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IneqUalities for upper bounds of functionals 

A. A. LIGUN 

Introduction 

In the present work we obtain some Kolmogorov type inequalities and apply 
them to some problems of approximation theory. 

Let us introduce the following notations. 
(i) Lp ( l<-p< co) is the space of all 2re-periodic measurable functions f ( x )  for 

which ]f(x)l p is integrable over [0,21r], the norm being 

2re 

[IfllL~ = { f  [f(x)l pdx}I'p; 
0 

(ii) C is the space of all continuous 2re-periodic functions with the norm 

IIf[Ic = max If(x)l; 

(iii) R = C  or Lp (1 =p  oo); 
(iv) R' ( r=  1, 2 . . . .  ; R(~ is the set of all functions f ~ R  that have an abso- 

lutely continuous ( r -  1) th derivative and f(r) ~ R; 
(v) NW'R  (r=0,  1 . . . .  ) is the set of all functions f ~ R  (') such that IIf(r)llR<--N 

(W'R  = 1 WrR); 
(vi) W~R (r----0, 1, ... ; n =  1, 2 . . . .  ) is the set of all functionsf~ W'R orthogonal 

to all trigonometric polynomials of order not exceeding n -  1. 
(vii) We will denote by 

to(f, 6)R = sup Nf(x+u)- f (x)[ la  
O ~ u ~  

the modulus of continuity of the funct ionfER; 
(viii) W'H~ (r=O, l, ...) is the set of functions such that 

co(f('), 6)s ~_ to (6) (0 -<_ 6 ~_ r 0. 

where o9(6) denotes a given modulus of continuity. 
(ix) We will set 

H~  = W ~ 
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w 1 Inequalities for the norms of the derivatives of an arbitrary function 

The following inequality of KOLMOGOROV [9] for the norgns of the derivatives of  
a function is well-known: 

(1.1) 
Kk [If(')llc t ~ l  

for f E C  (0, r - 2 ,  3 . . . .  and l<=k<=r, where 

Kr = re ~_-~o(2v+l) r+l 

are the Favard constants Ko = 1, K1 = 2 '  Ks = Ks = @ 

STEIN [22] established the analogue of this inequality for the metric of  Lx: 

(1,2) ~llf(r-k)[[Ll.~l/k<~ llf[ILx [l/r 
t g ' l l j < r > l l j  = [ g k l l f C , ) l l j  

for f~LC1 O, r=2 ,  3 . . . .  and l<-k<=r. 
It is also clear that f o r fEL~  and 0 < k < r  we have 

(1.3) 
{[If~-k)[]L,,~llk< ~[ [[filL, 1 llr 

IIf(r)llL, J - [ ~ /  " 

Inequality (1.1) becomes an equality if f (x)=n-'qgr(nx), where 

(1.4) 
4 ~ ~ sin {(2v+ 1 ) x - - r ~ }  

~or(x) = ~ - Z  (2v+ 1),+1 

is the rth periodic integral, with zero mean value over the period, of the func- 
tion ~oo(x)=sign sin x. The inequalities (1.2) and (1.3) are sharp on the sets L~ ) 
and L(z r), respectively. 

The analogues of inequalities (1.1)--(1.3) for functions defined on the whole 
x-axis or on a semi-axis are obtained in the papers [21], [24], and [26]. 

In the present section we prove-some inequalities analogous to (1.1)--(1.3). 
The function r u=>0 is called an N-function if it can be represented as 

u 
�9 (u) = f p(t) dt, 

0 
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where p( t )  is a non-decreasing function that is continuous from the right and satis- 
fies the following conditions: 

p ( t ) > O  ( t > O ) ,  p ( O ) = O ,  l i m p ( t ) = ~ .  

T h e o r e m  1.1. For the elements f E C  (~+1) (r=O, 1 . . . .  ) we have the following 
sharp inequality: 

?~((. !'fHc )r[(r+l) ) 
(1.5) ? ~  [ I/ ' (x)l  ] dx tq,,(/)l dx, 

o a UIf('+l)[Ic) - o  a [(K,+~llf'+alfc 

where ~ (u) is an arbitrary N-function. 

To prove this assertion we need some auxiliary results. 
The following lemma can be proved by an almost word-by-word repetition 

of  the arguments of KORNEi~;UK (cf. the proof  of Lemma 6.1 in [10]), nevertheless 
we give its proof  here for the sake of completeness. 

L e m m a  1.1. Let  gE W~C (i"=1, 2 . . . .  ), Ilgllc<-~-'gr, 

g (~) = ~-" ~0, (~q), 

and suppose that the function q>~(~t) is monotone on a segment [a, b] containing q. 
The following statements are true: 

1. l f  ~o~(~t) increases on [a, b] then 

g ( r  <- ~- '~o,(~(q+t))  (0 <= t ~ b - q ) ,  
(1.6) 

g ( ~ - - t )  >= ct- 'q~,(e(q--t)) (0 <-- t <_-- q--a) .  

I f  the function %(ott) decreases on [a, b], then the inequality signs in (1.6) turn the 
opposite way. 

2. I f  
g(r = 0~-rq~r(~ql) (a <_-- ql <-- b), 

then 
[~1 - ~l -->- [ql - q[. 

P r o o f. KOLMOGOROV [9] proved that if g E WrC (r = 1, 2 . . . .  ), 

Ilgllc -<- ~-" I1r = c~-'g, ,  
and 

then 
Ig'(OI <-- (Xl-r[q)r-l((X~)l. 

Let us suppose for the sake of concreteness that ~o,(~t) increases on [a, b]. 
If  in this case we suppose, for example, that 

g (r + t ') = ~ - '  q~, (c~ (q + t ')) (0  =< t '  <= b -  q),  
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then we can choose points 4' and q', ~<=~'---~+t', ~l<=~f<=q+t" so that g(~ ' )= 
=a-'cp,(~r/') and Ig'(r which contradicts Kolmogorov's above 
mentioned result. This proves statement 1, from which statement 2 follows imme- 
diately. 

L e m m a  1.2. l f g C  Wr+IC ( r=0,  1 . . . .  ) and 

(1.7) 

then we have 

(1.8)  

IlglIc < ~- ' -a l l~o  +111c ~ g ~ + a ~  - r - ~  r 

2re 27C~ 

f =-rain f #(e-'[q),(x+t)lldx. O(lg , (x ) l )dx  < 1 
0 O~ t 0 

In the proof  of  this assertion we will follow the arguments of TAiKOV [25]. 

P r o o f. Without loss of generality we may suppose that g (0) = 0. Set 

Gg = {xE[0,2n]: Ig(x)l > 0}. 

Let us denote by Ak those component intervals of the set G o whose lengths are =>e-in 
and by 5 k those whose lengths are <cr 

If  we prove that for every ~, E G o we have 

f = f ~  (1.9) ~([g ' (x ) l )dx  < min (~ - ' ko , ( c~x - t ) l )dx  , 
~k t ~k 

and for every AkEG 9 we have 

(1.1o) f ~(Ig'(x)l)dx <= f ~(~-'J~o,(~x)l)ex, 
zl k 0 

then, by adding up these inequalities, we obtain that 

f ~(Ig'(x)l)dx = 2 f~(Ig'(x)l)dx+2 f~(Ig'(x)l)dx <- 
0 k ~k k Ak 

=< rain f # ( e - r l 9 , ( a x - t ) [ ) d x  = r~tn- -  f # ( ~ - ' l , , ( x - t ) l l a ~ ,  
t 0 O~ 0 

which means that (1.8/is fulfilled. Thus it is enough to prove inequalities (1.9/and 
(1.10/. 

From inequalities (1.1) and (1.7) we obtain 

(1.11) I[g'llc -<- K, ct-~. 

Besides this it is clear that 

(1.12) rain f ~(~-'lq~,(~x-t)l)dx = f ~(~-'l~,(~X,to)l)dx, 
t ~k ~k 
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where to is chosen so that 

b k and ak are the right and left endpoints of the interval 6k, respectively. From 
inequality (1.11), Lemma 1.1, and inequality (1.12) we promptly obtain (1.9). 

In [25] it is proved that 
m a x  Ig '  ( x ) l  

(1.13) f ~([g'(x)l)dx= f d Ig'(x)ldx, 
A k 0 

where 
Et = {XEAk: [g'(x)l > t}. 

From (1.13) and (1.11) it follows that 

f ~(lg'(x)l)dx <- f d [g'(x)ldx. 
A k 0 

Analogously, we have 

where 

f ~(~-" le,(~x)l) dx = f ~-r I~,(~x)l dx, 
0 0 e t 

e, = {x~[0, ct-~n]: l~-'~,(~x)l > t}. 

Hence to prove inequality (1.10), and consequently Lemma 1.2, it suffices to 
prove that 

f lg'(x)ldx <- f ~-'l~,(~x)ldx. 
E t et  

It is clear that 
~r 1/t 

f lg'(x)rdx <= 2llglrc ~ 2Kr+l ~t-r-a = f ~-'1~ (~x)ldx f 
-'1 k 0 

On the other hand, if 

~ , ( ~ o )  = 0, I~ , (~ ) l  = t~ r (0 ~ no, ~ / ~  2 - 1 ~ - 1 ~ ) ,  

then by Lemma 1 1 (cf. also [10], p. 122) we have 

q 

f Ig'(Oldt ~ 2 f ~-'l~(~x)ldx. 
d k ~ t  ~0 
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Consequently, 

f lg'(t)ldt <- f ~-q~X~x)l d x - 2  f ~-'lq~,(~x)ldx = 
E t 0 qO 

= f~-'ko,(~x)ld~. 
e t 

This proves Lemma 1.2. 

C o n s e q u e n c e  1.1. l f  g E W" C and g is orthogonal to all trigonometric polynomials 
o f  order not larger than n - 1 ,  then we have 

2~ 2~ 

f e(Fg(x)l)dx <- f rP(n-'l%(x)l)dx. 
0 0 

This result is due to TAiKOV [25]. 

P r o o f .  Let G(x) be the periodic integral of g(x), the mean value of which 
over the period is equal to zero. Then the assertion of Consequence 1.1 follows 
from the Favard inequality 

IlGIIc <-- g,+l n-~-t 

and from Lemma 1.2. 

C o n s e q u e n c e  1.2. I fgE W'C (r=O, 1 . . . .  ) and 

then 
Ilgllc ~ K r + l  O~-r-1,  

2re 2u 

f ~)(Ig'(x)l) dx <- f ~(~-'[q~,(x)[) dx. 
0 O 

P r o o f .  This assertion follows from Lemma 1.2 and from the following argu- 
ments. Let (o,(x0)=0, then for O<-fl<=u/2 we have 

# hi2 

2 of ,~(=-'l,#,(x- xo)l)ax <= #o f e(~-'l,e,(x- xo)l)ax = 

=/2 

=/~ f ~(~-'l,p,(x)l)ax, 

1 # 
since the function-2 f ~(~-" 19,(x-x0)l)ax increases 

P d" 
as /3 does so, 0 _  fl = r~/2. 
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ConsequentlY, 
1 2 ~  

n~tn-- f <= 
O~ o 

<_- [4cQ f o(=-'le,(X-Xo)i)dx+ f ~(~-'ko,(X-Xo)l)dx) <= 
0 o 

0 0 

Here [7] denotes the integral part of ~. 

P r o o f  o f  T h e o r e m  1.1. LetfEC('+l)i  Set 

f(x) 
g(x) = iif(,+l)llc. 

Then gE Wr+IC and by Lemma 1.2 we have 

2~ 2~ f [  . . . .  "~-r / ( r+l )  I 

o 

By substituting f(x)/llf('+~)ll c for g(x) in this inequality we obtain (1.5). To make 
our proof complete we notice that (1.5) becomes an equality if f(x)=n-'(o,(nx). 

C o n s e q u e n c e  1.3. For the elements f of C "+~ ( r=0,  1 . . . .  ) we have the follow- 
ing sharp inequality: 

r l /r  
(1.14) I f  IILe I <-- ~ I f lc  / 1/(r+l) (1 c~o). 

Ift '+X)lc II~0,11L~ / - / 'K,+~l l -~-+~) lc /  < p < 

For the proof ot this inequality it is enough to put ~ ( t ) = f  in Theorem 1.1. 

T h e o r e m  1.2. For the elements f of C ('+1) ( r=0,  1, ...) we have the following 
sharp inequality: 

(1.15) ~ itfp[l LI ,}'l.[r{ [Ifllc 1 l,(r +I) 
[4K,+111fC'+~)llcl =< K,+~l-7~-+~)/c/ 

P r o o f .  As in Theorem 1.1 the inequality (1.15) immediately follows from the 
following assertion: I fgE W'+IC and Ilgllc <- g ,+l  ~ - ' -1  (r-=0, 1, 2, ...) then 

llg'llL1 ~ c~-' Iq0rlLx. 

Following the arguments in the proof of Lemma 1.2 we see that it is enough to 
show that for ~ ( t ) = t  we have inequalities (1.9) and (1.10). 

2 Analysis Mathematica 
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Now inequality (1.9) is valid for any non-decreasing function �9 (t) and (1.10) fol- 
lows from the following chain of inequalities 

g'(x)ldx < 2[Igllc <- 2K,+1~ - ' - I  = I~o,(~x)ldx. 
At: 0 

We remark that inequality (1.15) becomes an equality i f f(x)=n-'q~,(nx).  
Summing up the assertions of Consequence 1.3 and Theorem 1.2 and using 

inequality (1.1), we obtain the following result. 

T h e o r e m  1.3. For the elements f of  C @) ( r = l ,  2, ...) we have the following 
sharp inequality: 

0.16) l i l y  ''-k'liL, /"k-~/ IlSllc /"" 
/llf<,~llclk0kll J = iK ,  iIf(,~llc I (1 _<- k < r, 1 _-<p < oo). 

The following assertion gives a slight sharpening of a result of KORNET~UK [10]. 

L e m m a  1.3. I fgE W'C ( r = l ,  2 . . . .  ), Ilgllc<=g,~ ", then 

oa(g,t) <- co ~'q~, , t = 2  , - t o  <= t <- ~ ,  

where to is chosen so that tp,(t0)=0. 

P roo f .  This statement can be proved precisely the same way as Lemma 6.2 
in the work [10] of KORNEi~UK. Indeed, if 

og(g, t) = Ig(x ' ) -g(x") l ,  Ix'--x"l <- t, 

then there exist points r/' and r/" such that 

~r~0r(~- - ln#  ) ~--- g(x3, ~ r ( ~ r ( ~ - l n 3  = g(x"), 

and the function ~p,(~-Zx) is monotone on the interval (r/', q"). By Lemma 1.1 we have 
lq'-q"l<_-Ix'-x"l<=t, and the proof of our lemma is finished. 

T h e o r e m  1.4. For the elements f o f  C @) ( r=  1, 2 . . . .  ) we have the following 
sharp inequality: 

(1.17) co(f, t),<= K ~ l c  t /K,  l i f t ' ) l id ~--to �9 

Proof .  Let f ~ C  ~') ( r = l , 2 ,  ...). Set g(x)=f(x)/llf(')ll c. Then by Lemma 1.3 
we have 

og(g, t) --<_ 21igll___&c , t 
K, q~" T -tO 

Substituting g(x)=f(x)lllf~'~tlc we obtain inequality (1.17). It only remains to remark 
that for f ( x ) =  n-r~or (nx) and for 0<-t <= n/n inequality (1.I 7) becomes an equality. 
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w 2. Estimation of the approximation of one class of functions by another 

T h e o r e m  2.1. For every 1 <p<= oo (Loo=C)  we have the inequality 

(2.1) A(vr)(N) = sup inf  [If--rp[lLa 
. f~WrLp  ~p~NWr+IL1 

<: sup {][~0~[[L ~, C~" - NK,+ l~r  +1}, 
~ > 0  

where p '=p / (p -  1) for 1 -<p<  co and p'= 1 for p = ~, and the function qg,(x) is de- 
fined by equation (1.4). 

P r o o f. F r o m  the results of  IOFFE and TIHOMIROV (cf. [7, Theorem 3.1]) it follows 
that  

rc 

A~v~)(N) = sup { sup f f ( t ) g ( t ) d t -  sup ( f ( t ) g ( t )d t } .  
o~WO C "fEWr Lp --~; fE  NWr+ l L1 _ 

It  is clear (cf., for  example, [11] or [18]) tha t  

sup f f ( t )g ( t )d t=  sup f f ( t )g;+l( t )dt= 
f E W  r g p  _ n f E W  ~ L v - -  ~z 

= rain [[g;+I(X)--A[IL~, = El(g;+l)Lp,, 

where g,+l is the r th  periodic integral o f  the funct ion g and Ea (~0)L; is the best ap- 
proximation,  in Lp,, of  the function q~ by constants. Analogously,  

sup ( f( t)g(t)dt = sup f f(t)g,+l(t)dt = 
f ( N W  r + l  L l - -  f E N W ~  - ~  

= Nmin IIg,+a(x)-&[Ic = NEl(g,+l)C. 
A 

Consequently,  
A ~ ( N ) =  sup {E~(g')L,--NEx(g)c}. 

g s  

From  Theorem 1.3 it follows that  if 

then for  1 <=p'< ~o we have 

and even 

which proves inequality (2.1). 

El(g) <-- K.+I, '+1, 

IIg'l[L.. <= ~" [Ig0,1lLp,, 

gl(g')Lp, ~ ~'llg0,11Lp,, 

L e m m a  2.1. For 1 <=k<r we have the inequality 

inf  I[Dk-- q~[lLa <=== max {Kk~k--NK,~'}, 
q~ 6 N W  r L1  ~>0 

2* 
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where 

Ok(X) = ~-v=l vk (k = 1,2 . . . .  ). 

P r o o f .  From Theorem 3.1 of [7] it follows that 

inf 
~p C NWr L1 

I f  fE L(1 k) then 

Consequently, 

IIDk-- OIIL, = { f n (t)g(t)dt- sup f go(t)g(t)dt}. 
C r 

f(x) = f Dk(X--t)r(k)(t)dt. 

inf IlDk--q~[lL1 ~ sup {g( ' -k)(O)-NEl(g)c} 
q~E N Wr L1 Oc wr  C 

<- sup {[Ig('-k)Hc--NEl(g)c}. 
gEwrC 

By using Kolmogorov's inequality (1.1) in the last formula, the proof of our 
lemma is completed. 

T h e o r e m  2.2. Let X = C  or X = L  1. For any l<-k<=r there exists a linear opera- 
tor Ar, k ( f )  mapping the class w k x  into the class NW~X such that 

sup Ilf - Ar, k(f)llx ~ sup {Kk.~'- NK, x~}. 
f E W k X  x > O  

P r o o f .  From Lemma 2.1 it follows that for every 1 <-k<r there exists a func- 
tion O,,k(t) such that 

f 4,~,k(t)dt = o, 114'~T~IILx <-- 1, 

and 

Let us set 

mJn IIDk--~,,k-- ~ll ~ max {KkXk-- NK, x"}. 
.g x > O  

Ar,~(f ,x)  = f f(k'(t)4,r,~(x--t)dt.  

It  is clear that Ar, k ( f )  is a linear operator and, moreover, i f fE w k x  then 

I[aA,~(f)llx ~ II~A,~l[L~ IIf(k)llx <= N. 



Upper bounds of functionals 2I 

On the other hand, for fC W k X  w e  have 

IIf--A,,k(f)tlx = f {Dk(X-- t ) - -~ , ,k (X-- t ) - -2} f (k ) ( t )d t  x<= 

<= rain ]]Dk - -  ~ , ,  k - -  ~[]L~ ]lftk)llx <= max { K k x  k - -  N K ,  x ' } .  
2 x > O  

From this our theorem follows. 

In the sequel we will need the following two assertions which give estimation 
for the approximation of a class by a class. 

T h e o r e m  2.3 (KoRNE~6UK [11]). I f  the modulus of continuity o)(t) is convex 
from below, then for all r = O, l, ... we have 

x 

sup inf IIf-q~llc ~ m a x / O ~ , ~ ( t ) { o ) ' ( t ) - N } d t ,  
fEWrH~ tpfzNWr+XC x > 0  ( 

where 

O~,,_a(u)du, 0 <= t <= x, 
O~,o(t) = ' and for r = 1,2 . .  O~,,(t) = 0 

t > x .  

T h e o r e m  2.4 (TuRovEc [29]). I f  the modulus of continuity o)(t) is convex .from 
below, then 

sup inf IIf-~ol[L ~ ~ ~max  o) ( t ) -N t }d t .  
fEH~q~ENW'C x>O X 

w 3. Inequalities for upper bounds of semi-norms 

Let q/(t) be a linear operator mapping the Banach space R into itself and let 
be an arbitrary class of elements of R. In the present section we will obtain a 

series of sharp inequalities between the quantities of the type 

(3.1) sup l i f -  ~(f)i lR. 
fs  

The question of sharpness of these inequalities will be considered later (in w 
and w 5). 

Let us introduce some notations which will be used in this section. Let T ( f )  
be an arbitrary semi-norm given on the space R, i.e., a functional such that 

7J(O) = O, q t ( f )  >= O, 'I'(A +A) ~ ~ ( f l ) + ~ ( f ~ ) ,  ~ ( , V )  = [,~17'(f). 
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Set 

(3.2) I~,~(R) = sup ~u(f)  ( v , m  = 0, 1 . . . .  ), 
W v f E  m R 

(3.3) I~(R) = sup ~ ( f )  (v = 0, 1 . . . .  ), 
fC W v R 

(3.4) lg(R) = sup ~u(f)  (v = 0, I , . . . ) .  
f E W  v H ~  

In  the au thor ' s  paper  [14] the following results are p r o v e d :  

T h e o r e m  3.1. For rn=0 ,  1 . . . . .  r = 2 ,  3,... and l<=k<r we have the inequality 

[ Kklo,,n(C) J = [ K ~ )  
where 

( 3 . 6 )  Kr = 4 (- l)V(,+l) 
zc v=0 ( 2 v +  1) "+1" 

T h e o r e m  3.2. For all m = 0 ,  1 . . . . .  r=2, 3 . . . .  and for all l<=k<r we have 
the fol!owing inequality 

(3.7) ~ lk,,,(L1 ) ll/k< ~ ~,_m(L1) ~l/r 
[ Kk lo, ,. (L1) J = [ K, lo, ,. (Lx) / " 

For  m = 0 ,  r = 2 ,  3, 4, 5 and l<=k<r inequality (3.5) was earlier obtained by 
~UK [30]. We will prove  some fur ther  inequalities o f  the type (3.5) or  (3.7). 

The following result is quite simple, however,  for  the sake o f  completeness 

we include it here. 

T h e o r e m  3.3. For all m = 0 ,  1 . . . . .  0 < k < r  we have the inequality 

( 3 . 8 )  I Iktm(z2)[1/k~" ~lr'm(Z2)[l/r 
[10, m ( L 2 ) J  - -  l / o ,  m (L2)J " 

P r o o f .  Let fEL~ k) and 

f ( t )  ~ w/~ (av cos vt + by sin vt) 
v = m  

be  the Four ier  expansion o f  this function. Let us set 

~p(f, t) = ~/~ Q~(av cos vt + b~ sin vt), 
v = m  

where the numbers  Q, = ev (h) are defined in the following way:  ev =hr k-" if h <=m "-k 
and 

1, m <= v ~ h ( '-k)-~, 

O~ = hv,_k, h ('-k)-~ < v < co, 
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if h > m  "-k. It is not hard to see that ~o(f, t) and q~(o(f, t )=~o( f ( , ) ,  t)EL2. Using 
the sub-additivity of the functional T ( f )  and the definition of the quantity l~,m (L~) 
we obtain: 

7 t ( f )  ~ lo, m(L2) IIf -- q~(f)l[L, + l~,m(Lz) II~ 0 (U(~))IIL~ 
o r  

= -- 0~) (a~ + b~) + (Qv v0 2 z 2 ~P(f) -< lo,~(L2) ~ (1 ~ 2 1,,,,(L2) ~ (a~+bO 

for every function f~L(~ k), f •  tin_ 1 . From this we get 

or  

(3.9) lk, m(L2) ~ lo, m(L2) m~--v<o omax [ ~ l q - l r ,  m(L~)m~_v<~max ,~vvr-k]. 

Since we have 

1--Qv <_-- max (1 h )  = r - k f k ]  ~/(~-k) 
max vk h I/c~-~ . . . .  -~ - -~  - - -7-  [--~ ) 

and 
max I~vhr-kl = h, 

I n ~ V - < :  r  

from (3.9) it follows easily that for any h > 0  the inequality 

holds true. Setting 

we obtain that 

r _ k  [ k ] k/('-k) 
l~, m (L~) ~ ~ to ,. (L~) + hl~ ~ ( L 9  

r I,-~J ' ' 

h = k l o ,  m(L2)(r-k)/rl,,,,(L2)k/r, 

lk, m(L~) ~ lo, m(L2)('-k)/" l,,.,(L2) k/', 

which is equivalent to (3.8). 

T h e o r e m  3.4. Let 7J( f )  vanish on the constant functions. Then for  l<p_-<oo 
( L ~ = C ) ,  r=2,  3, ... and l<=k<r we have the inequality 

,1 l,(Z,,,) }'~'<__{l,(LO }'~" 
(3.10) [ ' 1 0 ( ~ l l L p ,  K,/-'~1) ' 

where p ' = p / ( p - 1 )  /f  1 < p <  oo and p ' =  1 i f  p =  ~o. The function q~k(X) is determined 
by means o f  equation (1.4). 
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P r o o f .  Let f be an arbitrary function from the class WkLp (1 < p ~  co) and let 
q~ = 9 ( f )  be the function from the class Nwk+IL1  which approximates the function 
f t h e  best in the metric of L 1 . The sub-additivity of the functional 7 ~ ( f )  implies that 

~ ( f )  _<-- T ( f - - c p ) +  7t(q~) ~ lo(L1)IJf--cPJlLl+Nlk+a(L1). 

From this and from Theorem 2.1 it follows that 

T ( f )  <= lo(LO m a x  {[kl)kHLp,~ k --  N K k  + x ~k § 1} + Nlk + l (Ll) 

or 
lk ( L p) <= lo ( LO max { JkOk H Lp, ~ k -  NKk + x a k + l } + Nlk + a ( L O. 

Given an arbitrary %, we can find an No=N(~o) such that 

max  {H~OkliLp,~k_NoKk+lak+l} = ~ k+l IlCPklIL.,O~o-- NoKk + I ~O �9 
a~O 

Consequently, choosing % satisfy the equation 

K ,  + do (LO~o  + ~ = & + ~ (LO,  
that is 

I lk+l(L1) .11/(k + 1, 
% = [Kk+alo(L1)] ' 

we obtain that 
f I t r  ~ ]k/(k+l) 
| tk+lkZ-~l] | 

l k (Lp) ~ l o (L1) ~o k L p , / K ~ I ) '  ~ 

or 
(3.11) ~ lk(Lp) I l/k-<= ~ lk+l(Ll) /l[(k+l) 

/ IlqdlL.,lO(LO J - I ~ v ~ ) j  
Now, from Theorem 3.2 it follows that if T ( f )  is a semi-norm vanishing on 

the constant functions, then for 1 <=k<r we have 

[KJ-70~O J : [K, lo(LO J 
which together with (3.11) furnishes the proof  of our theorem. 

T h e o r e m  3.5. I f  the modulus o f  continuity o3(t) is convex f rom below and T ( t) 
vanishes on the constant functions, then for  all 0 <= k <  r we have the inequality 

2~ 
(3.12) I~(C)  <= lo(C) f o f ( t )Oz . .~ ( t )d t ,  

0 
where 

/. l,(C) }~', 
2, = ~ [ Ki lo(C ) 

the K, are the Favard constants and r are the functions defined in Theorem 2.3. 
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Proof .  Let fE wkH~ and denote by (p(~NWk+IC) the function which differs, 
in the metric of C, from the function f the least among all functions in the class 
Nwk+Ic. From the sub-additivity of the functional 7~(f) and from the definition o f  
the quantities l~ (C) it follows that 

(3.13) T ( f )  --<_ T ( f - - f p ) +  T(q~) ~ lo(C) Hf-fflllc+Nlk+l(C ). 

From this and from Theorem 2.3 it follows for  every funct ionf~ WkH~ (k=0,  1 . . . .  ) 
that 

f ){' } ~ ( f )  <= lo(C) max 69, k(t CO ( t ) - -N dt ~- Nlk+a(C). 9 
~ 0  0 

This implies that for k - 0 ,  1 . . . .  we have 

(3.14) I~(C) <= lo (C)max/O, ,k( t ){CO'( t ) - -N}dt+Nlk+l(C) .  
~r 0 

In [11] it is proved that for an arbitrary go~-O we can find No=N(~o) such that  

a ~o 
max f o,,r(t) {~o'(t)-No}dt = f o,o,,(t) {CO'(t)-No} at. 
a~O 0 0 

Setting ~o = 2,+1 in (3.14) we obtain that 

~'k+l 
(3.15) I~'(C) <= to (C) f  Oa~+~,k(t)dt + N(2k+X)Ik+l(C)-- 

0 

-N(2k+l) lo(C ) f+loZk+bk(t )dt. 
0 

As is proved in [1 1], 

0 

Using this equality in inequality (3.15) we obtain 

l~'(c) ~ lo(C) O~+~,~(t)CO'(t)dt. 
0 

If  ~ ( f )  vanishes on the constant functions, then by Theorem 1.1 we have for  
1 <-k~-r that 

(3 .16)  I lk (C)  ] l / k <  ~ I,(C) ~l/r 
[Kklo(C)J = IK, to(C)l " 

Consequently, for 1 <-k<r we have 

(3.17) 2 k <_- 2,. 
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On the other hand, it is clear that for O<=a~b, k=O, 1 . . . .  we have 

(3.18) 
a b 

f Oa, k(t)co'(t)dt f Ob,,(t)co'(t)dt. 
o 0 

Comparing inequalities (3.15), (3.17), and (3.18) we obtain the assertion of our 
theorem. 

For k--0  and r =  1 inequality (3.12) has the from 

(3.19) lg(C) <= 2 co ( ~ , l  " 

In particular, if q / , ( f )  is a linear operator mapping C into the set of trigonometric 
polynomials of order not greater than n - 1  and such that qf,(2)=2, then, setting 

~u(f) = I l f -  ~r 

in (3.10)~ and taking into account that in this case 

lo(C) = sup I l f - ~ , ( f ) l [ c  ~ 2, 
f E W ~  

we obtain the following assertion. 

C o n s e q u e n c e  3.1. I f  the modulus of continuity co(t) is convex from below, then 

sup Ilf-ql,(f)[[c <= o~( sup [t f-~,( f)[Ic) .  
fE H~ fEW 1 C 

T h e o r e m  3.6. l f  the modulus of continuity co(t) is convex from below and ~ ( f )  
vanishes on the constant functions, then 

2t 1 (C) 

7rlo (Li) ~ L1) 
09(0 dt. lg(C) <=  lo(LO 211(C) o 

Proof .  L e t f E H ~  and denote by ~o(f) (ENWIC) the function which approxi, 
mates, in the metric of L1, the function f the best among all functions belonging 
to the class NW~C. Then we have 

~ ( f )  _<-- ~ ( f - - q ~ ( f ) ) +  ~(q~(f)) <= /o(L1)[If--q~(f)llLl+Nla(C). 

From this and from Theorem 2.4 we obtain for all fE H~ ~ that 

~ ( f )  -< ~lo(L1) max co(t)dt- +NIL(C) 
~>-0 l ~ 0 
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OF 

l~'(C) <= zdo(L1)max co(t)dt-  + Nll(C). 
at>0 

If  the function co(t) is convex from below, then the function 

1 
col(0~) = -~ / co(t ) dt 

is also convex from below with respect to ~, consequently, for an arbitrary ~0 > 0 

we can find No = N(~0) such that 

{1/ 
max co(t)dt-  ~ = co(t)dt-  Nolo. 
at>0 

Setting 

2t1(C) 
~X 0 -- zlo(L1 ) , 

we obtain the statement of  our theorem. 

w 4. Application of the inequalities for upper 
bounds of semi-norms to some problems of approximation theory 

Let H,  be an arbitrary n-dimensional subspace of the space R and suppose 

that Hn contains the constant functions. Set 

EH.(f)R = inf [[f--gllR 
~p E H n 

and 
EH,(gX)R = sup En,( f )a  

f ~  

for any class of functions ~IJ/c R. Since 

En,(Wo~ = En,(W~ <= 1, 

then, substituting in Theorems 3.1--3.3 m = 0  and 

~ ( f )  = EHm(f)R (R = C, L1, or L2), 

we obtain the following results. 

C o n s e q u e n c e  4.l. For any subspace H, c X  and for l <-k<r we have the ine- 
quality 

(4.1) ~'EH"(WKX)xl 1/k< -- IEH"(W'X)x[ 1/" 
t Kk J - I  Z " I ' 

where X= C or X= L 1 . 
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C o n s e q u e n c e  4.2. For any subspace H, cL2 and for 0 < k < r  we have the 
inequality 

(4.2) En. (Wk L2)aL/~ k <= ErI. (W~ L~)IL/q 

Analogously, from Theorems 3.4--3.6 we obtain the following consequences. 

C o n s e q u e n c e  4.3. For any subspace H, EL, ( l<p<:~o) and for l<-k<r we 
have the inequality 

I II~OKIIL,, I - -  K r  " 

C o n s e q u e n c e  4.4. I f  the modulus of continuity 09(0 is convex from below and 
O<:k<r, then for all HnC C we have the inequality 

r 

(4.4) EH.(WkH~)c <: oY(t)Om,(t)dt , 
0 

where 

(4.6) 

where 

C o n s e q u e n c e  4.5. I f  the modulus of continuity (o(t) is convex from below, then 
for every subspace H. c L1 we have the inequality 

2n 

En.(H~)L, <= f w(tldt,  
0 

"~n = -~E,,.(WIC)L,. 

Let EH(f )R  be the best approximation o f f  from below in the metric of R 
by elements of H , ( ~  C) (cf., for example, [1], p. 384), i. e., 

/~H.(f)R = inf [If--~011R 
f E  Hn 
~o<=f 

and 
/~H. (~-ff/)R = sup En. ( f )R.  

fE~/  
Since 

and for v -  1, 2, ... 

E,H.(W~ <= sup f { f ( x ) - 2 } d x  
f E W o C  --~ 

P...(wovc)L, = P.,,.(wvc)L1, 

< 2~ 
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substituting, in Theorem 3.1, m = 0 and 

= g H . ( f ) L 1 ,  

we obtain the following result. 

C o n s e q u e n c e  4.6. For any subspace H,  c C  and f o r  l < - k < r  we have the ine- 

quality 

(4.7) JEH. (]/VkC)Ll~X/k< ~EHn (VI/'rC)LI [1/r 
l ~ l = [ 2nK,  I " 

If  H , =  T2m-1, the subspace of trigonometric polynomials of order not greater 
than m - 1 ,  then as follows from the papers [2], [5], [10], and [27], inequalities (4.1)-- 
(4.4) and (4.7) become equalities. 

In the sequel we will consider the problem of determining diameters of sets in 
Banach spaces and the problem of finding the best Subspaces for these sets. 

The n-dimensional diameter of the set 9Jl in the space R is, by definition, the 

quantity 

(4.8) d,(931, R) = inf En.(~.lgl)r, 
HncR 

where inf is taken over all subspaces H,  of dimension n. 
The n-dimensional subspace H,  is called a best subspace for the set 9X in the 

space R if 

(4.9) En.(~JJ~)R = d,(gJ/, R). 

The problem of diameters is due to Kolmogrov. It was he who obtained the 
first sharp results concerning the calculation of diameters. He proved [8], for example, 
that for r > 0  and n =  1, 2, ... we have 

1 
(4.10) d2, ( W" L2 , L2) = d2n - l ( Wr L2 , L~) -- n r 

TIHOMIROV ([27] and [28]) proved that 

(4.11) d 2 , ( W ' C , C )  = d 2 , _ I ( W ' C , C )  = K,  (n , r  --- 1,2, ...). -e- 

KORNEi~UK [10] proved that for any modulus of continuity o~(t) that is convex 
from below and for r = 0 ,  1 . . . . .  n - - l ,  2, ... we have  

nln 

(4.12) d2n_l(l'V'H , c) = f O~/, , , ( t)~o'( t)dt ,  
0 

where Oa,,(t) are the same functions as in Theorem 2.3. 
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RUBAN [19] proved that if the modulus of continuity ~o(t) is convex from below, 
then 

(4.13) 

and 

(4.14) 

d2n(WIH~ ', C) = d2n_l(W'Hg, C) 

n/n 
d2n_l(W1Hg, L1) = 4n f O~/n,~(t)of (t)dt. 

0 

MAKAVOZ ([16] and [17]) found that 

4Kr+l ( n , r =  1 ,2 , . . . )  ( 4 . 1 5 )  d2n-l(WrC' t j )  : n" 

and 

(4.16) d2n(W1C, L1) = d2n-l(W1C, La) (n = 1, 2 . . . .  ). 

SUBBOTIN [24] proved that 

(4.17) d2n_~(WrL~ ' LO = K ,  (n, r = 1, 2 . . . .  ). /,/r 

We recalled here only those results on the precise calculation of  diameters 
which will be necessary in the sequel. 

T h e o r e m  4.1. For n, r = l ,  2 . . . .  we have 

(4.18) d2n ( W" L1, Za) = d~n _ ~ ( Wr La , La ) = K ,  / ,~r  " 

P r o o f .  From the obvious inequality 

d2n(Wr L1, gx) -<- d2n-l(Wr Lx, LO 

and from relation (4.17) it follows that it is enough to prove the inequality 

(4.19) d2n (W" La, gl) > Kr 
n r 

From Consequence 4.3 for k =  1 and p =  co we obtain that 

dsn (Wl C, L1) 
4/(2 

n 1 ,L  

for all n, r = l ,  2 . . . . .  Comparing this with equality (4.16), we obtain (4.19) and thus 
the assertion of the theorem. 

From equality (4.11) and Consequence 4.1 we can infer the following 
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C o n s e q u e n c e  4.7. For l<-k<r in the space C every n-dimensional subspace, 
extremal for the class W" C is extremal for the class wk c, as well. 

From Consequences 4.1 and 4.2 and from equalities (4.18) and (4.10) we obtain 
the following results. 

C o n s e q u e n c e  4.8. For l<-k<r in the space 1_ a every n-dimensional subspace, 
extremal for the class W'L 1 is extremal also for the class WkL1. 

C o n s e q u e n c e  4.9. For 0 < k < r  in the space L~ every n-dimensional subspace, 
extremal for the class W'Lz is extremal also for the class wkL~. 

From Consequence 4.3 for p = ~ and from equalities (4.15) and (4.17) we obtain 
the following result. 

C o n s e q u e n c e  4.10. For l<-k<r in the space L 1 every 2n-l-dimensional sub- 
space, extremal for the class WrL1 is extremal for the class Wk C, as well. 

From Consequence 4.3 for p = ~ and k = 1, and from equalities (4.16) and (4.18) 
we can infer the following assertion. 

C o n s e q u e n c e  4.11. For r>-I in the space L 1 any n-dimensional subspace, 
extremal for the class WrLx is extremal also for the class WIc. 

From Consequences 4.4 and 4.5, and from equalities (4.12)--(4.14) we obtain: 

C o n s e q u e n c e  4.12. Suppose that the modulus of continuity to(t) is convex from 
below. Then for O<=k<r in the space C every n-dimensional subspace, extremal for 
the class WrC is extremal also for the class WkH~. 

For n=2m--1 and r = k +  I this assertion was obtained by KORNEI6tJK [12]. 

C o n s e q u e n c e  4.13. Suppose that the modulus of continuity to(t) is convex from 
below. Then for r~_k in the space L 1 every (2n--1)-dimensional subspace, extremal 
for the class W 'C  is extremal for the class H~, as well. 

The quantity 

d. (~1/, R)  = inf /~a.(~lg/)R 
HnER 

is called the one-sided (lower) diameter of the class ~ in the space R. Then from 
Consequence 4.6 it follows that if I <=k<r, then 

(4.20) y. Iz<w" c, 
/ 2 K,, J - f  J 
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C o n s e q u e n c e  4.14. Suppose that gE wk+tL1 ( r = 0 ,  1 . . . .  ) and the modulus of  
continuity co(t) is convex from below. Then we have 

7~ 

j k  (9 Ck, k f f( s u p  t )g ' ( t )d t  ~ co (t) (t)dt, 
f E W k  H ~  - -  ~ 0 

where the functions O a, r are defined according to Theorem 2.2 and 

~k = 7r{gf+1111gllJ 1/(k+1). 

P r o o f .  Let  gE wk+IL1 �9 Let us substi tute in Theorem 3.4 

7r 

~P(f) = f f(t)g(k+l)(t)dt 

a n d  r = k +  1. Taking into account  tha t  in this case 

r 

lo(C) = sup ff(t)g(k+l)(t)dt = I lg<~+l) l l ,~  ~ 1, 
[ I f l l  c ~ - 1  - - n  

lk+x(C ) sup ! f( t)g(k+l)(t)dt  <= sup f = f(t)g(t)dt = IlgllL1,  
f E W  k + l C _ I l f l lc~--I  _ ~  

a n d  

I~' (C) = sup f f ( t ) g ' ( t ) d t ,  
fEw ~ H~ -- 

we obtain the desired estimation. 
Analogously,  f rom Theorem 2.6 we obtain  the following assertion. 

C o n s e q u e n c e  4.15. I f  gE W1C and the modulus of continuity co(t) is convex 
from below, then we have 

7~ 2 ( 2 I n )  II g [I L 1  

sup f f ( t ) g ' ( t ) d t  ~ - -  f co(t) dt. 
fcu~- ,~  2[[gl[Lx o 

w 5. Sharp estimates of the best approximation by splines 
on the classes of periodic functions 

Let  the system o f  nodes Xk=kn/n ( k = 0 ,  1, 2 ,  .... 2n) be given. The 2n-periodic 
funct ion s2..~ (/~=0, 1, 2, . . . ;  n = l ,  2, . . . ) i s  called a splinefunction of  order # and  
o f  defect 1 (or simply a spline), if  on each subinterval  (Xv_l, x,)  ( v =  1, 2 . . . . .  2n) it 
is an algebraic polynomial  o f  order not  greater  than # and for  p = 1, 2 . . . .  we have  

s~,, , E C (~-1) . 
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The spline S~n,,(x) will be said to be interpolating for the function f ,  and then 
denoted by S2n,,(f, x) if we have 

s=,,,(f, xv) = f(xv) (# = 1, 3, 5, . . .  ; v = 1, 2, ..., 2n) 
and 

I 1 I I  ) S~,,, f ,  ~- (xv + x v+l) = f ~- (x, + X,+l) (/2 = 0, 2, 4 , . . .  ; v = 1, 2, ..., 2n). 

For any # and n there is a unique interpolating spline (cf. [3] and [24]). 
Let us denote by $2.,, the set of functions s2,, ~ for fixed n and/~. The set S2n, 

is a 2n-dimensional subspace of the space W'C. 

TIHOMmOV [28] proved that for r = 1, 2, ... we have 

(5.1) sup [I f -s2. , , - l ( f ) l lc  = Es,. ,_I(W'C)c = K ,  
f ~  W "  C ' n r  " 

From this and from Consequences 4.5 and 4.12, and from equalities (4.12), (4.13) 
we obtain the following assertions. 

T h e o r e m  5.1. For r>=k-I  (k, n = l ,  2, ...) we have the equalities 

(5.2) 
Kk 

Es , . , , (W~C)c  = n--- r .  

T h e o r e m  5.2. Suppose that the modulus of  continuity og(t) is convex from 
below. Then for r>-k, k = 0 ,  1 . . . .  and n= 1, 2, ... we have the equality 

(5.3) Es,., ,(WkHg)c = f O,/ , ,k(t)w'(t)dt ,  
o 

where O.,,(t) are the functions defined in Theorem 2.3. 

For r = k  this result was obtained by KORNEi~UK [12]. 
The following theorem shows that there exists a linear method of approxima- 

tion by splines of order r that gives the same error on the class w k c  (r>k--1  >0)  
as the best approximation by splines of order k -  1 (and, consequently, of  order #, 
t~ =>k-  1). 

T h e o r e m  5.3. For r > k - 1  >0 there exists a linear operator s2.,, ,k(f) mapping 
C into the subspace $2,., and such that 

K~ 
(5.4) sup Ilf-s~,,, ,k(f)[Ic = n--i-. 

f E W  k C 

3 Analysis Mathematica 
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Proof .  Let the spline s2 . . . .  k ( f )  of order r interpolate the function Ar, k ( f )  

occurring in Theorem 2.2, i.e., let 

S2,,,,k(f, t) = S2,,,(A,.k(f), t). 

From Theorem 2.2 and equality (5.1) it follows that 

(5.5) Ilf--s2n, r,k(f)[]c <= Ilf--A,,k(f)llc+ IlA,,k(f)--S2,,,(A~,k(f))[Ic <- 

max {KkX k -  NK, x'} +-~, []A(,;~k(f)l[ c <= max {Kk xk -- Nrrx'} + N__nK--~-'~ . 
X > 0  x > O  

For any x0>0 we can choose No:N(xo)  so that 

max {Kkx k -- NoK, x ~} = K k ~ -  NoK,~ o. 
x > O  

Putting x 0 = n - "  in (5.5) we obtain for fE w k c  that 

[If-s2n,,,e(f)l[c ~ ge n k �9 
The rest follows from Theorem 5.1. 

As follows from the results of NIKOLSKfi ([18], equality (2.9)), we have 

ESgn, r( f)L1 = [Igl'c <=lsup _ f f ( t ) g ( t ) d t "  
g-L S2n, r 

Since the subspace $2.,, contains the constant functions, we have 

f g(t)dt = O. 

Consequently, fo r f~  W r + I L 1  w e  obtain that 

ES,,,.(f)Lx---- sup f f ( ' ) ( t )g(t)dt  
oEWrC _~ 
glS2n, 0 

Es2.,r(f)L1 = sup f f( '+l)(t)g(t)dt.  
gEWr+lc 

g(xv)=O (v=l, 2,...,2n) --~ 

o r  

From this it follows that 

sup Es,,,, r(f)L1 = 
f6  W r + 1Lp, 

~t 

sup sup f ft*+l)(t)g(t)dt ~= 
f E w r + I L p "  g E W r + I C  --~t 

g ( x v )  = 0 (v = 1, 2 . . . . .  2n) 

<---- sup II g [[Lp, 
gEWr+XC 

g(xD=o (v=l, 2 ..... 2n) 
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where p ' = l  i f p = ~  ( L ~ = C ) ,  p ' = ~  i f p = l ,  and p ' = p / ( p - 1 ) i f  l < p < ~ .  Con- 
sequently, we have 

(5.6) Es2,,,(W'+ILp,)LI <- sup IlgllLp. 
g ~Wr+Ic  

g(xv)=O ( v = l ,  2 ,..., 2n) 

L e m m a  5.1. I f  gEC ~'+1), Ilg(r+a)]lc<l, and g(xv)=O ( v = l ,  2 .... ), then the 
difference 

Al(x) = g ( x ) - n - r % [ n [  x -  l +(-1)'+14n 7r)) 

and the difference 

gl2(x) = g(x)+n-rq~,[n[x - 1 + ( - 1 ) ' + 1  
4n roll 

change signs at the points Xk (k=  1, 2 . . . . .  2n) and only at these points. 

I t i s  clear that A~r)(x) and A(z')(x) have at most 2n zeros. Consequently, by 
Rolle's theorem Al(x) and As(x) have at most 2n zeros. Taking into account that 
Ax(xv)=Az(x~) = 0  (v= l, 2 . . . . .  2n) we obtain the assertion of  the lemma. 

From relation (5.1) it follows that if IIg<'+l)llc<_- 1 and g ( x 0 = 0  (v=  1, 2 . . . . .  2n), 
then 

g r +  l 
Ilgllc = [Ig- s2,,,(g)llc <= r~+----'5-. 

From this and from Lemma 5.1 it follows that if Ilg(r+l)l[C < 1 and g(xv)=0 (v=  1, 
2, ..., 2n), then 

]g(x)l<n-" q)r[ [ =  n X l+(--1)r+X4n re]} 

for all x, -n~x<- rc .  Hence for all gEwr+IC such that g(xv)=0 ( v = l ,  2 . . . . .  2n) 
the following inequality holds: 

Ig(x)l ~- n-rlq%[n[x- l +(- l ) '+l  }} 4n rc (--rc =< x <= n). 

From this we obtain 

L e m m a  5.2. 
the inequality 

For all gE W r+lC such that g(xv)=O (v= 1, 2 . . . .  ,2n) we have 

IIgIILo <= n -('+l) ll~o,+lllLp (1 <= p <= ~).  

From the last formula and from equality (5.6) we get 

(5.7) E "W'+IL ~ < ]lcPr+l][L . S2n, r I, p',lL1 : n - ( r + l )  

3* 
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In particular, 

E cW,+IL ~ < K~+I 
S2n, r ~, l f l L l  ---  i l r + l  " 

From this and from Theorem 4.1 and Consequence 4.1 we obtain the desired result. 

T h e o r e m  5.4. For r>=k-1 (k, 1l=1, 2, ...) we have the equality 

T h e o r e m  5.5. For r>=k-1 (k, n = l ,  2 . . . .  ) and l < : p ~  we have the equaBty 

-~, i l k  

Pro  of. The estimation, from above, of the quantity Es,,, ,(WkLv,)z~ follows from 
inequality (5.7) and from Consequence 4.3. The estimation from below can be 
obtained exactly the same way as that in [27]. 

T h e o r e m  5,6. I f  the modulus of continuity co(t) is convex from below and r>:O, 
then we have the equalities 

n/n 

o 

Proof .  From Theorem 5.5 for k = l  and p = ~  and from Consequence 4.5 
we obtain that 

n/n 

Es .,r(He), l <=, f co(t)dt. 
o 

On the other hand, let f .  (x) be the function with period 2r~/n that is equal to, 
(2n) rc = x  =n  re, and < - ~  - - 1  2--1co((2n)--lT"I.r--2X) for -1 < < -1 2-1co(2X) for 0=x=(2n)  rc and to 

set 

f,,,r(x) = fn[x-t l +(--1)" I 4n re .  

Then we have 

Es,.,r(U.,r)LI = IIf.llL  = " f co(t)dr. 
0 

It is well-known that i f f~  C (~), then for r=0 ,  1 . . . .  we have 

(5.1o) Es~,r(f)c<= ~-C~ co (f (o ,  n-crC}' 

where the quantities C, depend only on r. 
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The following result shows that the smallest possible constant in inequality 
(5.10) equals 2-1K, (r--0, 1, ...). 

T h e o r e m  5.7. For all r=0 ,  1 . . . .  and n= 1, 2, ... we have the equaBties 

Es,. . ( f ) c  K, 
S U  "" = (5.11  2e" 

f e  cons t  [ //JC 

The proof of  this assertion follows arguments due to KORNEi6UK [10]. 
P r o o f. The function ~o (x) will be called simple, if k o (x) I > 0 for ~ < x < fl, q~ (x) = 0 

for x<=u and x ~ 8 ;  and for any y, 0 < y < m a x  ko(x)[, the equation ko(x)l=y has 
x 

exactly two solutions. Let ~o (x) be a simple function with intervals of monotonicity 
t < =  t (~, ~') and (8, 8'), ~<~ = 8  <8.  Let us define the function e(x) by the equality 

( w )  ' 8 q ~ ( x ) = q ~  , ~ <= x ~ ~,  = e(x) ~ 8. (5.12) 

Then 

f f ( x )  ~o" (x) dx = j" f ( x )  ~o'(x) dx + f f ( x )  q)" (x) dx = 
o ~ #" 

ot I od 

= f f(x) q,'(~) & -  f f(Q(x))~o'(e(x))o'(x) &.  

From (5.12) it follows that 

Consequently, 
~o" (o(x))~" (x) = ~o' (x). 

2~ ~t 

(5.13) f f ( x ) q / ( x ) d x  = f { f ( x ) - f ( o ( x ) ) } q / ( x ) d x  <= 
0 

~ 1 2rC 

0 

In [10] it is proved that any function gEL~ 1) can be represented as a sum of 
simple functions q~k (x), moreover, if (~, fl) is the longest segment, where the function 
g(x) does not change sign, then max (flk--~k)~fl--Ct. Furthermore, 

Z Iko~llL1 = IIg'llL," 
k 

Taking this into account, from inequality (5.13) we obtain that for any function 
g E L~ 1) 

(5.14) f f ( x )g ' ( x )dx -<  1 , = ~-og(f, 8 -~ )c l lg  ILL1, 
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where f l - ~  is the length of the longest segment on which the function g(x) does 
not change sign. 

Let gEW'+IL1 and g(x~)=0 ( v = l , 2  . . . . .  2 n ; r = 0 ,  1 . . . .  ). Then the length 
of the longest segment on which the function g(x) does not change sign does not 
exceed ~/n. Consequently, for fE C we have 

t)g'(t)dt ~ -fo9 f, -~ 
- -  7 r  

From this and from the equalities 

Es~.,,(f)c= sup f f(t)g(Odt= 
I Ig I [LI~I  - - ~  
g • S2n, r 

= sup f f (o ( t )g ' ( t )  dt, 
flcwr+IL1 --~Z 

O (xv)=O (v =1,  2 . . . . .  2n) 

which follow from equality (2.9) in [18] we obtain that 

(5.15) 1 I f  re} sup 

O(Xv)=O (v=1 ,2 ,  ...,2n) 

IIg'llL~. 

On the other hand, from the same equality (2.9) of [18] it follows that 

2~  

sup E s .... (f)c = sup sup f f(~+l)(t)g(t)dt = 
fEwr+Ic  f c w r + I c  ffCWr+IL1 0 

g (xv)=O ( v = l ,  2, . . . ,2n) 

= sup min I[g(x),  2[ILx. 
gEwr+ILx A 

g(xv)=O ( v = l ,  2, ..., 2n) 

From this and from (5.1) it follows that if gEWr+lLl,g(xv)=O ( v = l ,  2 . . . . .  2n), 
then 

Kr+l 
min Ilg(x)- 2ILL1 ~ nr+l �9 

2 

From this and from Stein's inequality (1.2) we can derive that if gE W"+IL1, 
g(xv)=0 (v= 1, 2, ..., 2n), then 

I[g'llL1 <- Kr ?/r 

From this and from inequality (5.15) it follows that forfE C r176 we have 

- ~ ( D  C ~ 
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To make the proof  complete it remains to notice that on account of  Theorem 

5.1 f o r f ~ c  (~ we have 

E~.,~(f)~ 
sup 

fr CO f ( ' ) ,  n c 

K, 
= -~- sup  Ess, ~ ( f ) c  = -2n"'" 

.~z f~W~C 

1 E s ~ , ~ ( f ) c  
< -  sup 
= 2 z~c~' Ilf~~ 

f~const 

Thus Theorem 5.7 is completely proved. 
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