
BIT 32 (1992), 413-429.

I N F E R R I N G N U L L J O I N D E P E N D E N C I E S I N

R E L A T I O N A L D A T A B A S E S

MARK LEVENE and GEORGE LOIZOU

Department of Computer Science, Department of Computer Science,
University College London, Birkbeck College,
Gower Street, London, Malet Street, London,
WCIE 6BT, U.K. WCIE 7HX, U.K.

Abstract.

The inference problem for data dependencies in relational databases is the problem of deciding whether
a set of data dependencies logically implies another data dependency. For join dependencies (JDs), the
inference problem has been extensively studied by utilising the well-known chase procedure. We
generalise JDs to null join dependencies (NJDs) that hold in relations which may contain null values. In
our model for incomplete information we allow only a single unmarked null value denoted by null. This
allows us to solve the inference problem for NJDs by extending the chase procedure to the or-chase
procedure. In order to define the or-chase procedure we generalise relations with nulls to or-relations
which contain a limited form of disjunctive information. The main result of the paper shows that the
inference problem for NJDs, including embedded NJDs (which are a special case of NJDs), is decidable;
this is realised via the or-chase procedure.

CR Classification: H.2.1.

Key words: null values, null-relations, or-relations, null join dependencies, or-chase procedure.

1. Introduction.

We address the problem of making inferences by using integrity constraints that
must be enforced in a database. Herein we assume a relational database, which may
be incomplete, and deal with a subclass of integrity constraints called data depend-
encies [3, 6, 21]. Our model for incomplete information contains a single unmarked
null value, null. This model of unmarked nulls is a special case of the more general
model of incomplete information based on multiple marked nulls [-9, 10], wherein
null values are marked with a distinguishing index and are allowed to be equal if
their indexes are aqual. We generalise the class of join dependencies (JDs) [2, 19] so as

Received July 1990. Revised March 1992.

414 MARK LEVENE AND GEORGE LOIZOU

to hold in relations which may contain null; such relations are called null-relations
and the JDs that hold therein are called null join dependencies (NJDs).

The inference problem for data dependencies is the problem of deciding whether
a set of data dependencies logically implies another data dependency. An inference
procedure for a class of data dependencies is said to be sound if all the inferences made
by this procedure are always true, and is said to be complete if all possible inferences
that are true are made by this procedure. Although no sound and complete set of
inference rules has been shown for JDs, an inference procedure, called the chase
procedure [1, 3, 6, 16, 20], has been shown to be sound for JDs and complete for full
JDs, i.e. JDs whose context is the universal set of attributes, U. On the other hand,
the chase procedure is not complete for embedded JDs, i.e. JDs whose context is
a proper subset W c U, since, in general, their inference problem is known to be only
partially decidable [3, 6, 17]. We extend the chase procedure to the or-chase pro-
cedure in order to solve the inference problem for NJDs. Before doing so, we
generalise null-relations to or-relations, which allow a limited form of disjunctive
information [7, 10, 15]. The or-chase procedure is then defined in order to make
inferences from an or-relation with respect to a set of NJDs. The main result of the
paper shows that the or-chase procedure is a sound and complete inference pro-
cedure for NJDs. Thus, in our formalism the inference problem for embedded NJDs
(as well as full NJDs) is decidable. Our stronger result is due to the use of a single
unmarked null (ef. [1, 20]) as opposed to the use of multiple marked nulls as was
done in previous formalisms for embedded data dependencies [3, 6, 16, 19]. The
or-chase procedure can also be utilised for testing the satisfaction of a set of NJDs in
a null-relation. Finally, our formalism is more general than the one presented in
[11], since we make no assumptions about the aeyclicity or cyclicity of the database

scheme.
The rest of the paper is organised as follows. In Section 2 we define our underlying

model for incomplete information. In Section 3 we introduce NJDs and present their
inference problem. In Section 4 we solve the inference problem for NJDs by defining
the or-chase procedure which is applied to or-relations with respect to a set of NJDs.
In Section 5 we give our concluding remarks.

2. The single unmarked null model for incomplete information.

In this section we introduce our model for incomplete information by including
a single unmarked null value, null, in attribute domains, leading to the definition of
null-relations. We then define a partial ordering on tuples in null-relations and
generalise it to the Hoare powerdomain ordering [18] on null-relations. This allows
us to formalise the notion of the relative information content of tuptes and null-
relations. In our semantics of null values we define the inequality rule for nulls which
states that null :/= null. Finally, we introduce a more general class of relations, termed
or-relations, which allow a limited form of disjunctive information. The motivation

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 4 1 5

for defining or-relations is to obtain a compact representation of a set of nuU-
relations. This is utitised in Section 4 in order to solve the inference problem for

NJDs.
Let D be a countable flat domain comprising atomic values (also referred to as

total values) and a bo t tom element 2_. We define a partial order < on D as follows:
Vvi, vj ~ D, v~ < v~ if and only if v~ = vj or vi = l [18].

We interpret the bot tom element as being the unmarked null value, null, in the

sense that null (2_) contains less information than any other value in D. Thus, in our
formalism we consider only one null value, null, which will be a member of all the
available domains. We observe that our formalism can accommodate the inclusion
of several particular unmarked null types in attribute domains, such as" value
unknown [4, 91, value does not exist [4, 121, and no information [221. This could be
done by considering a semi-lattice domain of null values [181.

Let U = { A l , A 2 , Ap) be the universal set of attributes. We associate with
each attribute At of the universe U a countable flat domain consisting of atomic

values together with null. Each such domain is denoted by DOM(Ai). For simplicity
we assume that the domains DOM(Ai) - (null) are pairwise disjoint.

A relation scheme R is a subset of U. We extend an atomic domain DOM(A), where
A E U, to a domain over a relation scheme R _c U, where R = {A1, A 2 , . . . , An) ,

n _< p, as follows:

DOM(R) = (null) + (DOM(A1) x DOM(A2) x . . . x DOM(An))

where + is the disjoint union operator and x is the Cartesian product operator.
We define a null-relation, r, over a relation scheme R ~_ U, to be an element of

P(DOM(R)), where P is the finite powerset operator. A tuple over R is now defined
to be an element of a null-relation over R. If r = {null) then we consider r to be
undefined.

EXAMPLE 2.1. Let R = (STUDENT, DEPT, MAJOR, CLASS, EXAM, PRO-

JECT} = U be a relation scheme with the following semantics: a S T U D E N T is
enrolled in a department D E P T and MAJORs in a subject within the department. In
addition, a S T U D E N T attends several CLASSes, each CLASS having several
EXAMs during the academic year and one or more PROJECTs. In Figure 2. t we
show a null-relation, r, over R. We note that we do not attach any specific meaning
to null appearing in r. Thus, null for PROJECT, in the fifth tuple, could mean that
there does not exist a P R O J E C T for this null S T U D E N T in the programming

CLASS, or it could mean that this null S T U D E N T ' s P R O J E C T for this CLASS is
unknown.

Let r be a null-relation over R. We define projection of a tuple t ~ r onto Y _ R,
denoted by t[Y], to be the restriction of t to Y. We also refer to t[Y] as the Y-value of
t. We extend the definition of projection to r as follows: r[Y] = {t[Y] [t ~ r}.

416 MARK LEVENE AND GEORGE LOIZOU

STUDENT DEPT MAJOR CLASS

Iris
Iris
Iris
Iris
null

David
David
David
David

null
null

CS
CS
CS
CS
CS

philosophy
null
null

philosophy
philosophy
philosophy

computing
computing
computing
computing
computing

logic
null
null

logic
null
null

databases
databases
databases
databases

programming
first-order

null
first-order

null
null

first-order

EXAM

mid
null
mid
null
final
mid
final
mid
final
final
null

PROJECT

1NF
NF2
NF2
1NF
null

prolog
parlog
prolog
parlog

null
functions

Fig. 2.1. The null-relation r.

DEFINITION 2.1. We say that a tuple t~r is Y-total, if Y ~_ R and ¥A ~ Y, t[A] is
a total value, i.e. t[A] ~(DOM(A) - {null}). We extend the definition of Y-total to
r as follows: r is Y-total if Vt ~ r, t is Y-total. We call an R-total null-relation over
R a total-relation (or simply a relation).

EXAMPLE 2.2. For the null-relation r shown in Figure 2.1, the first tuple is R-total
and the fifth tuple is {DEPT, MAJOR, CLASS, EXAM}-total.

We define a database scheme over W _ U as a set R = {R1, R2 Rm} such that
uS= 1 {Ri} = W. In the context of this paper we view a null-database as being induced
by a null-relation, r, over U. In particular, a null-database, d, over a database scheme
R, over W ~ U, is defined by d = {r[Ri] I RieR}.

EXAMPLE 2.3. Let R = {{STUDENT, DEPT, MAJOR}, {STUDENT, CLASS,
EXAM}, {STUDENT, CLASS, PROJECT}} be a database scheme over R of
Example 2.1. Then we can view the null-relation r shown in Figure 2.1 as inducing
the null-database d = {r [{STUDENT, DEPT, MAJOR}], r[{STUDENT, CLASS,
EXAM}], r[{STUDENT, CLASS, PROJECT}]}.

Next we extend the definition of the partial order _< to tuples and then define the
Hoare powerdomain ordering [18], denoted by U-, on null-relations over R ~_ U.

DEFINITION 2.2. Let R _ U be a relation scheme, then
(1) for any tuple t over R, null < t and t < t.
(2) for any two tuples tl and t2 over R, tl <_ t2 if and only ifVA ~R, t~[A] <_ t2[A].

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 417

I f t I _< t 2 then we say that tl is less informative than t 2 (or equivalently that t 2 is
more informative than tl). A null-relation rl over R is less informative than a null-
relation r2 over R (or equivalently r2 is more informative than r0, denoted by r~ E r: ,
if and only if Vtl e r~ 3 t2 e r2 such that tl <_ t2.

We say that a tuple tl over R is information-wise equivalent to a tuple t2 over R,
denoted by t~ - t2, if and only if t~ ___ t2 and t2 ___ t~. Correspondingly, we say that
a null-relation r~ over R is information-wise equivalent to a null-relation r2 over R,
also denoted by r~ ~- r2, if and only if r~ E r2 and r2 ~ r~.

EXAMPLE 2.4. Let tl, t2, t3, t4 be the first four tuples in the null-relation, r, shown
in Figure 2.1. Then, t2 < ta and t4 < t~. It therefore follows that (r - {t2, t4}) E r
and r ~ (r - - {t2, t4}). Thus, r ~ (r - {t2, t4}) holds.

For the rest of the paper we do not distinguish between members in each of the
equivalence classes of ~. with respect to null-relations. The justification for this
approach is that we consider the information content of all null-relations in an
equivalence class to be the same.

Next we define the inequality rule for nulls and justify our definition.

D~a'NITION 2.3. Two values vl and v2 are equal, i.e. vl = v2, if and only if both vl
and v2 are total values.

The above choice of the inequality rule for nulls can be justified as follows: when
two null values appearing in a null-relation are updated they may be replaced by two
distinct non-null values. We note that due to the inequality rule for nulls our model
of a single unmarked null is a special case of the more general model of incomplete
information based on multiple marked nulls [9, 10]. In the latter model two null
values are considered to be equal if their distinguishing indexes are equal.

We next introduce a more general class of relations, called or-relations, which
allow a limited form of disjunctive information. Informally, an or-relation over
R ~ U contains tuples t such that for some A ~ R, t[A] ~- v~ v null, v~ being a total
value; such an A-value is termed an A-or value. Our motivation for introducing A-or
values is rather different from that in [7, 10,15], wherein an A-value is extended to
a set of possible total values, one of which is the "true" value. A-or values in
or-relations will allow us to equate two A-or values by promotin# them to equal total
values, thus overcoming the limitation of the inequality rule for nulls (see Section 4).

DEFINITION 2.4. We define an A-or value to be a disjunction of the form, vi v null,
where vl ~ (DOM(A) - {null}). We now let DOM(A) be extended to include A-or
values, VA ~ R. Thus, an or-relation r, over a relation scheme R _ U, is defined to be
an element of P(DOM(R)).

418 MARK LEVENE AND GEORGE LOIZOU

STUDENT DEPT MAJOR CLASS

David philosophy logic first-order
Raymond v null philosophy math v null higher-order v null
Raymond v null philosophy math v null first-order

Fig. 2.2. The or-relation r'.

EXAM PROJECT

mid prolog
final null
null functions

EXAMPLE 2.5. Let R be the relation scheme given in Example 2.1. An or-relation r'
over R is shown in Figure 2.2. We observe that the CLASS-or value, higher-
order v null (for example), induces two sets of null-relations, one in which CLASS is
higher-order and the other in which CLASS is null. That is, we view the presence of
higher-order v null in r' as a compact representation of the information present in

the induced null-relations.

We extend the inequality rule for nulls to include or-values, i.e. two values Vl and
v2 (which may be or-values, null values or total values) are equal if and only if both v 1
and v2 are total values. We also extend E to or-relations, where an A-total value, vl,
is taken to be less informative than an A-or value, vi v null, i.e. null <_ v~ <_ vi v null
(and vl v null <_ vi v null). The reason we choose vi <_ vi v null is that we view v as
union and < as set containment. This interpretation of or-values conforms to the
Hoare powerdomain ordering. Thus, an A-or value v~ v null appearing in an
or-relation, r, contains the information that such a value in r represents two sets of
null-relations, one which contains v~ and the other which contains null (see Example
2.5). It follows that if r contains n distinct or-values, then r is a compact representa-

tion of 2" induced null-relations.
We conclude this section with a straightforward proposition, which establishes

the connection between the three classes of relations: relations, null-relations and

or-relations.

PROPOSITION 2.1. Let REL(R) be the set of all (total) relations over R ~ U,
N U L L - R E L (R) be the set of all null-relations over R and O R - R E L (R) be the set of

all or-relations over R. Then

R E L (R) c N U L L - R E L (R) ~ OR-REL(R) .

3. Null join dependencies and their satisfaction.

In this section, we generalise JDs that hold in (total) relations to null join
dependencies (NJDs) that hold in null-relations. As a special case of an NJD we have
the null muItivalued dependency (NMVD) [11,14] when the cardinality of the
decomposition is two. We then give the definition of the inference problem for NJDs

INFERRING NULL JOIN DEPENDENCIES iN RELATIONAL DATABASES 419

and formally define when an inference procedure for solving the inference problem
for NJDs is sound and when it is complete.

Herein we employ the following useful notation for database schemes found in
[2]. Let R and Sbe two database schemes over W ~ U. We say that Scorers R, if for
every relation scheme, Ri ~ R, there exists a relation scheme, Sj e S, such that Rt ~ Sj.
The set of all database schemes that cover R is denoted by COVER(R). In addition,
let Q = {Q1, Q2 Qk} be a database scheme such that Q _~ R. We say that Q is
a connected subset of R if and only if there exists a permutation, say a, of Q such that
~(Q~) n ~(Q~+I) ~ ~ , 1 < i < k.

The database scheme, S, is a covering subset of the database scheme, R, if each
relation scheme, St E S, is a set of attributes over a connected subset, say S~, of R and
such that R = u~ S~. We denote the set of all covering subset database schemes of R by
SUBSET(R). We note that i f S e SUBSET(R), then S t COVER(R), but the converse
is, in general, false.

Let MANY(R) denote the set of attributes that appear in at least two relation
schemes in a database scheme R and let IRI denote the cardinality of R.

In the following two definitions we refer to the database schemes, R =

{R1, R2 , . . , ,Rm} and S = { S l , S 2 ,an} over W~_ U, with n < m , and let
MANY(S) = X.

DEFINITION 3.1. Let r be a null-relation over U. We say that n not necessarily
distinct tuplcs, tl, t2 t, ~ r, arejoinable on S with the resulting tuple, t, over U, if
the following conditions are true:

(1) t[S~ c~ X] = h[S~ c~ X], 1 <_ i < n, i.e. t [X] is X-total;
(2) t [Si - X] ~ t~[S~ - X], 1 < i _< n; and
(3) t[U - W] ~- null.

We now define the satisfaction of the NJD, ~ [R], over W _ U, in a null-relation
r over U.

DEF~ITION 3.2. The NJD, ~ [R], holds in r if and only if whenever 3n not
necessarily distinct tuples, tl, t2 t, ~r, that are joinable on a covering subset,
S e SUBSET(R), with the resulting tuple, t, over U, then 3 t' ~ r such that t < t' holds.

The NJD, t>~ JR], is said to be a trivial NJD if m = 1, otherwise it is said to be
a non-trivial NJD. An NJD, t>~ [R], over W ___ U, is a full NJD if W = U and is an
embedded NJD if W ~ U.

It can easily be seen that the NMVD is a special case of the NJD, i.e. when m = 2.
Also, it can easily be verified that for (total) relations, Definition 3.2 reduces to the
standard definition of the JD.

EXAMPLE 3.1. Let R be the database scheme of Example 2.3 and r be the
null-relation shown in Figure 2.1. Then it can easily be verified that r satisfies
~ < [R].

420 MARK LEVENE AND GEORGE LOIZOU

We now define the notion of implication for a set of NJDs. Let D be a set of NJDs,
and let SAT(D) denote the set of null-relations, over U, that satisfy D. We say that
D logically implies a single NJD, di, written in the form D J= di if and only if
SAT(D) _ SAT(d~).

DEFINITION 3.3. The inference problem for NJDs is defined as follows: given a set
of NJDs, D, and a single NJD, di, does D I= di?

An inference procedure (for NJDs), P, is a (decidable) algorithm for solving the
inference problem (for NJDs); P takes as input a set of NJDs, D, and a single NJD, d~,
and returns true or false. Symbolically P(D, d~) returns true or false.

DEFINITION 3.4. An inference procedure P is said to be sound if whenever P(D, d~)
returns true then D I= di; P is said to be complete if whenever D I= di then P(D, di)
returns true.

We close this section with a brief discussion on whether the sound inference rules
for JDs, given in [2], are also sound inference rules for NJDs.

It can be verified that the covering and projection rules for JDs given in [2] (which
are sound for JDs) are also sound for NJDs over null-relations due to Definition 3.2.
We note that we can formally show that the covering rule for NJDs holds by using
a result from [2], wherein it was shown that a database scheme, S, covers a database
scheme R if and only if S can be obtained from R by repetitively, either adding
a relation scheme to R, or by adding an attribute to a relation scheme already in R.

On the other hand, the substitution rule for JDs also given in [2] (which is sound
for JDs) is not, in general, sound for NJDs, since, as is the case with NMVDs,
transitivity of NJDs may not hold in the presence of null [11, 14]. A simple example
illustrates this: let D = { AB ~ ~ C I D, A ~ ~ B t C D } be a set of NMVDs (using the
standard notation for NMVDs) and r = {<al, null, cl, dl>, <al, null, c2, d2>}. It can
easily be verified that r e SAT(D) but r does not satisfy A ~ ~ C, which would be
inferred by using the substitution rule. In [13] we present a special case of the
substitution rule, called the non-split substitution rule, which is sound for NJDs and
is sufficient for many practical cases.

4. The or-chase procedure for solving the inference problem for NJDs.

In this section we define the or-chase procedure as an inference procedure for
solving the inference problem for NJDs and as a procedure for testing satisfaction of
NJDs in null-relations. The or-chase procedure is an extension of the classical chase
procedure, which is an inference procedure for solving the inference problem for JDs
and a procedure for testing sdtisfaction of JDs in (total) relations. We denote the
result of applying the or-chase procedure to an or-relation, r, with respect to a set of

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 421

NJDs, D, as ORCHASEo(r). We show that the standard results regarding the
classical chase procedure also hold for the or-chase, i.e. ORCHASEo(r) is finite and
unique, and if r is a null-relation then ORCHASEo(r) results in a null-relation that
satisfies D. The main result of the paper is then presented, showing that the or-chase
procedure is a sound and complete inference procedure for solving the inference
problem for NJDs. As a byproduct of our approach the or-chase is also a sound and
complete inference procedure for solving the inference problem of embedded NJDs,
i.e. the said inference problem is decidable. This is in contrast to the inference
problem for embedded JDs which, in general, is known to be only partially decid-
able. Our stronger result is due to the use of a single unmarked null as opposed to the
use of multiple marked nulls in previous formalisms for embedded data depend-
encies.

We now define the operator TOTAL, which promotes A-or values to A-total
values.

DEFINITION 4.1. If t[A] ~ null or t[A] ~- vl then TOTAL(t[A]) ~ t[A], other-
wise if t[A] ~ vi v null then TOTAL(t[A]) = vi.

TOTAL is extended to X-values, where X = {A1, A 2 An}, as follows:
TOTAL(t [X]) = <TOTAL(t[At]) , TOTAL(t [A2]) , . . . , TOTAL(t[An])>.
If t[A] is the A-or value, vi v null, then we say that t[A] is promoted to vi by

TOTAL(t[X]) .

Again in the following two definitions we refer to the database schemes, R =
{Rt, R2 Rm} and S = {S~,$2 Sn} over W ~ U, with n<_m, and let
MANY(S) = X.

Next we define or-joinable tuples in an or-relation, r, over U, thus generalising the
concept ofjoinable tuples in a null-relation r over U.

DEFINITION 4.2. Let r be an or-relation over U. We say that n not necessarily
distinct tuples, tl, t2 tn ~ r, are or-joinable on Swith the resulting tuple, t, over U,
if the following conditions are true:

(1) t[S~ n X] = TOTAL(t~[S~ n X]), 1 < i < n, i.e. t[X] is X-total and VA ~ (S~ c~ X),
ti[A] is either an A-total value or an A-or value;

(2) t [Si -- X] ~ ti[Si -- X], 1 _< i < n; and
(3) t[U -- W] _~ null.

If r is a null-relation then Definition 4.2 reduces to Definition 3.1.
We now define the inference rule (or simply the rule) associated with an NJD,

~,<J[R] e D, where D is a set of NJDs, applied to an or-relation r over U; this rule is
denoted by RULE~tRj(r).

DEFINITION 4.3. Let tl, t2 tn ~ r be n not necessarily distinct tuples that are
or-joinable on a covering subset, S e SUBSET(R), with the resulting tuple, t, over U.

422 MARK LEVENE AND GEORGE LOIZOU

Then the rule associated with the NJD t>~ [R] applied to r is given by:
RULE~tR](r) = r u {tl t is the resulting tuple of n or-joinable tuples as defined

above}.

Before we define the or-chase of an or-relation; r, over U, with respect to a set of
NJDs, D, we define the effect on r of invoking all possible applications to r of the rules
associated with the NJDs in D. Thus, we let

RULED(r) = {RULE~,(r)[di E D},

i.e. we invoke all possible applications to r of the rules associated with the NJDs
di ~ D in parallel, since no ordering is assumed when applying these rules. We note
that RULED(r) is, by definition~ unique.

We next define a transformation function TD, with respect to a set of NJDs, D,
which operates on an or-relation, r, as follows:

TD(r) = U {r'[r' ~ RULED(r)}.

Successive applications of To to r yield:

T°(r) = r;
Tg +1 (r) = TD(T~(r)) u T~(r) with i = 0, 1, 2 , . . .

Finally, we define the or-chase of r with respect to a set of NJDs, D, denoted by
ORCHASED(r) (or simply ORCHASE(r) when D is understood from context), as
being information-wise equivalent to thefixpoint of r with respect to To, namely

u~=0 To(r). ORCHASED(r) ~ o~ i

We note that ORCHASE is an inflationaryfixpoint operator [8], since it can easily
be verified that for any or-relation, r', over U, r' E To(r') • The motivation for using
inflationary semantics is that the uniqueness of the or-chase follows directly from its
parallel semantics rather than by a standard laborious proof as in [13, 16].

In what follows we refer to a state of ORCHASE(r) as an intermediate state
thereof, between r and ORCHASE(r), during the computation of ORCHASE(r). The
following results establish the fundamental properties of the or-chase procedure

(cf. [16]).

LEMMA 4.1. Let r be an or-relation over U and let D be a set of NJDs. Then
ORCHASE(r) is finite and unique.

PROOF. We first prove that ORCHASE(r) is finite. By definition each application
of a rule to a state of ORCHASE(r) incorporates more informative tuples into it,
otherwise ORCHASE(r) terminates. Now, let ATOMIC(r) be the finite set of all
values in r together with null. We note that rules do not add new values to
ATOMIC(r). Thu~, it suffices to show that ORCHASE(r) does not loop forever. Let
ri be the state of OR CHASE(r) after applying some rules to r, and let rj be the state of

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 423

ORCHASE(r) after applying some further rules to ri. The result now follows, since
r~ E rj and ~ (r~ ~- rj) can only occur a finite number of times and it is also true that
--,(ri ~ r i) unless we have ri -~ ORCHASE(r).

We conclude the proof by showing that ORCHASE(r) is unique. The result now
follows since To(r) is unique by the definition of RULED(r), and ORCHASE(r)
results from successively applying the transformation function To to the current
state of ORCHASE(r). •

THEOREM 4.2. L e t r be a null-relation over U and let D be a set of NJDs. Then
ORCHASEo(r) satisfies O.

PROOF. O R C HAS E (r) satisfies the NJDs in D, since the inference rules detect any
violation of an NJD in D (see Definition 3.2). It follows that ORCHASE(r) satisfes
D, otherwise, by the said argument, we can apply one of the rules to ORCHASE(r),
thus leading to a contradiction. •

The following corollary establishes the fact that the or-chase procedure has
complete deductive capabilities with respect to NJDs. That is, all possible tuples
(and only those tuples) that can be inferred from a null-relation, r, with respect to
a set of NJDs, D, are deduced by ORCHASEo(r).

COROLLARY 4.3. L e t r be a null-relation over U and let D be a set of NJDs. Then
r ~ S A T (D) if and only if ORCHASED(r) ~ r.

PROOF. The result follows from Theorem 4.2 and the definition of the or-
chase. •

In the following we let aj ~ DOM(Aj) be a distinguished total value (cf. distin-
guished variable [191) associated with the attribute Aj ~ U, j ~ { 1, 2 p}. We now
define a tableau for an NJD, ~<~[R], thus generalising the notion of a tableau
[2, 16, 191 to or-relations.

DEFINITION 4.4. The tableau for the NJD, ~ [R], denoted by TABLE(R), is an
or-relation, over U, comprising the set of tuples {tl, t 2 tra) such that ti,
1 _< i < m, is constructed as follows (where MANY(R) = X):

(1) VAjE(R in X),t i[Aj] _~ aj v null;
(2) VAj~(Ri - X),ti[Aj] ~= aj; and
(3) VAj~(U - Ri), ti[Aj] ~ null.

EXAMPLE 4.1. Let R = (ABC, ABD, AE}, then the tableau for R, TABLE(R), is
shown in Figure 4.1. Also, let R ' = (AB, BCD, CE}, then the tableau for R',
TABLE(R'), is shown in Figure 4.2.

424 MARK LEVENE AND GEORGE LOIZOU

A B

al v null az v null
al v null a2 v null
a 1 v null null

C D E

a3 null null
null a4 null
null null a5

Fig. 4.1. TABLE ({ABC, ABD, AE}).

A

al
null
null

B C

a2 v null null
a 2 v null a3 v null

null a3 v null

D E

null null

a4 null
null as

Fig. 4.2. TABLE ({AB, BCD, CE}).

Next we define the valuation [3, 16, 19] of a tableau.

DEFINITION 4.5. Let ~b be a mapping (called a valuation), which maps a tableau
into a set of null-relations over U as follows: ~b maps a total value a~ to a~, maps null to
null and maps an or-value, a~ v null, either to a~ or to null. Correspondingly for
a tuple (vl, v2 vp) we have: qS((vl, v2 vv)) = (t~(V1) , ~(V2),... , ~)(l~p)); ~ is
extended to a tableau T as follows: 4~(T) = {~b(t) I t~ T}.

The set of null-relations ifiduced by the mappings qS, denoted as NULL(T), is
defined by: NULL(T) = (r l3 ~b such that qS(T) =~ r}. The set of valuations induced
by NULL(T), denoted as #(T), is defined by: #(T) = {4~1 ~b(T)~NULL(T)}. We
observe that if T contains n distinct or-values then the cardinality of NULL(T) and
therefore q~(T) is 2".

In the results that follow we utilise the five abbreviations of the expressions
numbered (1) to (5) given below; R is a database scheme over W _ U, D is a set of
NJDs and q~ e #(TABLE(R)).

(1) ORCHASED($(TABLE(R))) is abbreviated to ORD(4~(T)).
(2) ORCHASEDu{~ts]~(c~(TABLE(R)))is abbreviated to ORD~s($(T)).
(3) (~(ORCHASEo(TABLE(R))) is abbreviated to $(ORD(T)).
(4) ORCHASED(TABLE(R)) is abbreviated to ORb(T).
(5) ORCHASEDu~tsj~(TABLE(R)) is abbreviated to ORa~,s (T).

The following lemma shows what happens when a valuation, qS, is interchanged
with the or-chase procedure.

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 425

LEMMA 4.4. Let R be a database scheme over W~_ U and let D be a set of NJDs.
Then V d? ~ @(TABLE(R)), ORD(~b(T)) ~ dp(ORo(T)).

PROOV. Let (k e @(TABLE(R)) be a valuation. We prove the result by induction
on the application of the rules during the successive applications of To to
~b(TABLE(R)) and TABLE(R).

BASIS. Consider any tuple t ~ (T A B L E (R)) , then t~ORo(dp(T)) and also
t' ~ ck(ORo(T)) such that t < t', trivially.

INDUCTION. Let ~ ~ be an intermediate state of the tableau during the computafion
of ORb(alp(T)) and let ~2 be an intermediate state of the tableau during the computa-
tion of ORo(T) such that ~1 F__ ~b(~2). Now, iftl, t2, . . . , t, ~ rl arejoinable tuples over
a covering subset database scheme S o f R with the resulting tuple t e ORo(q~(T)), then
by inductive hypothesis there must exist tuples tl, t~ t'~ ~ f2, such that t~ < ~b(t~),
t2 < ~b(t~),...,t, < ~b(t',). Since tl, t2, . . . , t~ are joinable on S then so are
q~(t'l), ~b(t~),..., ~(t',) with the resulting tuple ~b(t'); consequently t~, t~ , . . . , t', are
or-joinable on S with the resulting tuple t' ~ ORb(T) and thus d~(t') ~ ~b(ORD(T)). The
result now follows that t < ~b(t') as required, since or-joinability is a monotone
mapping. []

We note that the reverse of Lemma 4.4, i.e. ¢b(ORo(T)) F" ORo(~(T)) is, in general,
false. For example, let D = { ~<~ [R]} where R = {ABC, ABD, AE} as in Example
4.1, and let ~ map a i v null to a i and a2 v null to null. Then, it can easily be verified
that the tuple, (a i , a2, a3, a4, a~>, is in ck(ORD(T)) but not in ORo(ck(T)).

The following lemma establishes the relationship between the or-chase of a tab-
leau, say T (which is an or-relation), and the or-chase of its set of corresponding
null-relations, NULL(T) .

LEMMA 4.5. Let R be a database scheme over W ~ U and let D be a set of NJDs.
Then ORo(T)_~ ORD~R(T) if and only if V~be~(TABLE(R)), ORo(~(T))_~
O RDux(c)(r)).

PROOF. (IF): Let ~b~@(TABLE(R)) be a valuation. We prove the result by
contradiction to the fact that V~be@(TABLE(R)); ORoun(~(T))E ORo(qb(T)).
Now, since ORo(T) ~ ORouR(T) holds trivially we assume that ~(ORou~(T)
ORo(T)). Thus, there must exist a tuple, t, such that t • ORoum(T) and there does not
exist a tuple t', where t < t' and t [MANY(R)] ~ t'[MANY(R)], such that
t' ~ ORo(T).

We can now choose a valuation ~b e @(TABLE(R)) such that tk promotes an A-or
value, ai v null, to an A-total value ai if andon ly if t is A-total and A e MANY(R).
Let ~ be an intermediate state during the computation of ORo~z(T) and let ~z be an
intermediate state during the computation of ORo,~(ck(T)). By the choice of ~b we

426 MARK LEVENE AND GEORGE LOIZOU

observe that t ~ ORD~s(T) implies q~(t) s ORo~,s(c~(T)). This is due to the fact that if
~f~ such that t~,t2,.. . , t~ sf~ are or-joinable tuples over a covering subset database
scheme S of R with the resulting tuple reORDer(T), then 3f2 such that
49(tO, q~(t2) C~(tn)ef2 are joinable tuples over S with the resulting tuple
(o(t) ~ ORo~s(q~(T)) (this can be proved by induction). Similarly, t' ¢. ORD(T) implies
49(t') q~ ORD(qb(T)), since if ~ f3, an intermediate state during the computation of
ORb(T), such that a set of or-joinable tuples in f3 would result in the tuple
t' e ORo(T), then ~ f4, an intermediate state during the computation of ORo(~b(T)),
such that a corresponding set of joinable tuples in L~ would result in the tuple
(a(t')eORD((9(T)). From the above we obtain a contradiction to the fact that
ORD~s(c~(T)) ~ ORD(4(T)), thus proving the result.

(ONLYIF): We prove the result by contradiction to the fact that ORD(T)~
ORD~s(T). Now, since ORD(4(T)) 7-- ORD~s(4(T)) holds trivially we assume that
~(ORo~s(d?(T)) ~ ORD(gp(T))). Thus, there must exist a valuation ~b s ~(TABLE(R))
and a tuple, u, such that u ~ ORo~s((a(T)) and there does not exist a tuple, u', where
u < u' and u[MANY(R)] ~ u'[MANY(R)], such that u's ORD(q~(T)).

We can now choose a tuple t ~ ORo~s(T) such that t[A] is an A-or value or an
A-total value if and only if u = tk(t) is A-total and A e MANY(R). By the choice of
t we conclude using an argument similar to that in the if part that qS(t) ~ ORo~s (~b(T))
implies t ~ ORDus(T). Similarly, u' = 4~(t') ~ OR9(4(T)) implies t'¢ ORD(T). From
the above we obtain a contradiction to the fact that ORDer(T)~ ORz~(T), thus
proving the result. •

The ensuing theorem establishes the main result of the paper, namely that the
or-chase procedure solves the inference problem for NJDs.

THEOREM 4.6. Let D be a set of N J Ds and let ~ JR] be a single N J D. Then D I=
~<~ [R] if and only if ORD(T) ~ ORDeR(T).

PROOF. (IF): IfORD(T) ~- ORous(T) then by the only if part of Lemma 4.5, V~ e
~(TABLE(R)), ORb(alp(T)) ~- ORD~g(qb(T)). Now, let r ~ SAT(D) be a null-relation
over U and let tl, t2 tn~ r be joinable tuples over a covering subset database
scheme S of R, with the resulting tuple, t, over U. We now define a mapping q~ for the
tuples ti, 1 _< i <_ n, as follows: q~ maps null to null and maps a total value t[Aj] to the
distinguished total value aj e DOM(Aj) for each Aj e U. From the definition of ~ it
follows that 3~be4~(TABLE(R)) such that t} _< q~(h), where t'ieORD(O(T)) and
t'i[MANY(R)] = ~(h[MANY(R)]), 1 _< i _< n. Now, since h are joinable over S,
then t',, 1 _< i _ n, are also joinable over S with the resulting tuple t 'e ORD(~(T)). It
follows that t e r since t'_< ~(t) and ORD(d?(T))~-ORDus((b(T)), implying that
r ~ SAT(D w { t><~ [R]}) as required.

(ONLYIF): If D]= c,<~[R] then SAT(D~{~<3[R]})=SAT(D). Thus, Vre
NULL(TABLE(R)), ORCHASED(r) ~ SAT(D u { t><3[R]}), since by Theorem 4.2
ORCHASED(r)ESAT(D). It follows from Lemma 4.1 and Corollary 4.3 that

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 427

Vr ~ NULL(TABLE(R)), ORCHASEu(r) ~ ORCHASEouI~tml)(r). Thus, the result
follows by the if part of Lemma 4.5. •

We note that the above results are also obtained for embedded NJDs, since in our
formalism embedded NJDs are a special case of NJDs, i.e. when W c U. It is
interesting to observe that, when using marked nulls, testing implication for embed-
ded data dependencies (embedded JDs being a special case) is, in general, known to
be only partially decidable. As a consequence of Theorem 4.6, in our context, the
or-chase procedure is decidable for embedded NJDs as well as for NJDs.

The following corollary follows directly from Theorem 4.6.

COROLLARY 4.7. Let P be an inference procedure for NJDs, which returns true if
and only if ORb(T) ~- O R o,,xt(T). Then P is a sound and complete inference procedure
for NJDs.

EXAMPLE 4.2. Let R = (ABC, ABD, AE} and D = {~xJ[{ABC, ABDE}], ~,<~
I-{ABD, AE}]}. Then it can be verified that ~(ORCHASED(TABLE(R))~
ORCHASED~t~tRj)(TABLE(R))), where ORCHASEo~t~tRI~(TABLE(R)) is shown
in Figure 4.3, since the tuple t - (al, a2 v null, a3, null, as> e ORCHASED~t~tRI~
(TABLE(R)) but t q~ ORCHASED(FABLE(R)), implying D I# t~z [R].

Example 4.2 illustrates the fact that unlike the classical chase procedure, in the
or-chase procedure a tuple of distinguished total values does not necessarily indicate
NJD implication.

EXAMPLE 4.3. Let R ' = {AB, BCD, CE} and O = {t>o[{AB, BCDE}], ~ [{ C E ,
ABCD}]}. Then it can be verified that ORCHASEo(TABLE(R'))~
ORCHASED,~C~tRqI(TABLE(R')), as shown in Figure 4.4, implying D I= t:xa[R'].

Some of the tuples, which are less informative than the tuples appearing in Figures
4.3 and 4.4, respectively, are omitted. This does not affect the result, since we do not
distinguish between members in each of the equivalence classes induced by =~.

5. Concluding remarks.

We have defined a class of data dependencies, namely NJDs, which hold in
null-relations, and have shown that the or-chase is a sound and complete inference
procedure for NJDs. In order to prove this result we generalised null-relations to
or-relations by allowing them to contain a limited form of disjunctive information.
This result implies that the inference problem for NJDs is decidable; this is due to the
fact that in our model for incomplete information we include only a single unmarked
null value, i.e. null. A further implication of our result is: if r contains n distinct
or-values then ORCHASE(r) is equivalent to applying the or-chase procedure to the

428 MARK LEVENE AND GEORGE LOIZOU

a l

a l

a l

A B

v null a2 v null

v null a2 v null

v null null

a~ a 2

a l a2

a l a2

al az v null

al a2 v null

C D E

aa null null

null a,, null

null null a5

a3 a4 null
null a,, a5

aa a4 a5
null a4 a5

a 3 null a5

Fig. 4.3. ORCHASEo~tK1~(TABLE(R)).

A

17l 1

null

null
a l

a l
null

B C

a2 v null

a 2 V null

null

a2

a2

a2 v null
i

D E

null null null

aa v null a4 null

a3 v null null a5

a3 v null a4 null

a3 a4 a 5

a3 a4 a5

Fig, 4.4. ORCHASED(TABLE(R')) ~ ORCHASED,q~IR,I~(TABLE(R')).

2" null-relations induced by r.
Finally, our results are more general than the ones presented in [11], since we

make no assumptions about the acyclicity or cyclicity of the database scheme as is
the case therein, where only y-acyclic database schemes [5] are considered.

Acknowledgement.

The referees' comments are greatly appreciated.

REFERENCES

1. P. Atzeni and M. C. Bernardis, A new interpretation for null values in the weak instance model, Jour.
Comput. Syst. Sci., Vol. 41, pp. 25-43, 1990.

2. C. Beeri and M. Y. Vardi, On the properties of join dependencies, Advances in Database Theory, Vol. 1,
H. Gallaire, J. Minker and J. M. Nicholas, Eds., Plenum Press, New York, 1981, pp. 25-72.

INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 429

3. C. Beeri and M. Y. v a r ~ A pr~ f pr~cedure f~r data dependencies~J~ur` ACM~ V~L 31~ pp. 718-741~
1984.

4. E. F. Codd, The Relation Model for Database Management: Version 2, Addison Wesley, Reading,
MA., 1990.

5. R. Fagin, Degrees of acyclicity for hypergraphs and relational database systems, Jour. ACM, Vol. 30,
pp. 514-550, 1983.

6. M.H. Graham, A. O. Mendelzon and M. Y. Vardi, Notions of dependency satisfaction, Jour. ACM,
Vol. 33, pp. 105-129, 1986.

7. J. Grant, Incomplete information in a relational database, Fundamenta Informaticae, Vol. 3, pp.
363-378, 1980.

8. Y. Gurevich and S. Selah, Fixed-point extensions of first-order logic, Annals of Pure and Applied
Logic, Vol. 32, pp. 265-280, 1986.

9. T. Imielinski and W. Lipski Jr., Incomplete information in relational databases, Jour. ACM, Vot. 31,
pp. 761-791, 1984.

10. T. Imielinski, Incomplete information in logical databases, IEEE Quarterly Bulletin on Data Engin-
eering, Vol. 12, pp. 29-40, 1989.

11. S. Jajodia and F. N. Springsteel, Lossless outer joins with incomplete information, BIT, Vol. 30, pp.
34-41, 1990.

12. N. Lerat and W. Lipski Jr., Nonapplicable nulls, Theoret. Comput. Sci., Vol. 46, pp. 67-82, 1986.
13. M. Levene, The Nested Universal Relation Database Model, Lecture Notes in Computer Science,

Vot; 595, Springer-Verlag, Berlin, 1992.
14. Y.E. Lien, Multivatued dependencies with null values in relational databases, Proc. of 5th Conf. on

Very Large Data Bases, Rio de Janeiro, Brazil, pp. 61-66, 1979.
15. K.-C. Liu and R. Sunderraman, Indefinite and maybe information in relational databases, ACM

Trans. on Database Syst, Vol. 15, pp. 1-39, 1990.
16. D. Maier, A. O. Mendelzon and Y. Sagiv, Testing implication of data dependencies, ACM Trans.,on

Database Syst., Vol. 4, pp. 455-469, 1979.
17. Y. Sagiv and S. F. Walecka, Subset dependencies and a completeness result for a subclass of embedded

multivalued dependencies, Jour. ACM, Vol. 29, pp. 103-117, 1982.
18. D. A. Schmidt, Denotational Semantics: A Methodology for Language Development, Allyn and

Beacon, Inc., Newton, MA., 1986.
19. E. Sciore, A complete axiomatization of join dependencies, Jour. ACM, Vol. 29, pp. 373-393, t982.
20. J. Stein and D. Maier, Relaxing the universal relation scheme assumption, Proc. of the 4th ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, Portland, OR., ACM, New
York, 1985, pp. 76-85.

21. J.D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. 1,Computer Science Press,
Rockville, Maryland, 1988.

22. C. Zaniolo, Database relations with null values, Jour. Comput. Syst. Sci., Vol. 28, pp. 142-166, 1984.

