors calculates the orientation-density function with maximum entropy 
subject to maximum uniform portion. With this orientation-density function it 
then is possible to recalculate and complete incomplete experimental pole-den- 
sity functions, to calculate additional pole-density functions, for example, of 
crystal forms such as c(O01) which cannot be measured by X-ray diffraction at 
all, or the resolved pole-density functions of the forms r(lO1) and z(Oll)  which 
cannot be measured individually. 

For the following example experimental pole-figure data of the (110), (100), 

Figure l. Idealized sketch of fold geometry of quartzite sample DO282. Z = direction of 
principal compressive stress, X = direction of principal tensile stress, = direction of 
principal extension. = lold axis, = extension lineation, XY = plane of flattening. 
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and 0.3 * (Of l) + 0.7 * (I01) quartz reflections up to 80 degrees polar angle 
(Fig. 2A-2C) were provided by Thomas Dortmann to demonstrate features of 
the MENTEX program system and to check earlier interpretations (Dortmann, 
1987). The sample DO282 was taken from a quartzite fold in the Sesia-Lanzo 

(i00) exp. 

4.01 0.50 

(i00) recalc. 

4.02 0 . 5 0  

(001) calc. 

13 .50 1.00 

(ii0) exp. 

4 . ;~8  0 , 5 0  

(ii0) recalc. 

3.80 0.50 

(011) calc. 

,~i)2 

3 . 3 3  0 . 5 0  

(011) + (I01) exp. 

3.45 0.50 

(011)+(101) recalc. 

k 

2.90 0.50 

(i01) calc. 

3.31 0.50 

Figure 2. Experimental and Ire)calculated quartz pole figures of sample DO282 in equal 
area projection; dotted area below 1.0 limes uniform; lower left: maximum density; 
lower right: contour interval A, B. C: Experimental quartz pole figures, D, E. F: 
Reca)culaled pole figures from Ihe MENTEX ~r~enlalion density tunction after 23 i~er- 
ations with A, B, C as input pole figures, G, H, 1: Calculated pule figures [ram the 
MENTEX orientation density [unction after 23 iterations with A, B, C as input pole 
figures. 
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Zone, Val Sesia, Northern Italy. The interpretation of optical and X-ray mea- 
surements is cited briefly here (Dortmann, 1987; translation by these authors): 
"In the crest of the fold there is on each limb a schistosity plane. They are both 
oriented approximately 40 degrees to the flattening plane (XY). The c-axis dia- 
gram [measured optically] shows two maxima with approximately the same 
density and both are oriented 40 degrees to the axis of compressive stress (Z) 
in the plane ZY. The a-axes [(110) measured by X-ray diffraction] are distributed 
on two great circles which are both approximately 40 degrees inclined to the 
flattening plane. One single strong a-axis maximum is located near the direction 
of principal extension (X) in the point of the intersection of the two great circles. 
The prism m-planes [(100) measured by X-my diffraction] reveal the same great 
circle pattern as the a-axes. In the course of increasing flattening the two c-axis 
maxima rotate toward the axis of compression (Z) and the schistosity planes as 
well as the great circles rotate into the plane of flattening (XY). Therefore, the 
strain symmetry in the crest of the fold is orthorhombic. The preferred orien- 
tation of the c-axes and the common a-axes maximum in the extension direction 
indicate a-slip in the basal-plane as major slip system." 

The incomplete experimental pole figures (Fig. 2A-2C) measured with a 
PhiIips X'PERT goniometer with ATC-3 texture supplement were used to cal- 
culate the orientation distribution with maximum entropy preferred orientation 
portion and maximum uniform portion, and, in turn, to recalculate the complete 
pole figures (Fig. 2D-2F);  it took 23 steps of iterations of the procedure (33) 
and (36), respectively, until the stopping criteria concerning the increase of 
entropy and the decrease of deviation of input and recalculated pole-figure data 
were satisfied. The recalculated pole figures are in good agreement with the 
experimental pole figures. The (011) + (101) pole figure has been resolved into 
its two constituent parts (Fig. 2H, 2I) and the (001) pole figure has been cal- 
culated (Fig. 2E). This pole figure shows two distinct maxima at an azimuth of 
85 degrees and polar angle of 60 degrees (maximum I, density 10 times uniform) 
and at an azimuth of  295 degrees and polar angle of 47 degrees (maximum II, 
density 13.5 times uniform). These maxima represent the poles of two fiber 
axes. The (100) and (I 10) pole figures reveal two great circle distributions with 
some local maxima within these patterns. This interpretation is confirmed by 
inspecting the orientation-density function. Several sections of the orientation- 
density function are shown in Figure 3. There are two tubes of high density 
pervading the orientation space parallel to the r tube I with a mean density 
of about 10 and tube 11 with a mean density of about 16 times uniform. The 
tubes show some local maximum densities above the corresponding mean den- 
sities, tbr example, for ~'l = 295, el, = 47. ~'2 = 15 with a density of 32. All 
identified mayor texture components are listed in Table I. 

These texture components have been used to define a mathematical model 
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l 
~t:0-360 

% = 0  

q92 = 30 

tp2 = 60 

qo 2 = 90  

~2 = 105 
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Figure 3. MENTEX orientation-density function calculaled from ( I IOI, (I00), and 
(Ol 1) + (101) incomplete pole figurea with 23 iterations; contours I, 2, 4, 8, 10, 32 
times uniform. 
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Table 1. Components of  Quartz Texture 
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Position of the components 

Rotation 
Azimuth Pole around the 

angle angle pole 

Mathematical n'.',del .dl" '  

Oaussian Slandard odf" 

porlion half width 

1 fiber axis (0011 
fiber 85 60 
maximum 85 60 5 
maximum 85 60 75 
maximum 85 60 I O0 

It fiber axis (001 
fiber 295 47 
maximum 295 47 15 

unitbrm portion 

1 6 0  % 27 
10.0 % 27 
8.5 % 27 
8.5 % 27 

33,0 % 27 
20.0 % 27 

4 %  

'~For standard orienlation dislnbutions (see Matthies. Vinel, and Helming. 19873 

orientation-density function (Matthies, Vinel, and Helming, 1987) composed of 
Gauss-shaped distributions with the listed parameters (Table 1). Figure 4 dis- 
plays the same sections of the orientation space as plotted in Figure 3. The 
maximum densities and the position of the maxima along the tubes are similar 
in both orientation-density functions, but the mathematical model provides a 
simplified approximate and represents only the most prominent features of the 
calculated MENTEX distribution. 

Direct modeling of experimental pole figure data with texture components 
could be performed by a "'component fit" method introduced by Helming and 
Eschner (1990) and may result in an exhaustive recognition of texture compo- 
nents. 

The corresponding mathematical model pole figures are presented in Figure 
5A-5C and Figure 5G, 5H: they excellently exhibit the essential features of the 
experimental and calculated pole figures of Figure 2. In order to demonstrate 
the reliability of the MENTEX procedure the (011) + (101) pole figure has 
been recalculated once in 6 iterations using the mathematical model pole figures 
of the reflections (100), (110), and (011) + (101) (Fig. 5F), and then also in 
five iterations from the (100), (110), (011), and (101) pole figures (Fig. 51). 
Both calculated (0I 1) + (101) pole figures cannot be distinguished. 

In order to analyze the a-axis and m-prism maxima in X (extension axis) 
the major components of the texture have been plotted separately in Figure 6 
for the (110) reflection and in Figure 7 for the (100) reflection. All components 
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Quartzi te:  Mode l  Or ientat ion distr ibut ion funct ion II 

Ph i l :  0 - 3 6 0  ~ hor izontal  Phi2: O, 15, 30, 60.  90,  120  ~ sect ions 

PHI: O- 90  ~ vert ical  m.r .d. :  1, 2, 4, 8, 16, 24  

0-90 

= ~ 1 : 0 - 3 6 0  

qo2=O 

~2 = 15 

q32 = 30 

~2 = 60 

~2 = 90 

~2 = 105 

Figure 4. Mathematical model orientation-density function composed of Gaussian 

distributions according to Table l: contours l, 2, 4, 8, 16, 32 times uniform. 
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Mathematical model pole figures 

(I00) math. 

4.25 0.50 

(i00) recalc. 

3.94 0.50 

(011) math. 

3.86 0.50 

(110) math. 

I B 

3.95 0.50 

(ii0) recalc. 

3.77 0.50 

(101) math. 

2.99 0.50 

(011) + (i01) math. 

2.69 0.50 

(011) + (101} recalc. 

2 . 5 6  0 . 5 0  

(011) + (I01) calc. 

2.57 0.50 

Figure 5. Corresponding mathematical model and (reJcalculated pole figures A, B, C: 
Mathematical model pole figures. D, E, F: Recalculated pole figures from the MENTEX 
orientation density function after six iterations with A. B. C as input pole figures, G, H: 
Mathematical pole figures, h Calculated pole figure from the MENTEX onentation 
density function after 5 iterations with A, B, G. H as input pole figures, 

contribute to the a-axis  maximum in X but only the two rather weak components  
(85 ,60 ,5 )  and ( 8 5 , 6 0 , 7 5 )  are exact ly  centered on X (Fig. 6C,  6D) ,  that is the 
maximum is not o w e d  just  to the superposit ion o f  the two great circle distri- 
butions. The same holds for the m-prism, but here the strong components  
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Components of the mathematical model pole figures 

(001) Z model (ii0) fiber components 

85 ~ 60 ~ maximum I B5 ~ 60 ~ fiber axis I 
295 ~ 47 ~ maximum II 295 ~ 47 ~ fiber axis II 

(II0) (ii0) 

85 ~ 60 ~ 5 ~ component 85 ~ 60* 75 ~ component 

( i io )  (110) 

85 ~ 60 ~ i00 ~ component 295o 47" 15 ~ component 

Figure  6. Major texture components texture lbr (110) reflection. A: ('-axes maximum 
l, 11, B: coFrestx~nding a-axes fibers 1, 11, C: component (86,60,5) within fiber 1 
centered on X. D: component (85,60.75) within fiber 1 centered on X, E: component 
(85,60,100) within fiber I, F: component (295,47.15) within fiber 11. 
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Components of the mathematical model pole figures 

(001) Z model 

A 

85" 60 ~ maximum I 
295 ~ 47 ~ maximum II 

(ioo) 

+T (" 

85 ~ 60 ~ 5 ~ component 

(i00) 

85 ~ 60" i00 ~ component 

(i00) fiber components 

B 

. - ~ +  

85 ~ 60 ~ fiber axis I 

295 ~ 47 ~ fiber axis II 

(zoo) 

D 

85 ~ 60 ~ 75 ~ component 

(i00) 

F 

295 + 47 ~ 15 ~ component 

Figure  7. Major texture components lexlure for (I00) reflection. A: ('-axes maximum 
1, 11, B: corresponding m-prism fibers I, 11, C: component (85.60,5) within fiber I. D: 
component (85,60.75) within fiber 1. E: component (85.60, I00) within fiber I close to 
X, F: component (295,47,15) within fiber I1 close I~ X. 

191 
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(85,60,100) and (295,47,15) are located only close to X (Fig. 7E, 7F). Thus 
Dortmann's (1987) conclusion is confirmed that basal a-slip may have contrib- 
uted preferentially to the deformation process but other systems must have been 
operating, too; otherwise one probably would expect that all components are 
centered with (110) on X. 

CONCLUSIONS 

The solution of the tomographic inversion problem of texture goniometry 
presented here employs series expansion into indicator functions, entropy opti- 
mization, and is given by an algorithm that allows eMcient programming. Thus, 
it relates explicitly to a well-established body of mathematical and information 
theory and liberates the user from confidence in ad hoc procedures. Practical 
application requires only incompletely measured pole figures of a few reflections 
which may be coincident, and is straightforward. The calculated MENTEX 
orientation-density function always is nonnegative, and provides a conserva- 
tively estimated orientation-density function supporting an interpretation that is 
safe and detailed in temls of components of preferred orientation. 

As the case study of a quartz texture demonstrates, a visually appealing 
representation and first interpretation of preferred crystal orientation is facilitated 
by reference to numerically completed pole figures that initially were measured 
incompletely, and additionally to calculated pole figures that actually were not 
measured or cannot be measured at all with X-ray diffraction. Both numerical 
operations require an orientation distribution. However, understanding of pre- 
ferred crystal orientation is increased only by explicit reference to an orientation 
distribution, that is, by a close inspection of the calculated orientation-density 
function and a consistent analysis of its components. 

Thus, the maximum entropy texture method incorporated in the package 
MENTEX is well suited to geoscientific applications of texture analysis where 
comparison of observed patterns with a few well understood standard patterns 
corresponding to metallurgical processes is insulficient. 
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APPENDIX. THE RATIONALE OF THE MAXIMUM ENTROPY 
CONCEPT 

Essential to this method is the term "entropy" and its meaning in infor- 
mation theory. It is well known in thermodynamics (Gibbs, 1875-78; Tribus 
1961), in statistical mechanics (Jaynes, 1957a, 1957b; Katz, 1967: Tolman, 
1938), and in infomlation theory (Aczel and Daroczy, 1975; Khinchin, 1957; 
Kullback, 1959; Shannon, 1948; Shannon and Weaver, 1949). Initially different 
definitions of the term have been unified and the entropy concept has compre- 
hensively been discussed by Jaynes (1979, 1982, 1985), Kaput (1983), Tribus 
(1979). In fact, the concept of entropy optimization revitalized and rehabilitated 
the concept of Bayes' a priori  probabilities (Jaynes, 1968). 

The entropy of a discrete random variable Z, respectively of its discrete 
probability distribution, is defined formally as 

rl 

S,,(Z) = S(p~ . . . . .  Pn) = - ~ p j ln  pj >_ 0 (37) 
j = l  
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Thus, entropy provides a measure of the "lack of information" or "uncertainty" 
inherent in a distribution when adapting a probabilistic view as opposed to a 
deterministic view. 

Elementary Linkage of  Probability and Information 

The information content with respect to a possible result of an experiment 
which probes the ensemble ("draw a ball from the urn") depends on the dis- 
tribution function: in the situation of a uniform distribution the lack of knowl- 
edge is complete, and each possible result of an experiment is equally likely 

(probable): in a well-pronounced unimodal distribution the lack of knowledge 
is relaxed, some results are more likely (probable) than others. If this distribution 
degenerates to Dirac's b-distribution, the knowledge is almost complete and one 
is back in the almost-deterministic world. 

Now, let the discrete probabilities be thought of as unknowns given by 
constraints in form of a system of linear equations Ap = q with some given 
(m • n) matrix A and some experimentally given values q, ,  i = 1 . . . . .  m .  If 
the matrix A is of full rank, the system has the unique solution p = A- ~q and 
the information of this distribution quantified by its entropy may be calculated 
immediately. If the matrix is of rank deficiency, the system has several different 
solutions, in fact infinitely many, of which a specific one may be selected by 
an additional mathematical model assumption. Thus, the solution with maximum 
entropy is the one with minimum information content consistent with the given 
data: thus it avoids artifacts and does not pretend a resolution for which there 
is no evidence in the data. 

Combinatorial  Reasoning 

The next combinatorial argument is the result of Jaynes (1982) and Frieden 
(1980). Let L elements of luminance be distributed over n pixels to form a 
scene, the jth pixel receiving a portion of pj = L / L ,  j = I . . . . .  n ,  of the total 
luminance. Out of the total number n t- of conceivable outcomes of this random 
experiment, the number of outcomes which yield a particular set of frequencies 

PL . . . . .  p,, is 

L! 
W ( p ~  . . . . .  p,,) = (38) 

( p ~ L ) !  . . . . .  ( p , , L ) !  

Taking the limit tbr increasingly large L, and using Stirling's approximate yields 

1 
lira - In W ( p l  . . . . .  p , , )  = S ( p l  . . . . .  p , , )  (39) 

L~ooL 

Thus, it may be argued that the probability law that could have existed in the 
maximum number of ways may well be presumed also to be the most likely one 
to have existed (Frieden, 1980). 
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Jaynes' Concentration theorem 

This argument was developed further into the concentration theorem by 

Jaynes (1982). Let C be the subclass of  all possible outcomes that could be 
observed in L trials of  the random experiment as described, compatible with 
m < n linearly indepenent constraints of  the form 

n 

~]  a , s  = q, ,  j = 1 . . . . .  m (40) 
j = l  

Then a certain fraction F of  the outcomes in class (2 will yield an entropy in 

the range of  

Sm, x - AS _< S ( p l  . . . . .  Pl)  <-- S . . . .  (41) 

The functional relation connecting F and AS is given by the concentration theo- 
rem that asymptotically 

2 L A S  ~ X~ ./ I (42) 

(Jaynes, 1982) where X~ J i denotes the x2-distribution with I - J - 1 degrees 
of  freedom. 

Thus, it is concluded that the feasible distributions are concentrated strongly 
near the one of  maximum entropy. 

and 

Constrained Maximum Entropy 

If there are no other constraints imposed on the pj than 

0 --<pi _< 1, j = 1 . . . . .  17 (43) 

n 

Zpj=l 
) = 1  

(44) 

then maximizing S(p~  . . . . .  p, ,)  results in the uniform distribution pj = l / n ,  

j = 1 . . . . .  n, and its maximum entropy Sr,.~,,,,(1/n . . . . .  l /n)  = In n. 
Now let the probability distribution (pj) be subject to m linear constraints 

of  the form 

or in matrix notation 

n 

~_] a , jp j  = q, ,  i : 1 . . . . .  m (45) 
. i =  ] 

Ap = q (46) 

If the system Equation (46) has a unique solution, it is given by p = A -  ~q 
and its entropy can be calculated according to Equation (37). If A is rank 
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deficient, the particular solution with maximum entropy is selected from the set 
of  all solutions. This leads to a problem of  constrained optimization 

t~ 

S ( p l  . . . . .  p,,) = - ~ p,, ln p .  = max (47) 
j = l  

subject to 

Ap = q, 0 _< pj _< 1. j = 1 . . . . .  n . . ~  pj = 1 (48) 
) = 1  

Taking the classic Lagrangian approach or the Kuhn-Tucker conditions (cf. 
Blum. 1972) for a constrained extremum towards the corresponding dual prob- 
lem the unique solution is obtained 

PJ = Z ~ e x p ( - ( A ' X ) ~ )  = Z ~ e x p  - = Xia  o , 

with the partition function 

Z(X) = Z(Xl . . . . .  X,,,) = j~ l  exp - 

j =  1 . . . . .  n 

(49) 

m ) 
,Z= hia,) (50) 

where the Lagrangian multipliers Xi are given by 

respectively by 

0 
- - - I n Z ( X )  = qi ,  i = 1 . . . . .  m (51 )  

3X, 

n 

a 0 exp(-A'X)j)  = qi. i = 1 . . . . .  m (52) 
) = J  

resulting in the maximum entropy 

m 

S,..~ = In Z(X) + ~ Xiqi (53) 
i = 1  

(cf. Kapur, 1983; Jaynes, 1985). It should be noted that the solution is of 
exponential form, Equation (49), resulting from the definition of entropy [Eq. 
(37)]. From a computational point of view formulae (49) to (53) do not look 
too attractive because of their exponential and logarithmic terms. 

This model is equivalent to the method of regularization (Tikhonov and 
Arsenin, 1977; Titterington, 1985) when the penalty term is selected to be the 
entropy functional (Jaynes, 1983; McLaughlin, 1983). 

Fortunately, there is a computationally more appealing alternative. Ap- 
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proaching the primal problem results in a problem of convex programming, and 
solving both the primal and dual problem simultaneously results in an iterative 
procedure. Under the mathematically mild assumptions that 

(i) O _< a, 2 -< 1, 
(ii) A has no zero rows, 

(iii) Ap = q has a nonnegative solution, and 

(iv) there is a real number c > 0 such that Ap* = q implies E!'/= ip* = c 
the sequence 

I i  if a,j r 0 and qi = 0 
p ~  = (54) 

I otherwise 
P 

where ~, denotes the number of a pr io r i  zero components of p ~ .  and 

( qi, ~ p ...... ~k~ ( q', ' ~  ...... ~k~ 
= \q~,._~/5./ Pi = \IE~'= i aalfi~k~j pj  (55) 

with cyclic control i t = k (rood m) + 1. relaxational parameters 0 < fik -< l .  
and fi~/k~ = p~l ~ + ~ i f /  < k orfi l  ~ = p~/k~ i f /  _> k, converges toward the maximum 
entropy solution of system Equation (46), that is, it provides the solution of the 
constrained optimization problem Equation (47) subject to Equation (48). 

This solution has been characterized as the particular one which all other 
solutions of the system Equation (46) are concentrated around in Jaynes "'con- 
centration theorem" (Jaynes, 1979, 1985). 

Equation (55) may be rewritten in blockwise notation as 

f ( q , T  ...... 1 
= I I  "' ( \qZk,]  561 

with Lj = { i ]aq  > 0} grouping all components q, of q which are related to pj 
via nonzero matrix-elements a,j. 

The sequence defined by Equation (56) was labeled "block-i terat ive" al 
gorithm (Censor and Segman, 1987). Proofs of convergence of this type of 
algorithms towards the maximum entropy solution of problem (47) subject to 
(48) have been given (Censor and Segman, 1987; Lent, 1976; Artzy, Elfving, 
and Herman, 1979; Censor, 1983; Lent and Censor, 1989). 

If the system of equations, Equation (45) has to be replaced by some system 
of inequalities resulting from large errors in the measurements, 

n 

- e i  <- qi - ~-~ aoPj <- ei, i = 1 . . . . .  m (57) j = l  
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then a generalized algorithm (Censor, 1982) applies 

I 
0 for all j for which a{t #: 0 and q, = 0 

pl ~ = (58) 
1 otherwise 

P 

where v denotes the number of a priori zero components of peru and 

U IO' = 0 E P (59) 

X -~ c/,~ pj~* I, = p,*, e p~ ' a , , , )  (60)  

u~h . i~ = u ~  _ c~t~tm (61) 

with t m = %, �9 IR P and where c,,~ = mlalu1,,  , . . ,  ,k~ 6 'k~, Ol~ '} with 6 'k~, resp . . . .  a I*~ 
given by 

tl 

a,, ,pl ~' exp(6'f 'a,/) = % - 6i, (62) 
j =  I 

and 

n 

ai,jp~ k' exp(6'_k'a.j) = % + % 
J = l  

(63) 

N o t e s  a n d  R e m a r k s  

For reasons of completeness it should be mentioned that about 20 years 
ago the maximum entropy method was introduced into exploration geophysics 
by Burg (1967, 1975) to model a solution of an estimating problem in spectral 
analysis and revolutionized geophysical spectrum analysis (cf. Edward and 
Fitelson, 1973; Rietsch, 1977). Today it is treated in any modem textbook of 
geophysics, for example, Aki and Richards (1980). Menke (1984). Smith and 
Grandy (1985), and Tarantola (1987). Smith and Grandy (1985) is entirely 
dedicated to this subject. For its use in computer tomography and image recon- 
struction the reader is referred particularly to Herman (1982. 1985) and Shaw 
(1976). 


