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Inequalities for upper bounds of functionals

A. A. LIGUN

Introduction

In the present work we obtain some Kolmogorov type inequalities and apply
them to some problems of approximation theory.

Let us introduce the following notations.

(i) L, (1=p<-<) is the space of all 2n-periodic measurable functions f(x) for
which | f(x)|? is integrable over [0,27], the norm being

£z, = { fn| FOOlP dx}e;

(ii) C is the space of all continuous 2z-periodic functions with the norm

Iflc = max /)]

@(iii) R=Cor L, (1=p=<oo);

iv) R (r=1,2,...; RO=R) is the set of all functions f€ R that have an abso-
lutely continuous (»— 1) th derivative and f’ ¢ R;

(v) NW'R (r=0, 1, ...) is the set of all functions f€ R® such that | f®||g=N
(W'R=1W'R);

(vi) W/R (r=0,1, ...; n=1,2, ...) is the set of all functions f€ W'R orthogonal
to all trigonometric polynomials of order not exceeding n—1.

(vil) We will denote by

o(f,9r = sup [f(x+u)—f(®)lx
the modulus of continuity of the function f¢ R;
(viii)y WTHY (r=0, 1, ...) is the set of functions such that
o(fO,0)r =w@) (©0=96=n).

where w(d) denotes a given modulus of continuity.
(ix) We will set
H =W'Hg.
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§ 1 Inequalities for the norms of the derivatives of an arbitrary function

The following inequality of KoLMOGOROV [9] for the norfas of the derivatives of
a function is well-known:

£, }1”;_ { If lie }1"
(1.1) {Kkl]f("llc KNS e

for feC®, r=2,3, ... and 1=k=r, where

)v(r+1)

4
T § v+1y+?

T n? nd
’2", K2 - 'g‘, K3 - ‘547’, ...].
STEIN [22] established the analogue of this inequality for the metric of L,:
12) { uf<'~'f)nh}”"s { 1f ey }”’
Kl fOlhd  — Kl
for fe LV, r=2,3,... and 1=k=r.
It is also clear that for f¢ L} and O<k-<r we have

uf<'-k>uL,}”"< { 1f Iz, }”’
(1-3) { 7ol ] = /0

Inequality (1.1) becomes an equality if f(x)=n""¢,(nx), where

are the Favard constants [Ko =1, K; =

4 = sin {(2v+ 1)x~——rin—}
(1.4) @ (%) = "Evg(’, @v+1)y+t

is the rth periodic integral, with zero mean value over the period, of the func-
tion @,(x)=sign sin x. The inequalities (1.2) and (1.3) are sharp on the sets L{?
and LY, respectively.

The analogues of inequalities (1.1)—(1.3) for functions defined on the whole
x-axis or on a semi-axis are obtained in the papers [21], [24], and [26].

In the present section we prove some inequalities analogous to (1.1)—(1.3).

The function & (u), u=0 is called an N-function if it can be represented as

@) = [ p@)dr,
0
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where p(¢) is a non-decreasing function that is continuous from the right and satis-
fies the following conditions:

PO)=0 (>0, pO)=0, limp(r)=-.

Theorem 1.1. For the elements fcC*™ (r=0,1,..)) we have the following
sharp inequality:

iflle Y
(13 f [n%f?l;c]d“/ [[K—I{f“n'é"l “"'(x"]dx

1]
where @ (u) is an arbitrary N-function.
To prove this assertion we need some auxiliary results.
The following lemma can be proved by an almost word-by-word repetition

of the arguments of KorRNEICUK (cf. the proof of Lemma 6.1 in [10]), nevertheless
we give its proof here for the sake of completeness.

Lemma 1.1. Let ge W'C (r=1,2,...), |glc=a""K,,
g() = o™, (om),

and suppose that the function @,.(at) is monotone on a segment [a, b] containing .
The following statements are true:
1. If ¢, (at) increases on [a, b] then

gé+1)=a"p(a(n+1) (O=1=b—n),

g¢-t)=a "o (a(n—1)) O=t=n-a).

If the function ¢,(at) decreases on [a, b], then the inequality signs in (1.6) turn the
opposite way.
2. If

(1.6)

g) =a"p(an) (@a=n=0b),

&1 —&l = m—nl.
Proof. KoLmoGoRrov [9] proved that if ge W'C (r=1, 2, ...),

then

”g”C = (x—r”(pr”C = “—rKr,
&) = 7" 9. (xC),
lg" @] = oMo, (@)

Let us suppose for the sake of concreteness that ¢,(at) increases on [a, b].
If in this case we suppose, for example, that

g+t =a"o(a(m+1)) O=t =b-n),

and

then
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then we can choose points ¢ and ¥, {=&=E41, n=n'=n+t’ so that g(&)=
=a~"p, () and |g’(&)|=a "¢, (an"), which contradicts Kolmogorov’s above
mentioned result. This proves statement 1, from which statement 2 follows imme-
diately.

Lemma 1.2. If ge W+C (r=0,1,...) and

(1.7) lgle = e Hopialle = Kpra™

then we have
2n 2na

(1.8) fdi(lg'(x)l)dxé-émtindf (", (x + 1)]) dx.

0

In the proof of this assertion we will follow the arguments of Taikov [25].
Proof. Without loss of generality we may suppose that g(0)=0. Set
G, = {x€[0, 27]: |g(x)| > O}.

Let us denote by 4, those component intervals of the set G, whose lengths are =a~!n
and by J; those whose lengths are <a™'x.
If we prove that for every &,€G, we have

(1.9) [ (g’ @)dx = min [ @@ lo,(ax —1)]) dx,
and for every 4,¢G, we have )
(1.10) [o(lg@)dx = [ o(a "o, (x)])dx,

A 0

then, by adding up these inequalities, we obtain that

2n

[ o(g'@)dx =3 [o(le’@)dx+3 [o(g' )dx =

0

2na

2n 1
=min | ®(a"|@,(ax—1)])dx = min— [ P(a "o, (x—1)|) dx,
min [ @(e~"lo,@x—0)dx = min - [ O lp.(x—1))dx

0

which means that (1.8) is fulfilled. Thus it is enough to prove inequalities (1.9) and

(1.10).
From inequalities (1.1) and (1.7) we obtain
(1.11) lg’lle = K,a™".

Besides this it is clear that

(1.12) min [ &(x"|g,(ax—1))dx = [ &(a"|o,(ax—15)])dx,
LI O
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where ¢, is chosen so that

1
o, [7“(0k+bk) - to] = 0;

b, and g, are the right and left endpoints of the interval §,, respectively. From
inequality (1.11), Lemma 1.1, and inequality (1.12) we promptly obtain (1.9).
In [25] it is proved that

max |g’ (x)|
X €4y

(1.13) Jole = | d{%@}Ef l&” ()l dx,

where
E, = {x€4;: |g'(x)] = t}.

From (1.13) and (1.11) it follows that

-rg

AfQ(lg’(x)|)dx é:j rd{gt(—t)—}Eflg'(x)]dx.

Analogously, we have

a~lzn

a"TK,
[ oo @) dx = [ d{‘%(’l} Ja~"lo, @) dx,
where '

e, = {x€[0, a~*]: 2", (@x)] > 1}.

Hence to prove inequality (1.10), and consequently Lemma 1.2, it suffices to
prove that
[lg'@ldx = [a|o,(@x) dx.
E, €,
It is clear that

alz

[lg’®ldx = 2liglc = 2K, a0~ = [ a7 |g,(ax)|dx.
4 0
On the other hand, if

o, (ane) = 0, [p,(am)| = ta" (0 =1, n=2""a"'n),

then by Lemma 1.1 (cf. also [10], p. 122) we have

f lg’@®)|dt = Zf a="|e, (ax)| dx.

ANE,
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Consequently,

[Slg@®ldt = [ oo, @) dx—2 [ a~"|p,(o0x)| dx =
E, 0 o

= [a~r|p,(ox)|dx.
This proves Lemma 1.2. '

Consequence 1.1.If g€ WC and g is orthogonal to all trigonometric polynomials
of order not larger than n—1, then we have

2n 2r

fdl([g(x)|)dx = f<D(n”'|(p,(x)|)dx.

This result is due to TAlkov [25].

Proof. Let G(x) be the periodic integral of g(x), the mean value of which
over the period is equal to zero. Then the assertion of Consequence 1.1 follows
from the Favard inequality

[Gllc = K pqn™ 1
and from Lemma 1.2.

Consequence 1.2. If ge WC (r=0, 1, ...) and

lglc = K,pra™,
then

2r

[ 2(g@dx = [ &@"lo.(x)])dx.

Proof. This assertion follows from Lemma 1.2 and from the following argu-
ments. Let ¢,(x,)=0, then for 0=8=nr/2 we have

nf2

B
5 [ 2@ ip,c—x)dx = B [ (o, (x—x)))dx =

0

n/2

=B [ oo~ |o.(x)])dx,

1 8
sincethefunction? / @ ("o, (x—x,)|)dx increases as B does so, 0=f=mn/2.
0
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Consequently,

2na

mtin%f D(a"|@,(x—1))dx =

nf2 {4a—[Aa)) nf2

:7.1;([404/ O rlonx—x)dx+ [ O lp(x—x))dx) =

0

1 /2
= — 4 f O (", ()] dx = f & (" |, (x)]) dx.
Here [y] denotes the integral part of y.
Proof of Theorem 1.1. Let f€C“+Y. Set

_
() = ey

Then g€ W"t*C and by Lemma 1.2 we have

—ri(r+1)
f o(s s = [0 {181 ™ g, o a.

By substituting f(x)/|| f+?|¢ for g(x) in this inequality we obtain (1.5). To make
our proof complete we notice that (1.5) becomes an equality if f(x)=n"¢,(nx).

Consequence 1.3. For the elements f of C'*+ (r=0, 1, ...) we have the follow-
ing sharp inequality:

e }ws{ 1/l }1’(’“’ 1<p=o
(1.19) {]lf('ﬂ)"c“(Pr“Lp VK L1/ D) (I<p ).

For the proof ot this inequality it is enough to put ¢(¢)=¢" in Theorem 1.1.

Theorem 1.2. For the elements f of C™*™Y (r=0, 1, ...) we have the following
sharp inequality:

1/l "'<{ Ifllc }”"“’
(1.15) {4K,+1uf<'+1>||c}. o VAT

Proof. As in Theorem 1.1 the inequality (1.15) immediately follows from the
following assertion: If g€ W™1C and |gllc = K, ;10" (r=0, 1, 2, ...) then

"g’”L], =a7" ”(pr“L]_'

Following the arguments in the proof of Lemma 1.2 we see that it is enough to
show that for @(r)=¢ we have inequalities (1.9) and (1.10).

2 Analysis Mathematica



18 A. A. Ligun

Now inequality (1.9) is valid for any non-decreasing function @(¢) and (1.10) fol-
lows from the following chain of inequalities

g

[lg @dx = 2|iglc = 2K, 107" = [ o, (@x)] dx.
Ay 0

We remark that inequality (1.15) becomes an equality if f(xX)=n"¢,(nx).
Summing up the assertions of Consequence 1.3 and Theorem 1.2 and using
inequality (1.1), we obtain the following result.

Theorem 1.3. For the elements f of C® (r=1,2,...) we have the following
sharp inequality:

1P, }”’;{ 1flc }”’ et 1
(1.16) {||f<'>ucn<oknL,, S\Ejfogey (sk=rl=r=<)

The following assertion gives a slight sharpening of a result of KorNEiCUK [10].

Lemma 1.3. If ge W'C (r=1,2, ...), | gllc=K,&", then

ofee|Z], t| = 2|w o, [~
w(gat):w[a(Pr[a]’t]*‘Za(pr[za tO]

where t, is chosen so that ¢,(f,)=0.
Proof. This statement can be proved precisely the same way as Lemma 6.2
in the work [10] of KoRNEICUK. Indeed, if

O=1=oan),

(g, 1) = |g(x)—gx")l, ¥—x"=1

then there exist points #” and 5" such that
o () = g), o (an) = g(x"),

and the function ¢, (¢ ~1x) is monotone on the interval (", #”). By Lemma 1.1 we have
I —n”|=|x"—x"|=t¢, and the proof of our lemma is finished.

Theorem 1.4. For the elements f of C® (r=1,2,...) we have the following
sharp inequality:

2] Ifle 177 ¢
(17 ol = K,u;“)cuc ¢ [{K nf(SMC} ‘2“"’) '
Proof. Let feC® (r=1,2,...). Set g(x)=f(x)/|f®|c. Then by Lemma 1.3
we have
K 1/r
ot = 28le o, (L& 1)

Substituting g (x) =f(x)/| f ]| we obtain inequality (1.17). It only remains to remark
that for f(x)=n""¢, (nx) and for 0=¢=n/n inequality (1.17) becomes an equality.
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§ 2. Estimation of the approximation of one class of functions by another

Theorem 2.1. For every 1 <p=-oo (L_=C) we have the inequality
2.1) AP(N) = sup nf [ f=-ol, =

fEWTL, oENWT+1L,

= sup {l@llz, of — NK, 0" 1},

where p’=p/(p—1) for l<p<oco and p’=1 for p=-eo, and the function ¢,(x) is de-
fined by equation (1.4).

Proof. From the results of IoFre and TiHOMIROV (cf. [7, Theorem 3.1}) it follows.
that

ADWN) = i‘fﬁc{ sup f fOg@ydi—  sup [ fg@ydt}.

It is clear (cf., for example, [11] or [18]) that

/ fDs@yd = sup [ fOgi@)dt =

Ly = €EWoLlp

= m:'n lgr+1(x) —AllL,, = El(g;+l)Lp'a

where g, ., is the rth periodic integral of the function g and E, ((p)L , is the best ap-
proximation, in L., of the function ¢ by constants. Analogously,

sup f f@)g@)ydt = sup ff(t)g,+1(t>dt

FENWTHLL, % fENWIL, —7

= Nm;.ln I &r+1(¥)—Allc = NE, (g +1)c-
Consequently,
AL(N) = sup {El(g')Lp' —NE;(g)c}-
gEWT+1C
From Theorem 1.3 it follows that if

E\(g) = K 0,
then for 1=p’ < we have

g’ e, = «llodL,
and even

El(g’)Lp' = a'“(pr"Lp"
which proves inequality (2.1).

Lemma 2.1. For 1=k<r we have the inequality

inf | Dy— ¢|, = max {K,of — NK,o'},
NwrL, a=>0

(43

2%
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where

cos [vx — —Tﬁ]

vk

1
Dix) = - =1,2..)

”[\48

Proof. From Theorem 3.1 of [7] it follows that

inf |Dy—gly, = sup { [ Di@e@)dt— sup [ ong(t)ar}.
WLy gEWﬁC % PENWTL, _%

@€eN
If feL® then
S .= [ D(x—)f®O(t)dt.
Consequently, -

inf | Dy—oll, = sup {g¢9(0)—NE(g)c} =
gEWrC

@ENWTLy

= sup {llg" Plc—NE (g}
geEWw"C

By using Kolmogorov’s inequality (1.1) in the last formula, the proof of our
lemma is completed.

Theorem 2.2. Let X=C or X=L,. For any 1 =k=r there exists a linear opera-
tor A, () mapping the class W*X into the class NW'X such that

sup [|f— 4, (lx = sup {Kix*— NK,x"}.
fEWkX x>0

Proof. From Lemma 2.1 it follows that for every 1=k~<r there exists a func-
tion ¥, . (¢) such that

S ¥eu@dt =0, W, =1,

and .
min | Dy —, ,— A = max {K; x*— NK, x"}.
A x>0

Let us set

A i) = [ OO, (x—1)dr.

—n

1t is clear that 4, ,(f) is a linear operator and, moreover, if f¢ W*X then

145 = WSk, 1/ @lx = N.
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On the other hand, for f€ W*X we have
1= ADlx = || [ ADx =0 =t ux— )= 2 f O @) it =

= min | Dy~ A, L/ ©lx = max {Kixt — NK, x').

From this our theorem follows.

In the sequel we will need the following two assertions which give estimation
for the approximation of a class by a class.

Theorem 2.3 (KORNEICUK {11]). If the modulus of continuity w(t) is convex
from below, then for all r=0, 1, ... we have

sup inf [ f—¢lc = max [ O,,(){w )—N}dt,
C x>00

fEWTHE @ENWr+1

where
i 1 x -1 d

0, (1) = { 27 andforr=12.. 0,,0) = {76/‘ Opr_1(Wdu, 0=t=ux,
03 0, t > X.

Theorem 2.4 (TurovVec [29]). If the modulus of continuity w(t) is convex from

below, then

. 1
sup inf | f—ol|., = nmax—_f {ew(@)— Nt} dt.
fEHE 9ENW'C x>0 X 0

§ 3. Inequalities for upper bounds of semi-norms

Let %(t) be a linear operator mapping the Banach space R into itself and let
M be an arbitrary class of elements of R. In the present section we will obtain a
series of sharp inequalities between the quantities of the type

(3.1 sup || f—#(f)g-
fem ‘

The question of sharpness of these inequalities will be considered later (in §4
and §5).

Let us introduce some notations which will be used in this section. Let ¥ (f)
be an arbitrary semi-norm given on the space R, i.c., a functional such that

¥0) =0, Y(f)=0, Y(/i+f) = ¥Y(H+¥(), YA = [A¥().



22 A. A. Ligun

Set

3.2 Ln(R)= sup Y(f) (vvm=0,1,..),
FEWLR

3.3) LR = sup Y(f) (v=0,1,..),
FEWYR

(34 I(Ry= sup P(f) (v=0,1,..).
fEWVHS

In the author’s paper [14] the following results are proved:

Theorem 3.1. For m=0, 1, ..., r=2,3,... and 1=k<r we have the inequality

L m(©) rom(C)
(3-5) {K:lo ,,,(C)} {Klo m(C)} ’
where
4 = ( 1)v(r+1)
(36) r - '7? Z(;(zv_*_ 1)r+1

Theorem 3.2. For all m=0,1, ..., r=2,3, ... and for all 1=k<r we have
the following inequality

lk, m (Ll) 1k - Ir, m(Ll) ke
S {Kklo,m(Lo} = {K,IO, m(Ll)} '

For m=0, r=2,3,4,5 and 1=k-<r inequality (3.5) was earlier obtained by
Zuk [30]. We will prove some further inequalities of the type (3.5) or (3.7).

The following result is quite simple, however, for the sake of completeness
we include it here.

Theorem 3.3. For all m=0,1, ...,0<k<r we have the inequality

1/k 1r
38) {lk,m(Lz)} _ {1,.,,.(L2)} .
lO,m(LZ) lO,m(LZ)
Proof. Let f€L® and

f(t) ~ 5’ (a, cos vt + b, sin vt)

be the Fourier expansion of this function. Let us set

o(f,t) = 2 o,(a,cosvt+b,sinvt),

where the numbers g,= ¢, (A) are defined in the following way: g, =hv*~" if h=m"*
and
1, m=y=ht-01
-

hvr—k, h(r——k)—l =V < oo,
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if h=m"~*_ Tt is not hard to see that ¢ (f, ¢) and ¢ (f, )= (f®, t)€L,. Using
the sub-additivity of the functional ¥ (/) and the definition of the quantity /, ,, (L)
we obtain: :

() = by L) f = (Ns + leomL 0 f O,

or

oo 1/2 . 1/2
P(f) = lo,m(Lo) {Zm (I1—e)(a+ b%)} + 1 m(Ly) {=Zm (e,v)* (@i + b%)}

for every function f¢L®, f1 t,,_,. From this we get

T(f) = {lo,m(L2) max ;Qv +lr,m(L2) max |vir—kl} “f(k)an
m=y-<<oco m=v<oo
or '
1—
(3.9) (L) = Iy n(L) max 1220140 (1) max [o,v 4,
m=y<oo n=y-<<co
Since we have
nax —ov| _ L_i B r—k i k/(r—k)
mmvco | V6| T hl/(rgcl)g(x<% x* x) r \rh
and

max |g, A" ¥ =k,

m=y-<<eo

from (3.9) it follows easily that for any /=0 the inequality

lk, m(L2) =

r—k (k)P
[ﬁl‘] lo,m(Lo) + bl (L)

holds true. Setting
b=y W L)l (L,

we obtain that
lk, m (L2) = lO, m (L2)(r B k)/r lr, m (LZ)k/r’

which is equivalent to (3.8).

Theorem 3.4. Let ¥ (f) vanish on the constant functions. Then for 1 <p=c
(L.=C),r=2,3, ... and 1 =k<r we have the inequality

L(L,) }”"<{ 1(Ly) }”’
(3.10 {lo(Ll)nwuL,, =\KLiy]

where p"=p/(p—1) if l<p<eo and p’=1 if p=-co. The function ¢, (x) is determined
by means of equation (1.4).
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Proof. Let f be an arbitrary function from the class W*L, (1<p= <) and let
@ =@ (f) be the function from the class NW*+1L, which approximates the function
Jfthe best in the metric of L,. The sub-additivity of the functional ¥ (f) implies that

()= ¥(f—o)+¥(0) = (L)~ @, + Ny 1 (L)

From this and from Theorem 2.1 it follows that
Y(f) = (L ma;( {llowlL, o — NKy 1051} ++ Nl 1 (Ly)

or
L(Ly) = (L) ma;( {”(Pk”Lpf“k— NKi 10541} + Nl 1 (Ly).
az=

Given an arbitrary o,, we can find an Ny=N(x,) such that
m:;( {”§0k||L,,/°fk—NoKk+1°‘k+1} = “(Pk”L,,/“’(f_NoKkﬂ“’éH-
a=

Consequently, choosing «, satisfy the equation

Kk+1lo(L1)“’(§+1 = L1 (Ly),

_ { Leoa(Ly) }”‘"“’

that is

oAy =
¢ Ko (LY

2

we obtain that

L. (L) ¥&+D
h(Lp) = L(Ly) @l {E%}

or

(3.1 1) { ”‘Pk”L,flO(Ll) - Kk+1lo(L1)

Now, from Theorem 3.2 it follows that if ¥ (f) is a semi-norm vanishing on
the constant functions, then for 1 =k<r we have

{ l(Ly) }”’;{ 1(Ly) }“’
K@y ~KL@)]

which together with (3.11) furnishes the proof of our theorem.

Theorem 3.5. If the modulus of continuity w(t) is convex from below and ¥ (t)
vanishes on the constant functions, then for all 0=k<r we have the inequality

Zr‘
(3.12) 12(C) = L(©) [ o0, (O,
where ’
_ Lo "
i"”{K,lo(C)} ’

the K, are the Favard constants and O, are the functions defined in Theorem 2.3.
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Proof. Let fe W*HZ and denote by ¢ (€ NW*+1C) the function which differs,.
in the metric of C, from the function f the least among all functions in the class.
NW*+1C, From the sub-additivity of the functional ¥ () and from the definition of”
the quantities /,(C) it follows that

(3.13) Y(N) = Y-+ ¥ = (O f—@lc+ N1 (C).

From this and from Theorem 2.3 it follows for every fﬁnction JEWFHE (k=0,1, ..)
that

Y(f) = L, (CO) gn%azif 0,,,(t) {0’ (t)— N}dt + NI ., (C).
This implies that for k=0, 1, ... we have
(3.14) ) = L(0) ma;( f 0, (@) {0’ (t)—N}dt+ Ni, ., (C).
az0 §
In [11] it is proved that for an arbitrary oy>0 we can find Ny=N(x,) such that

max f 0,,,(t){w'(t)—Nopdt = f t,@,,m,,(t) {0’ (t) — Ny} dt.

Setting aty=4,,, in (3.14) we obtain that

A 41

G.19) 12C) = 1(C) [ Oy )+ N(hier )iy (C) -
0

Ak+1
~ N+ D1 (C) f Oy n,ix(t) dt.
0

As is proved in [11],
o o k+1
[ Oux)dt = Ky [;]
0
Using this equality in inequality (3.15) we obtain
Ay

) =L©) [ 0, o @)d.

If ¥(f) vanishes on the constant functions, then by Theorem 1.1 we have for
l=k=r that

B(©) 1 { L(C) }1"
(3.16) {K_—:lo(C)] = R4

Consequently, for 1 =k<r we have

(3.17) A=A,
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On the other hand, it is clear that for 0=a=b, k=0, 1, ... we have
a b
(3.18) [ Oui@®’ @)dt = [ O, () o (@) dt.
0 0

Comparing inequalities (3.15), (3.17), and (3.18) we obtain the assertion of our
theorem.

For k=0 and r=1 inequality (3.12) has the from

(3.19) 12(C) = "’(ZC) » [ Zl((cc)) ]

In particular, if %,(f) is a linear operator mapping C into the set of trigonometric
polynomials of order not greater than n—1 and such that %,(1)=A4, then, setting

Y(f) = lf =%l

in (3.10); and taking into account that in this case

L(©C) = sup |If=U(Nlc =2,
- fewoc
we obtain the following assertion.

Consequence 3.1. If the modulus of continuity w(t) is convex from below, then

sup ||f—%,(f)lc = o( sup [f=%(Hllc)-
fEHE fewic

Theorem 3.6. If the modulus of continuity w(t) is convex from below and ¥ ( f)

vanishes on the constant functions, then
20,(C)
wlg(Ly)
mly (L)

(€)= (L) B 0f o(t) dt.

Proof. Let f€ H® and denote by ¢(f) (¢ NW'C) the function which approxi-
mates, in the metric of L, the function f the best among all functions belonging
to the class NW*'C. Then we have

P(f) = P(f—o(N)+¥(e(N) = LI If— ¢ (N, + NL(O).

From this and from Theorem 2.4 we obtain for all f€ H that

¥(f) = nly(L,) max {é jaw(t)dt—]g}+N11(C)
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or

I (C) = nly(L,) max {l f w(t)dt—]&}A—Nll(C).
a>0 L& 0 2
If the function w(¢) is convex from below, then the function

, (%) :%fw(t)dt

is also convex from below with respect to «, consequently, for an arbitrary oy=>0
we can find Ny=N(a,) such that

1 F 1 [ 1
max {—a—J U)(t)dt—‘Q—Noa} :zoj' a)(t)dt_?NOaO-

x>0

Setting
_ 25 (C)
%= 2L

we obtain the statement of our theorem.

§ 4. Application of the inequalities for upper
bounds of semi-norms to some problems of approximation theory

Let H, be an arbitrary n-dimensional subspace of the space R and suppose
that H, contains the constant functions. Set

EH,.(f)R = inf |[f—olg
ocH,
and
EHn(gﬁ)R = sup EHn(f )=
fem

for any class of functions M < R. Since
Eq, (WS R)r = Ey,(W'R)g = 1,
then, substituting in Theorems 3.1—3.3 m=0 and

'{’(f) = EHm(f)R (R = C’ Lla or L2)’

we obtain the following resulfs.

Consequence 4.1. For any subspace H,C X and for 1 =k<r we have the ine-
quality

4.1

where X=C or X=1L,.

{EHH(W"X)X W [Eq, 7 X)x |
K, = K ’

r
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Consequence 4.2. For any subspace H,C L, and for O<k<r we have the
inequality

4.2 En, (WrL)Y* = Ey (WrLyLr.

Analogously, from Theorems 3.4—3.6 we obtain the following consequences.

Consequence 4.3. For any subspace H,€L, (1<p=-<c) and for 1=k<r we
have the inequality

4.3) { Ey (WKL), }]‘/kS { Ey (WrLy);, }llr .
Ikl - K,

Consequence 4.4. If the modulus of continuity w(t) is convex from below and
0=k<r, then for all H,C C we have the inequality

T

(4.4) Eq(WHE)c = [ o’ (©)6,,,@)d,
0
where
» 1/r
49 AU R

Consequence 4.5. If the modulus of continuity w(t) is convex from below, then
for every subspace H,C L, we have the inequality
An
(4.6) Ey,(HE)L, = mhi [ w(t)dt,

0
where

Ay = %EHn(W1C)L1.

Let EAHn( f)r be the best approximation of f from below in the metric of R
by elements of H,(c C) (cf., for example, [1], p. 384), i. e.,

Ey,(f)r = inf |f—olx
fe H“
o=f
and i .
Ey. (W) = sup EH,, k-
fem

Since

Ey,W0C), = sup [ {f(x)—2A}dx = 2n
FEWSC %
and for v=1, 2, ... ; ;

EH,,(I/VOVC)Ll = EH,.(WVC)LU
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substituting, in Theorem 3.1, m=0 and

¥(f) = En,(Nwss

we obtain the following resuit.

Consequence 4.6. For any subspace H,C C and for 1 =k<r we have the ine-
quality

@ Ey, WO, _ E‘Hn(WfC)L,}”'
' 21K, - 27K, )

If H,=T,,_,, the subspace of trigonometric polynomials of order not greater
than m—1, then as follows from the papers [2], [5], [10], and [27], inequalities (4.1)—
(4.4) and (4.7) become equalities.

In the sequel we will consider the problem of determining diameters of sets in
Banach spaces and the problem of finding the best subspaces for these sets.

The n-dimensional diameter of the set M in the space R is, by definition, the
quantity

(4.8) d,(M, R) = inf E,; (M),
H,CR

where inf is taken over all subspaces H, of dimension 7.
The n-dimensional subspace H, is called a best subspace for the set M in the
space R if

“4.9) Ey (Mg = d,(M, R).
The problem of diameters is due to Kolmogrov. It was he who obtained the

first sharp results concerning the calculation of diameters. He proved [8], for example,
that for r=0 and n=1, 2, ... we have

1
(4-10) d2n(W’L2, Lz) = d2n—1(WrL2, Lz) = P
THOMIROV ([27] and [28]) proved that
K,
4.11) doy(W'C,C) = dy, .,(W'C,C) = o (nr=12..).

KOoRNEICUK [10] proved that for any modulus of continuity w(¢) that is convex
from below and for r=0, 1, ..., n=1, 2, ... we have

nfn

4.12) dou (W HE, C) = [ Oy ()00’ (D),

0

where @, ,(¢) are the same functions as in Theorem 2.3.
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RusaN [19] proved that if the modulus of continuity w(¢) is convex from below,
then

(413) d2n(W1HC(‘Da C) = d2n—1(W’Hg)a C)
and
nin
(4.14) oy s (W HE, L) = 4n [ O, o ()0’ (t) .
[}

Makavoz ([16] and [17]) found that

4.15) Ao W'C, L)) = 4~1f1+“- n,r=12.)

and

(4.16) dyy(W'C, L) = dp .. (W'C, L) (n=1,2,...).
SUBBOTIN [24] proved that

4.17) dyp_(W'Ly, L)) = —In(T’ (n,r=12..).

We recalled here only those results on the precise calculation of diameters
which will be necessary in the sequel.

Theorem 4.1. For n,r=1, 2, ... we have
K,

(4-18) d2n(WrL19 Ll) = d2n»1(W'L1, L)) = e

Proof. From the obvious inequality
don(W' Ly, Ly) = dpy (W' Ly, Ly)
and from relation (4.17) it follows that it is enough to prove the inequality

4.19) do WLy, L) = f—:— .

From Consequence 4.3 for k=1 and p= - we obtain that

dy(W'C, L) _ [dpw(W" Ly, LY
4K, = K,

for all n,r=1,2,.... Comparing this with equality (4.16), we obtain (4.19) and thus
the assertion of the theorem.

From equality (4.11) and Consequence 4.1 we can infer the following
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Consequence 4.7. For 1=k<r in the space C every n-dimensional subspace,
extremal for the class W’ C is extremal for the class W*C, as well.

From Consequences 4.1 and 4.2 and from equalities (4.18) and (4.10) we obtain
the following results.

Consequence 4.8. For 1=k~<r in the space L, every n-dimensional subspace,
extremal for the class W'L, is extremal also for the class W*L,.

Consequence 4.9. For O<k~<r in the space L, every n-dimensional subspace,
extremal for the class W'L, is extremal also for the class W*L,.

~ From Consequence 4.3 for p= - and from equalities (4.15) and (4.17) we obtain
the following result.

Consequence 4.10. For 1=k<r in the space L, every 2n—1-dimensional sub-
space, extremal for the class W'L, is extremal for the class W*C, as well.

From Consequence 4.3 for p= and k=1, and from equalities (4.16) and (4.18)
we can infer the following assertion.

Consequence 4.11. For r=1 in the space L, any n-dimensional subspace,
extremal for the class W'L, is extremal also for the class W*C.

From Consequences 4.4 and 4.5, and from equalities (4.12)—(4.14) we obtain:

Consequence 4.12. Suppose that the modulus of continuity w(t) is convex from
below. Then for 0=k~<r in the space C every n-dimensional subspace, extremal for
the class W'C is extremal also for the class W*HE.

For n=2m—1 and r=k+1 this assertion was obtained by KorNEICUK [12].

Consequence 4.13. Suppose that the modulus of continuity w(t) is convex from
below. Then for r=k in the space L, every (2n—1)-dimensional subspace, extremal
for the class W C is extremal for the class HE, as well.

The quantity
d,(M, R) = inf Ey (M)x
H,€R

is called the one-sided (lower) diameter of the class I in the space R. Then from
Consequence 4.6 it follows that if 1 =k~<r, then

d,v+c, Ly _ {J,,(W’ c, Ll)}”'
(4.20) { 27K, } = 27K,
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Consequence 4.14. Suppose that ge W*+'L, (r=0, 1, ...) and the modulus of
continuity w(t) is convex from below. Then we have

Ex

sup f f@)g @)dt = f o' (1) Op, i (t) dt,

FEWKHE —¢

where the functions O, , are defined according to Theorem 2.2 and

& = n{Kohlg ||L1}1/(k+ ,

Proof. Let g€ W*+1L,. Let us substitute in Theorem 3.4

P(f) = [f)g* D)

and r=k+1. Taking into account that in this case

WO = sup [ fOg& D) de = [+, = 1,
f

fllg=1 _%

hia(€) = swp, [ /g (Odr = sup [ r0g@dt = gl

=1 bt 11

and

I (C) = sup f [0 @y,
FEWrHE 7
we obtain the desired estimation.
Analogously, from Theorem 2.6 we obtain the following assertion.

Consequence 4.15. If g¢ W'C and the modulus of continuity w(t) is convex
from below, then we have

- @/m)lgl

sup ff(t)g (t)dt_2” » of w(r) dt.

fEHE — 1

§ 5. Sharp estimates of the best approximation by splines
on the classes of periodic functions

Let the system of nodes x,=kn/n (k=0, 1, 2, ..., 2n) be given. The 2n-periodic
function s,, , (01=0,1,2, ...; n=1,2,...) is called a spline function of order u and
of defect 1 (or simply a spline), if on each subinterval (x,-,, x,) (v=1,2, ..., 2n) it
is an algebraic polynomial of order not greater than u and for p=1, 2, ... we have
Son, u€ Ccl-n
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The spline s,, ,(x) will be said to be interpolating for the function f; and then
denoted by s, ,(f, x) if we have

Sonu(fo ) = f(x,) (=135 ..;v=12,..2n
and ‘

1 1
sz,,,u(f, E(xvﬁ—xvﬂ)] =f[—2—(xv+xv+1)] nw=0,2,4,..;v=12,..,2n).

For any p and n there is a unique interpolating spline (cf. [3] and [24]).
Let us denote by S,,, , the set of functions s,, , for fixed n and p. The set S, ,
is a 2n-dimensional subspace of the space W'C.

TmomirOV [28] proved that for r=1, 2, ... we have

K,
.1 sup || f=Sam,r-1(lc = Es,,,,.,(F'C)c = —.
fewrc n

From this and from Consequences 4.5 and 4.12, and from equalities (4.12), (4.13)
we obtain the following assertions.

Theorem 5.1. For r=k—1 (k,n=1, 2, ...) we have the equalities

(52) Eszn’ r(WkC)C = =

Theorem 5.2. Suppose that the modulus of continuity w(t) is convex from
below. Then for r=k, k=0, 1, ... and n=1, 2, ... we have the equality

nin

(53) Es,. . W*HE)c = [ Opp ()0 (t) db,

0

where @, (t) are the functions defined in Theorem 2.3.

For r=k this result was obtained by KoRNEICUK [12].

The following theorem shows that there exists a linear method of approxima-
tion by splines of order r that gives the same error on the class W*C (r=k —1=0)
as the best approximation by splines of order k—1 (and, consequently, of order g,
u=k-1). ‘

Theorem 5.3. For r>k—1=0 there exists a linear operator s, , () mapping
C into the subspace S,, , and such that
K

(5.4) Sup |/ —Sam, ek (Nllc = -
FEWRC n

3 Analysis Mathematica
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Proof. Let the spline s,,, ,(f) of order r interpolate the function A, ()
occurring in Theorem 2.2, i.e., let

S2n,r,k(f; t) = s2n,r(Ar,k(f)9 t)-
From Theorem 2.2 and equality (5.1) it follows that

(55) ”f"—SZn,r,k(f)”C = ”f"'Ar,k(f)”C+ ”Ar,k(f)*_s2n,r(Ar,k(f))“C =

= max (K, v~ NK, 2} + 2 Al = max (K, ¥~ NK )+ N

x>0

For any x0>0 we can choose Ny=N(x,) so that

max {K;x* — NoK,x"} = K. xk— NoK, x5

x>0
Putting x,=n""in (5.5) we obtain for f¢ W*C that
K,
1= Sen i (Nle = -

The rest follows from Theorem 5.1.

As follows from the results of NikoLskif ([18), equality (2.9)), we have

Es.., (i = sup f f@)g()ar.

le=1_3%
yi-sﬂn. r

Since the subspace S,,,, contains the constant functions, we have

fg(t)dt = 0.

—-n

Consequently, for fc W+1L, we obtain that

Esp,, (N = sup. f FO@gE)dt

a-l-san 0
or

k1
E;,,, (i = sup [ e @ g .
géW"*'lC 7 :
g(x,)=0 (v=1,2,...,2n)

From this it follows that

n
sup  Es, (f), = sup sup f SO gt)dt =
SEWTFLL FEWTIIL gewr+1c o
g(x,)=0 (v=1,2,...,2n)
= sup lgllz,
gEWT+1C

g(x,)=0 (v=1,2,...,2n)
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where p'=1if p=o (L_=C), p’=< if p=1, and p’=p/(p—1) if 1<p<-oe. Con-
sequently, we have

(5:6) Es,, WLy, = sup g,
geEwr+1c
g(x,)=0 (v=1,2,...,2n)

Lemma 5.1. If gcCe+V, | g"+V| <1, and g(x,)=0 (v=1,2,..), then the

difference
4,69 = 09—, [n[x— G A])

and the difference

2,09 = 80+, [n[x— G 4|

change signs at the points x, (k=1, 2, ..., 2n) and only at these points.

It is clear that 4(x) and AP (x) have at most 2n zeros. Consequently, by
Rolle’s theorem 4,(x) and A4,(x) have at most 2n zeros. Taking into account that
4,(x,)=45(x,) =0 (v=1, 2, ..., 2n) we obtain the assertion of the lemma.

From relation (5.1) it follows that if || g"+V||c=1 and g(x,)=0 (v=1,2, ..., 2n),
then

Kr+1

nr+1 *

lgllc = g — S2n, - (@)ic =

From this and from Lemma 5.1 it follows that if ||g"*V| <1 and g(x,)=0 (v=1,

2, ...,2n), then
1+(___1)r+1
o, [n [x— ym n

for all x, —n=x=n. Hence for all g¢ W"+1C such that g(x,)=0 (v=1, 2, ..., 2n)
the following inequality holds:

(p,[n[x—ﬂ n]]l (—r=x=m.

lg@)| = n~r

gl = n~ o

From this we obtain

Lemma 5.2. For all ge W+C such that g(x,)=0 (v=1,2, ..., 2n) we have
the inequality
lghe, = n=* P, 4lL, (1=p==)

From the last formula and from equality (5.6) we get

(5.7 Es,,, (WL, = nm g, 4]l

3*
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In particular,

S

r+1
nr+1 °

ESzn, r(Wr+1L1)L1 =

From this and from Theorem 4.1 and Consequence 4.1 we obtain the desired result.

Theorem 54. For r=k—1 (k, n=1, 2, ...) we have the equality

K,
ESzn:r(WkLl)Ll = _nTk' .

Theorem 5.5. For r=k—1 (k,n=1,2,...) and 1<p=cc we have the equality

llpxl]
Es,, WL,y = ;,fp .

Proof. The estimation, from above, of the quantity Es,  (W*L,),, follows from
inequality (5.7) and from Consequence 4.3. The estimation from below can be
obtained exactly the same way as that in [27].

Theorem 5.6. If the modulus of continuity w(t) is convex from below and r=0,
then we have the equalities

n/n

Es,, (HE), = n f w(t)dt.
0

Proof. From Theorem 5.5 for k=1 and p=-< and from Consequence 4.5
we obtain that

nin

Es,, (HO=n [ w@)d.
(]

On the other hand, let f,(x) be the function with period 2z/n that is equal to.
270 (2x) for 0=x=(2n)"'n and to 27 w((2n)"'n—2x) for 2n)~n=x=n"'n, and
set

ﬁA@=ﬁb+k%§Q4.

Then we have

fn

Es, (o) = I filley = n [ () dr.

0

It is well-known that if f€ C®, then for r=0, 1, ... we have

(5.10) %WUké%wpuly
C

n

where the quantities C, depend only on r.
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The following result shows that the smallest possible constant in inequality
(5.10) equals 27K, (r=0, 1, ...).

Theorem 5.7. For all r=0,1, ... and n=1, 2, ... we have the equalities

(5 11) su ESZ,._,-(f)C — I<r
) ») Y an )
/{ﬁec(t:mst a)[f(r), —‘]
7 jc

The proof of this assertion follows arguments due to KorNEfCUk [10].
Proof. The function ¢ (x) will be called simple, if |@ (x)|=0 for a<x<f, @ (x)=0
for x=a and x=f; and for any y, O<y<max [@p(x)|, the equation | (x)|=y has

exactly two solutions. Let ¢ (x) be a simple function with intervals of monotonicity
(o, @) and (B, B"), a<a’'=f"<p. Let us define the function o(x) by the equality

B.

A

(5-12) px) =0e®), a=x=do, p =9
Then

i

l

2 Qz’ B
[ 7@ @dx = [ fDe’®dx+ [ [ (x)dx =
0 « B

= [ @' @dx— [ fle®)e (o)) (x)dx.

From (5.12) it follows that

o’ (e(M)e’(®) = ¢’ ().
Consequently,

(5.13) [ @' @dx = [ {f®)-fle@)}e’ (x)dx =
0 o

2n

= 0(fi B~ [ 10 ldv = g0l B~ [ o' (]dx.

0

In [10] it is proved that any function g€ L can be represented as a sum of
simple functions ¢, (x), moreover, if («, B) is the longest segment, where the function
g(x) does not change sign, then max (8, —«,)=f —a. Furthermore,

%' ”(Pr’c“Ll = ”g/”m-

Taking this into account, from inequality (5.13) we obtain that for any function
geLP

(514) [ F®)g' @ dx = 5 o (£~ Dc g I
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where f—a is the Iength of the longest segment on which the function g(x) does
not change sign.

Let geW ™!L, and g(x,)=0 (v=1,2,...,2n;r=0,1,...). Then the length
of the longest segment on which the function g(x) does not change sign does not
exceed n/n. Consequently, for € C we have

Jrogwd =go G 2 180

From this and from the equalities

Es,,,(fle = sup [ fe@ydt =
g, =1 _ o
9~Ls2n,r

k4

= sup [rowme @),
géW""'lL 4
g(x,)=0 (v=1,2,...,2n)

which follow from equality (2.9) in [18] we obtain that

1 7 ,
(5.15) Es,, (e =5 [f"% —] sup gl

2 njc gEWT L,

' g(x,)=0 (v=1,2,...,2n)

On the other hand, from the same equality (2.9) of [18] it follows that

2n

sup Es, (f)c= sup sup f FeO@)g(e)dt =
fewr+lg ’ fewr+ic gEWT+LL, ¢
g(x,)=0 (v=1,2,...,2n)

= sup min ||g(x) — Al ,.
gEWT 1L, A
g(x,)=0 (v=1,2,...,2n)
From this and from (S.1) it follows that if g€ W™+1Ly, g(x)=0 (v=1,2, ..., 2)
then

>

. Kr+1
min lgCe) = Alr, = —=5-

From this and from Stein’s inequality (1.2) we can derive that if g€ W"+1L,,
g(x,)=0(v=1, 2, ..., 2n), then
K,
n

lig"le, =

From this and from inequality (5.15) it follows that for f¢ C we have

K, n
ES%,,(f)C = o w[f(r), ;]C



Upper bounds of functionals 39

To make the proof complete it remains to notice that on account of Theorem
5.1 for f€C™ we have

sup Es,,.,,(f e _ 1 sup Esg,.,,(f e _
) Yy * 5 " ) -
e w[f"), —] feen, M0l
nje
1 K
= — E = r .
2 fesgllgc Szn’r(f)c 2”’

Thus Theorem 5.7 is completely proved.
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