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Abstract. 

The inference problem for data dependencies in relational databases is the problem of deciding whether 
a set of data dependencies logically implies another data dependency. For join dependencies (JDs), the 
inference problem has been extensively studied by utilising the well-known chase procedure. We 
generalise JDs to null join dependencies (NJDs) that hold in relations which may contain null values. In 
our model for incomplete information we allow only a single unmarked null value denoted by null. This 
allows us to solve the inference problem for NJDs by extending the chase procedure to the or-chase 
procedure. In order to define the or-chase procedure we generalise relations with nulls to or-relations 
which contain a limited form of disjunctive information. The main result of the paper shows that the 
inference problem for NJDs, including embedded NJDs (which are a special case of NJDs), is decidable; 
this is realised via the or-chase procedure. 
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1. Introduction. 

We address the problem of making inferences by using integrity constraints that 
must be enforced in a database. Herein we assume a relational database, which may 
be incomplete, and deal with a subclass of integrity constraints called data depend- 
encies [3, 6, 21]. Our model for incomplete information contains a single unmarked 
null value, null. This model of unmarked nulls is a special case of the more general 
model of incomplete information based on multiple marked nulls [-9, 10], wherein 
null values are marked with a distinguishing index and are allowed to be equal if 
their indexes are aqual. We generalise the class of join dependencies (JDs) [2, 19] so as 
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to hold in relations which may contain null; such relations are called null-relations 
and the JDs that hold therein are called null join dependencies (NJDs). 

The inference problem for data dependencies is the problem of deciding whether 
a set of data dependencies logically implies another data dependency. An inference 
procedure for a class of data dependencies is said to be sound if all the inferences made 
by this procedure are always true, and is said to be complete if all possible inferences 
that are true are made by this procedure. Although no sound and complete set of 
inference rules has been shown for JDs, an inference procedure, called the chase 
procedure [1, 3, 6, 16, 20], has been shown to be sound for JDs and complete for full 
JDs, i.e. JDs whose context is the universal set of attributes, U. On the other hand, 
the chase procedure is not complete for embedded JDs, i.e. JDs whose context is 
a proper subset W c U, since, in general, their inference problem is known to be only 
partially decidable [3, 6, 17]. We extend the chase procedure to the or-chase pro- 
cedure in order to solve the inference problem for NJDs. Before doing so, we 
generalise null-relations to or-relations, which allow a limited form of disjunctive 
information [7, 10, 15]. The or-chase procedure is then defined in order to make 
inferences from an or-relation with respect to a set of NJDs. The main result of the 
paper shows that the or-chase procedure is a sound and complete inference pro- 
cedure for NJDs. Thus, in our formalism the inference problem for embedded NJDs 
(as well as full NJDs) is decidable. Our stronger result is due to the use of a single 
unmarked null (ef. [1, 20]) as opposed to the use of multiple marked nulls as was 
done in previous formalisms for embedded data dependencies [3, 6, 16, 19]. The 
or-chase procedure can also be utilised for testing the satisfaction of a set of NJDs in 
a null-relation. Finally, our formalism is more general than the one presented in 
[ 11], since we make no assumptions about the aeyclicity or cyclicity of the database 

scheme. 
The rest of the paper is organised as follows. In Section 2 we define our underlying 

model for incomplete information. In Section 3 we introduce NJDs and present their 
inference problem. In Section 4 we solve the inference problem for NJDs by defining 
the or-chase procedure which is applied to or-relations with respect to a set of NJDs. 
In Section 5 we give our concluding remarks. 

2. The single unmarked null model for incomplete information. 

In this section we introduce our model for incomplete information by including 
a single unmarked null value, null, in attribute domains, leading to the definition of 
null-relations. We then define a partial ordering on tuples in null-relations and 
generalise it to the Hoare powerdomain ordering [18] on null-relations. This allows 
us to formalise the notion of the relative information content of tuptes and null- 
relations. In our semantics of null values we define the inequality rule for nulls which 
states that null :/= null. Finally, we introduce a more general class of relations, termed 
or-relations, which allow a limited form of disjunctive information. The motivation 
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for defining or-relations is to obtain a compact  representation of a set of nuU- 
relations. This is utitised in Section 4 in order to solve the inference problem for 

NJDs.  
Let D be a countable flat domain comprising atomic values (also referred to as 

total values) and a bo t tom element 2_. We define a partial order < on D as follows: 
Vvi, vj ~ D, v~ < v~ if and only if v~ = vj or vi = l [18]. 

We interpret the bot tom element as being the unmarked null value, null, in the 

sense that null (2_) contains less information than any other value in D. Thus, in our 
formalism we consider only one null value, null, which will be a member  of all the 
available domains. We observe that our formalism can accommodate  the inclusion 
of several particular unmarked null types in attribute domains, such as" value 
unknown [4, 91, value does not exist [4, 121, and no information [221. This could be 
done by considering a semi-lattice domain of null values [181. 

Let U = { A l ,  A 2 . . . .  , Ap) be the universal set of attributes. We associate with 
each attribute At of the universe U a countable flat domain consisting of atomic 

values together with null. Each such domain is denoted by DOM(Ai). For simplicity 
we assume that the domains DOM(Ai) - (null) are pairwise disjoint. 

A relation scheme R is a subset of U. We extend an atomic domain DOM(A), where 
A E U, to a domain over a relation scheme R _c U, where R = {A1, A 2 , . . .  , An) , 

n _< p, as follows: 

DOM(R)  = (null) + (DOM(A1) x DOM(A2) x . . .  x DOM(An)) 

where + is the disjoint union operator  and x is the Cartesian product operator. 
We define a null-relation, r, over a relation scheme R ~_ U, to be an element of 

P(DOM(R)),  where P is the finite powerset operator. A tuple over R is now defined 
to be an element of a null-relation over R. If  r = {null) then we consider r to be 
undefined. 

EXAMPLE 2.1. Let R = (STUDENT,  DEPT,  MAJOR,  CLASS, EXAM, PRO-  

JECT} = U be a relation scheme with the following semantics: a S T U D E N T  is 
enrolled in a department  D E P T  and MAJORs in a subject within the department.  In 
addition, a S T U D E N T  attends several CLASSes, each CLASS having several 
EXAMs during the academic year and one or more PROJECTs.  In Figure 2. t we 
show a null-relation, r, over R. We note that we do not attach any specific meaning 
to null appearing in r. Thus, null for PROJECT,  in the fifth tuple, could mean that 
there does not exist a P R O J E C T  for this null S T U D E N T  in the programming 

CLASS, or it could mean that this null S T U D E N T ' s  P R O J E C T  for this CLASS is 
unknown. 

Let r be a null-relation over R. We define projection of a tuple t ~ r onto Y _ R, 
denoted by t[Y],  to be the restriction of t  to Y. We also refer to t[Y] as the Y-value of 
t. We extend the definition of projection to r as follows: r[Y] = {t[Y] [ t ~ r}. 
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STUDENT DEPT MAJOR CLASS 

Iris 
Iris 
Iris 
Iris 
null 

David 
David 
David 
David 

null 
null 

CS 
CS 
CS 
CS 
CS 

philosophy 
null 
null 

philosophy 
philosophy 
philosophy 

computing 
computing 
computing 
computing 
computing 

logic 
null 
null 

logic 
null 
null 

databases 
databases 
databases 
databases 

programming 
first-order 

null 
first-order 

null 
null 

first-order 

EXAM 

mid 
null 
mid 
null 
final 
mid 
final 
mid 
final 
final 
null 

PROJECT 

1NF 
NF2 
NF2 
1NF 
null 

prolog 
parlog 
prolog 
parlog 

null 
functions 

Fig. 2.1. The null-relation r. 

DEFINITION 2.1. We say that a tuple t~r is Y-total, if Y ~_ R and ¥A ~ Y, t[A] is 
a total value, i.e. t[A] ~(DOM(A) - {null}). We extend the definition of Y-total to 
r as follows: r is Y-total if Vt ~ r, t is Y-total. We call an R-total null-relation over 
R a total-relation (or simply a relation). 

EXAMPLE 2.2. For the null-relation r shown in Figure 2.1, the first tuple is R-total 
and the fifth tuple is {DEPT, MAJOR, CLASS, EXAM}-total. 

We define a database scheme over W _ U as a set R = {R1, R2 . . . . .  Rm} such that 
uS= 1 {Ri} = W. In the context of this paper we view a null-database as being induced 
by a null-relation, r, over U. In particular, a null-database, d, over a database scheme 
R, over W ~ U, is defined by d = {r[Ri] I RieR}. 

EXAMPLE 2.3. Let R = {{STUDENT, DEPT, MAJOR}, {STUDENT, CLASS, 
EXAM}, {STUDENT, CLASS, PROJECT}} be a database scheme over R of 
Example 2.1. Then we can view the null-relation r shown in Figure 2.1 as inducing 
the null-database d = {r [{STUDENT, DEPT, MAJOR}], r[{STUDENT, CLASS, 
EXAM}], r[{STUDENT, CLASS, PROJECT}]}. 

Next we extend the definition of the partial order _< to tuples and then define the 
Hoare powerdomain ordering [18], denoted by U-, on null-relations over R ~_ U. 

DEFINITION 2.2. Let R _ U be a relation scheme, then 
(1) for any tuple t over R, null < t and t < t. 
(2) for any two tuples tl and t2 over R, tl <_ t2 if and only ifVA ~R, t~[A] <_ t2[A]. 
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I f  t I _< t 2 then we say that tl is less informative than t 2 (or equivalently that t 2 is 
more informative than tl). A null-relation rl over R is less informative than a null- 
relation r2 over R (or equivalently r2 is more informative than r0,  denoted by r~ E r: ,  
if and only if Vtl e r~ 3 t2 e r2 such that tl <_ t2. 

We say that a tuple tl over R is information-wise equivalent to a tuple t2 over R, 
denoted by t~ - t2, if and only if t~ ___ t2 and t2 ___ t~. Correspondingly, we say that 
a null-relation r~ over R is information-wise equivalent to a null-relation r2 over R, 
also denoted by r~ ~- r2, if and only if r~ E r2 and r2 ~ r~. 

EXAMPLE 2.4. Let tl, t2, t3, t4 be the first four tuples in the null-relation, r, shown 
in Figure 2.1. Then, t2 < ta and t4 < t~. It therefore follows that (r - {t2, t4}) E r 
and r ~ (r - -  {t2, t4} ). Thus, r ~ (r - {t2, t4} ) holds. 

For  the rest of the paper we do not distinguish between members in each of the 
equivalence classes of ~. with respect to null-relations. The justification for this 
approach is that we consider the information content of all null-relations in an 
equivalence class to be the same. 

Next we define the inequality rule for nulls and justify our definition. 

D~a'NITION 2.3. Two values vl and v2 are equal, i.e. vl = v2, if and only if both vl 
and v2 are total values. 

The above choice of the inequality rule for nulls can be justified as follows: when 
two null values appearing in a null-relation are updated they may be replaced by two 
distinct non-null values. We note that due to the inequality rule for nulls our model 
of a single unmarked null is a special case of the more general model of incomplete 
information based on multiple marked nulls [9, 10]. In the latter model two null 
values are considered to be equal if their distinguishing indexes are equal. 

We next introduce a more general class of relations, called or-relations, which 
allow a limited form of disjunctive information. Informally, an or-relation over 
R ~ U contains tuples t such that for some A ~ R, t[A] ~- v~ v null, v~ being a total 
value; such an A-value is termed an A-or value. Our motivation for introducing A-or 
values is rather different from that in [7, 10,15], wherein an A-value is extended to 
a set of possible total values, one of which is the "true" value. A-or values in 
or-relations will allow us to equate two A-or values by promotin# them to equal total 
values, thus overcoming the limitation of the inequality rule for nulls (see Section 4). 

DEFINITION 2.4. We define an A-or value to be a disjunction of the form, vi v null, 
where vl ~ (DOM(A) - {null}). We now let DOM(A) be extended to include A-or 
values, VA ~ R. Thus, an or-relation r, over a relation scheme R _ U, is defined to be 
an element of P(DOM(R)). 
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STUDENT DEPT MAJOR CLASS 

David philosophy logic first-order 
Raymond v null philosophy math v null higher-order v null 
Raymond v null philosophy math v null first-order 

Fig. 2.2. The or-relation r'. 

EXAM PROJECT 

mid prolog 
final null 
null functions 

EXAMPLE 2.5. Let R be the relation scheme given in Example 2.1. An or-relation r' 
over R is shown in Figure 2.2. We observe that the CLASS-or value, higher- 
order v null (for example), induces two sets of null-relations, one in which CLASS is 
higher-order and the other in which CLASS is null. That is, we view the presence of 
higher-order v null in r' as a compact representation of the information present in 

the induced null-relations. 

We extend the inequality rule for nulls to include or-values, i.e. two values Vl and 
v2 (which may be or-values, null values or total values) are equal if and only if both v 1 
and v2 are total values. We also extend E to or-relations, where an A-total value, vl, 
is taken to be less informative than an A-or value, vi v null, i.e. null <_ v~ <_ vi v null 
(and vl v null <_ vi v null). The reason we choose vi <_ vi v null is that we view v as 
union and < as set containment. This interpretation of or-values conforms to the 
Hoare powerdomain ordering. Thus, an A-or value v~ v null appearing in an 
or-relation, r, contains the information that such a value in r represents two sets of 
null-relations, one which contains v~ and the other which contains null (see Example 
2.5). It follows that if r contains n distinct or-values, then r is a compact representa- 

tion of 2" induced null-relations. 
We conclude this section with a straightforward proposition, which establishes 

the connection between the three classes of relations: relations, null-relations and 

or-relations. 

PROPOSITION 2.1. Let REL(R) be the set of all (total) relations over R ~ U, 
N U L L - R E L ( R )  be the set of all null-relations over R and O R - R E L ( R )  be the set of  

all or-relations over R. Then 

R E L ( R )  c N U L L - R E L ( R )  ~ OR-REL(R) .  

3. Null join dependencies and their satisfaction. 

In this section, we generalise JDs that hold in (total) relations to null join 
dependencies (NJDs) that hold in null-relations. As a special case of an NJD we have 
the null muItivalued dependency (NMVD) [11,14] when the cardinality of the 
decomposition is two. We then give the definition of the inference problem for NJDs 
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and formally define when an inference procedure for solving the inference problem 
for NJDs is sound and when it is complete. 

Herein we employ the following useful notation for database schemes found in 
[2]. Let R and Sbe  two database schemes over W ~ U. We say that Scorers R, if for 
every relation scheme, Ri ~ R, there exists a relation scheme, Sj e S, such that Rt ~ Sj. 
The set of all database schemes that cover R is denoted by COVER(R). In addition, 
let Q = {Q1, Q2 . . . . .  Qk} be a database scheme such that Q _~ R. We say that Q is 
a connected subset of R if and only if there exists a permutation, say a, of Q such that 
~(Q~) n ~(Q~+I) ~ ~ ,  1 < i < k. 

The database scheme, S, is a covering subset of the database scheme, R, if each 
relation scheme, St E S, is a set of attributes over a connected subset, say S~, of R and 
such that R = u~ S~. We denote the set of all covering subset database schemes of R by 
SUBSET(R). We note that i f S e  SUBSET(R), then S t  COVER(R), but the converse 
is, in general, false. 

Let MANY(R) denote the set of attributes that appear in at least two relation 
schemes in a database scheme R and let IRI denote the cardinality of R. 

In the following two definitions we refer to the database schemes, R = 

{R1, R2 , . . , ,Rm}  and S =  { S l ,  S 2 . . . .  ,an} over W~_ U, with n < m ,  and let 
MANY(S) = X. 

DEFINITION 3.1. Let r be a null-relation over U. We say that n not necessarily 
distinct tuplcs, tl, t2 . . . . .  t, ~ r, arejoinable on S with the resulting tuple, t, over U, if 
the following conditions are true: 

(1) t[S~ c~ X]  = h[S~ c~ X], 1 <_ i < n, i.e. t [X]  is X-total; 
(2) t [Si - X] ~ t~[S~ - X], 1 < i _< n; and 
(3) t[U - W] ~- null. 

We now define the satisfaction of the NJD, ~ [R], over W _ U, in a null-relation 
r over U. 

DEF~ITION 3.2. The NJD, ~ [R], holds in r if and only if whenever 3n not 
necessarily distinct tuples, tl, t2 . . . . .  t, ~r, that are joinable on a covering subset, 
S e  SUBSET(R), with the resulting tuple, t, over U, then 3 t' ~ r such that t < t' holds. 

The NJD, t>~ JR], is said to be a trivial NJD if m = 1, otherwise it is said to be 
a non-trivial NJD. An NJD, t>~ [R], over W ___ U, is a full NJD if W = U and is an 
embedded NJD if W ~ U. 

It can easily be seen that the NMVD is a special case of the NJD, i.e. when m = 2. 
Also, it can easily be verified that for (total) relations, Definition 3.2 reduces to the 
standard definition of the JD. 

EXAMPLE 3.1. Let R be the database scheme of Example 2.3 and r be the 
null-relation shown in Figure 2.1. Then it can easily be verified that r satisfies 
~ <  [R]. 
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We now define the notion of implication for a set of NJDs. Let D be a set of NJDs, 
and let SAT(D) denote the set of null-relations, over U, that satisfy D. We say that 
D logically implies a single NJD, di, written in the form D J= di if and only if 
SAT(D) _ SAT(d~). 

DEFINITION 3.3. The inference problem for NJDs is defined as follows: given a set 
of NJDs, D, and a single NJD, di, does D I= di? 

An inference procedure (for NJDs), P, is a (decidable) algorithm for solving the 
inference problem (for NJDs); P takes as input a set of NJDs, D, and a single NJD, d~, 
and returns true or false. Symbolically P(D, d~) returns true or false. 

DEFINITION 3.4. An inference procedure P is said to be sound if whenever P(D, d~) 
returns true then D I= di; P is said to be complete if whenever D I= di then P(D, di) 
returns true. 

We close this section with a brief discussion on whether the sound inference rules 
for JDs, given in [2], are also sound inference rules for NJDs. 

It can be verified that the covering and projection rules for JDs given in [2] (which 
are sound for JDs) are also sound for NJDs over null-relations due to Definition 3.2. 
We note that we can formally show that the covering rule for NJDs holds by using 
a result from [2], wherein it was shown that a database scheme, S, covers a database 
scheme R if and only if S can be obtained from R by repetitively, either adding 
a relation scheme to R, or by adding an attribute to a relation scheme already in R. 

On the other hand, the substitution rule for JDs also given in [2] (which is sound 
for JDs) is not, in general, sound for NJDs, since, as is the case with NMVDs, 
transitivity of NJDs may not hold in the presence of null [11, 14]. A simple example 
illustrates this: let D = { AB ~ ~ C I D, A ~ ~ B t C D } be a set of NMVDs (using the 
standard notation for NMVDs) and r = {<al, null, cl, dl>, <al, null, c2, d2>}. It can 
easily be verified that r e SAT(D) but r does not satisfy A ~ ~ C, which would be 
inferred by using the substitution rule. In [13] we present a special case of the 
substitution rule, called the non-split substitution rule, which is sound for NJDs and 
is sufficient for many practical cases. 

4. The or-chase procedure for solving the inference problem for NJDs. 

In this section we define the or-chase procedure as an inference procedure for 
solving the inference problem for NJDs and as a procedure for testing satisfaction of 
NJDs in null-relations. The or-chase procedure is an extension of the classical chase 
procedure, which is an inference procedure for solving the inference problem for JDs 
and a procedure for testing sdtisfaction of JDs in (total) relations. We denote the 
result of applying the or-chase procedure to an or-relation, r, with respect to a set of 
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NJDs, D, as ORCHASEo(r). We show that the standard results regarding the 
classical chase procedure also hold for the or-chase, i.e. ORCHASEo(r) is finite and 
unique, and if r is a null-relation then ORCHASEo(r) results in a null-relation that 
satisfies D. The main result of the paper is then presented, showing that the or-chase 
procedure is a sound and complete inference procedure for solving the inference 
problem for NJDs. As a byproduct of our approach the or-chase is also a sound and 
complete inference procedure for solving the inference problem of embedded NJDs, 
i.e. the said inference problem is decidable. This is in contrast to the inference 
problem for embedded JDs which, in general, is known to be only partially decid- 
able. Our stronger result is due to the use of a single unmarked null as opposed to the 
use of multiple marked nulls in previous formalisms for embedded data depend- 
encies. 

We now define the operator TOTAL, which promotes A-or values to A-total 
values. 

DEFINITION 4.1. If t[A] ~ null or t[A] ~- vl then TOTAL(t[A])  ~ t[A], other- 
wise if t[A] ~ vi v null then TOTAL(t[A])  = vi. 

TOTAL is extended to X-values, where X = {A1, A 2 . . . . .  An}, as follows: 
TOTAL( t [X] )  = <TOTAL(t[At]) ,  TOTAL( t [A2] ) , . . . ,  TOTAL(t[An])>. 
If t[A] is the A-or value, vi v null, then we say that t[A] is promoted to vi by 

TOTAL(t[X]) .  

Again in the following two definitions we refer to the database schemes, R = 
{Rt, R2 . . . . .  Rm} and S =  {S~,$2 . . . . .  Sn} over W ~  U, with n<_m, and let 
MANY(S) = X. 

Next we define or-joinable tuples in an or-relation, r, over U, thus generalising the 
concept ofjoinable tuples in a null-relation r over U. 

DEFINITION 4.2. Let r be an or-relation over U. We say that n not necessarily 
distinct tuples, tl, t2 . . . . .  tn ~ r, are or-joinable on Swith  the resulting tuple, t, over U, 
if the following conditions are true: 

(1) t[S~ n X] = TOTAL(t~[S~ n X]), 1 < i < n, i.e. t[X] is X-total and VA ~ (S~ c~ X), 
ti[A] is either an A-total value or an A-or value; 

(2) t [Si -- X]  ~ ti[Si -- X], 1 _< i < n; and 
(3) t[U -- W] _~ null. 

If r is a null-relation then Definition 4.2 reduces to Definition 3.1. 
We now define the inference rule (or simply the rule) associated with an NJD, 

~,<J[R] e D, where D is a set of NJDs, applied to an or-relation r over U; this rule is 
denoted by RULE~tRj(r). 

DEFINITION 4.3. Let tl, t2 . . . . .  tn ~ r be n not necessarily distinct tuples that are 
or-joinable on a covering subset, S e  SUBSET(R), with the resulting tuple, t, over U. 
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Then the rule associated with the NJD t>~ [R] applied to r is given by: 
RULE~tR](r) = r u {tl t is the resulting tuple of n or-joinable tuples as defined 

above}. 

Before we define the or-chase of an or-relation; r, over U, with respect to a set of 
NJDs, D, we define the effect on r of invoking all possible applications to r of the rules 
associated with the NJDs in D. Thus, we let 

RULED(r) = {RULE~,(r)[di E D}, 

i.e. we invoke all possible applications to r of the rules associated with the NJDs 
di ~ D in parallel, since no ordering is assumed when applying these rules. We note 
that RULED(r) is, by definition~ unique. 

We next define a transformation function TD, with respect to a set of NJDs, D, 
which operates on an or-relation, r, as follows: 

TD(r) = U {r'[r' ~ RULED(r)}. 

Successive applications of To to r yield: 

T°(r) = r; 
Tg +1 (r) = TD(T~(r)) u T~(r) with i = 0, 1, 2 , . . .  

Finally, we define the or-chase of r with respect to a set of NJDs, D, denoted by 
ORCHASED(r) (or simply ORCHASE(r) when D is understood from context), as 
being information-wise equivalent to thefixpoint of r with respect to To, namely 

u~=0 To(r). ORCHASED(r) ~ o~ i 

We note that ORCHASE is an inflationaryfixpoint operator [8], since it can easily 
be verified that for any or-relation, r', over U, r' E To(r') • The motivation for using 
inflationary semantics is that the uniqueness of the or-chase follows directly from its 
parallel semantics rather than by a standard laborious proof as in [13, 16]. 

In what follows we refer to a state of ORCHASE(r) as an intermediate state 
thereof, between r and ORCHASE(r), during the computation of ORCHASE(r). The 
following results establish the fundamental properties of the or-chase procedure 

(cf. [16]). 

LEMMA 4.1. Let r be an or-relation over U and let D be a set of NJDs. Then 
ORCHASE(r) is finite and unique. 

PROOF. We first prove that ORCHASE(r) is finite. By definition each application 
of a rule to a state of ORCHASE(r) incorporates more informative tuples into it, 
otherwise ORCHASE(r) terminates. Now, let ATOMIC(r) be the finite set of all 
values in r together with null. We note that rules do not add new values to 
ATOMIC(r). Thu~, it suffices to show that ORCHASE(r) does not loop forever. Let 
ri be the state of OR CHASE(r) after applying some rules to r, and let rj be the state of 
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ORCHASE(r)  after applying some further rules to ri. The result now follows, since 
r~ E rj and ~ (r~ ~- rj) can only occur a finite number of times and it is also true that 
--,(ri ~ r i) unless we have ri -~ ORCHASE(r).  

We conclude the proof by showing that ORCHASE(r)  is unique. The result now 
follows since To(r) is unique by the definition of RULED(r), and ORCHASE(r)  
results from successively applying the transformation function To to the current 
state of ORCHASE(r).  • 

THEOREM 4.2. L e t  r be  a null-relation over U and let D be a set of NJDs. Then 
ORCHASEo(r)  satisfies O. 

PROOF. O R C HAS  E (r) satisfies the NJDs in D, since the inference rules detect any 
violation of an NJD in D (see Definition 3.2). It follows that ORCHASE(r) satisfes 
D, otherwise, by the said argument, we can apply one of the rules to ORCHASE(r), 
thus leading to a contradiction. • 

The following corollary establishes the fact that the or-chase procedure has 
complete deductive capabilities with respect to NJDs. That is, all possible tuples 
(and only those tuples) that can be inferred from a null-relation, r, with respect to 
a set of NJDs, D, are deduced by ORCHASEo(r).  

COROLLARY 4.3. L e t  r be a null-relation over U and let D be a set of NJDs. Then 
r ~ S A T ( D )  if and only if ORCHASED(r)  ~ r. 

PROOF. The result follows from Theorem 4.2 and the definition of the or- 
chase. • 

In the following we let aj ~ DOM(Aj) be a distinguished total value (cf. distin- 
guished variable [191) associated with the attribute Aj ~ U, j ~ { 1, 2 . . . . .  p}. We now 
define a tableau for an NJD, ~<~[R], thus generalising the notion of a tableau 
[2, 16, 191 to or-relations. 

DEFINITION 4.4. The tableau for the NJD, ~ [R], denoted by TABLE(R), is an 
or-relation, over U, comprising the set of tuples {tl, t 2 . . . . .  tra) such that ti, 
1 _< i < m, is constructed as follows (where MANY(R) = X): 

(1) VAjE(R in  X),t i[Aj] _~ aj v null; 
(2) VAj~(Ri - X),ti[Aj] ~= aj; and 
(3) VAj~(U - Ri), ti[Aj] ~ null. 

EXAMPLE 4.1. Let R = (ABC, ABD, AE}, then the tableau for R, TABLE(R), is 
shown in Figure 4.1. Also, let R ' =  (AB, BCD, CE}, then the tableau for R', 
TABLE(R'), is shown in Figure 4.2. 
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A B 

al v null az v null 
al v null a2 v null 
a 1 v null null 

C D E 

a3 null null 
null a4 null 
null null a5 

Fig. 4.1. TABLE ({ABC, ABD, AE}). 

A 

al 
null 
null 

B C 

a2 v null null 
a 2 v null a3 v null 

null a3 v null 

D E 

null null 

a4 null 
null as 

Fig. 4.2. TABLE ({AB, BCD, CE}). 

Next we define the valuation [3, 16, 19] of a tableau. 

DEFINITION 4.5. Let ~b be a mapping (called a valuation), which maps a tableau 
into a set of null-relations over U as follows: ~b maps a total value a~ to a~, maps null to 
null and maps an or-value, a~ v null, either to a~ or to null. Correspondingly for 
a tuple (vl, v2 . . . . .  vp) we have: qS((vl, v2 . . . . .  vv)) = (t~(V1) , ~(V2),... , ~)(l~p));  ~ is 
extended to a tableau T as follows: 4~(T) = {~b(t) I t~ T}. 

The set of null-relations ifiduced by the mappings qS, denoted as NULL(T), is 
defined by: NULL(T) = (r l3 ~b such that qS(T) =~ r}. The set of valuations induced 
by NULL(T), denoted as #(T), is defined by: #(T) = {4~1 ~b(T)~NULL(T)}. We 
observe that if T contains n distinct or-values then the cardinality of NULL(T) and 
therefore q~(T) is 2". 

In the results that follow we utilise the five abbreviations of the expressions 
numbered (1) to (5) given below; R is a database scheme over W _ U, D is a set of 
NJDs and q~ e #(TABLE(R)). 

(1) ORCHASED($(TABLE(R)))  is abbreviated to ORD(4~(T)). 
(2) ORCHASEDu{~ts]~(c~(TABLE(R)))is abbreviated to ORD~s($(T)). 
(3) (~(ORCHASEo(TABLE(R))) is abbreviated to $(ORD(T)). 
(4) ORCHASED(TABLE(R))  is abbreviated to ORb(T). 
(5) ORCHASEDu~tsj~(TABLE(R))  is abbreviated to ORa~,s (T). 

The following lemma shows what happens when a valuation, qS, is interchanged 
with the or-chase procedure. 
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LEMMA 4.4. Let R be a database scheme over W~_ U and let D be a set of NJDs. 
Then V d? ~ @(TABLE(R)), ORD(~b(T)) ~ dp(ORo(T)). 

PROOV. Let (k e @(TABLE(R)) be a valuation. We prove the result by induction 
on the application of the rules during the successive applications of To to 
~b(TABLE(R)) and TABLE(R). 

BASIS. Consider any tuple t ~ ( T A B L E ( R ) ) ,  then t~ORo(dp(T)) and also 
t' ~ ck(ORo(T)) such that t < t', trivially. 

INDUCTION. Let ~ ~ be an intermediate state of the tableau during the computafion 
of ORb(alp(T)) and let ~2 be an intermediate state of the tableau during the computa- 
tion of ORo(T) such that ~1 F__ ~b(~2). Now, iftl, t2, . . . ,  t, ~ rl arejoinable tuples over 
a covering subset database scheme S o f R  with the resulting tuple t e ORo(q~(T)), then 
by inductive hypothesis there must exist tuples tl, t~ . . . . .  t'~ ~ f2, such that t~ < ~b(t~), 
t2 < ~b(t~),...,t, < ~b(t',). Since tl, t2, . . . , t~ are joinable on S then so are 
q~(t'l), ~b(t~),..., ~(t',) with the resulting tuple ~b(t'); consequently t~, t~ , . . . ,  t', are 
or-joinable on S with the resulting tuple t' ~ ORb(T) and thus d~(t') ~ ~b(ORD(T)). The 
result now follows that t < ~b(t') as required, since or-joinability is a monotone 
mapping. [] 

We note that the reverse of Lemma 4.4, i.e. ¢b(ORo(T)) F" ORo(~(T)) is, in general, 
false. For example, let D = { ~<~ [R]} where R = {ABC, ABD, AE} as in Example 
4.1, and let ~ map a i v  null to a i and a2 v null to null. Then, it can easily be verified 
that the tuple, (a i ,  a2, a3, a4, a~>, is in ck(ORD(T)) but not in ORo(ck(T)). 

The following lemma establishes the relationship between the or-chase of a tab- 
leau, say T (which is an or-relation), and the or-chase of its set of corresponding 
null-relations, NULL(T) .  

LEMMA 4.5. Let R be a database scheme over W ~ U and let D be a set of NJDs. 
Then ORo(T)_~ ORD~R(T ) if and only if V~be~(TABLE(R)), ORo(~(T))_~ 
O RDux(c)( r)). 

PROOF. (IF): Let ~b~@(TABLE(R)) be a valuation. We prove the result by 
contradiction to the fact that V~be@(TABLE(R)); ORoun(~(T))E ORo(qb(T)). 
Now, since ORo(T ) ~ ORouR(T ) holds trivially we assume that ~(ORou~(T) 
ORo(T)). Thus, there must exist a tuple, t, such that t • ORoum(T) and there does not 
exist a tuple t', where t < t' and t [MANY(R)]  ~ t'[MANY(R)], such that 
t' ~ ORo(T). 

We can now choose a valuation ~b e @(TABLE(R)) such that tk promotes an A-or 
value, ai v null, to an A-total value ai if andon ly  if t is A-total and A e MANY(R). 
Let ~ be an intermediate state during the computation of ORo~z(T) and let ~z be an 
intermediate state during the computation of ORo,~(ck(T)). By the choice of ~b we 
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observe that t ~ ORD~s(T) implies q~(t) s ORo~,s(c~(T)). This is due to the fact that if 
~f~ such that t~,t2,.. . ,  t~ sf~ are or-joinable tuples over a covering subset database 
scheme S of R with the resulting tuple reORDer(T), then 3f2 such that 
49(tO, q~(t2) . . . . .  C~(tn)ef2 are joinable tuples over S with the resulting tuple 
(o(t) ~ ORo~s(q~(T)) (this can be proved by induction). Similarly, t' ¢. ORD(T) implies 
49(t') q~ ORD(qb(T)), since if ~ f3, an intermediate state during the computation of 
ORb(T), such that a set of or-joinable tuples in f3 would result in the tuple 
t' e ORo(T), then ~ f4, an intermediate state during the computation of ORo(~b(T)), 
such that a corresponding set of joinable tuples in L~ would result in the tuple 
(a(t')eORD((9(T)). From the above we obtain a contradiction to the fact that 
ORD~s(c~(T)) ~ ORD(4(T)), thus proving the result. 

(ONLYIF): We prove the result by contradiction to the fact that ORD(T)~ 
ORD~s(T). Now, since ORD(4(T)) 7-- ORD~s(4(T)) holds trivially we assume that 
~(ORo~s(d?(T)) ~ ORD(gp(T)) ). Thus, there must exist a valuation ~b s ~(TABLE(R)) 
and a tuple, u, such that u ~ ORo~s((a(T)) and there does not exist a tuple, u', where 
u < u' and u[MANY(R)] ~ u'[MANY(R)], such that u's ORD(q~(T)). 

We can now choose a tuple t ~ ORo~s(T) such that t[A] is an A-or value or an 
A-total value if and only if u = tk(t) is A-total and A e MANY(R). By the choice of 
t we conclude using an argument similar to that in the if part that qS(t) ~ ORo~s (~b(T)) 
implies t ~ ORDus(T). Similarly, u' = 4~(t') ~ OR9(4(T)) implies t'¢ ORD(T). From 
the above we obtain a contradiction to the fact that ORDer(T)~  ORz~(T), thus 
proving the result. • 

The ensuing theorem establishes the main result of the paper, namely that the 
or-chase procedure solves the inference problem for NJDs. 

THEOREM 4.6. Let D be a set of N J Ds and let ~ JR] be a single N J D. Then D I= 
~<~ [R] if and only if ORD(T) ~ ORDeR(T). 

PROOF. (IF): IfORD(T) ~- ORous(T) then by the only if part of Lemma 4.5, V~ e 
~(TABLE(R)), ORb(alp(T)) ~- ORD~g(qb(T)). Now, let r ~ SAT(D) be a null-relation 
over U and let tl, t2 . . . . .  tn~ r be joinable tuples over a covering subset database 
scheme S of R, with the resulting tuple, t, over U. We now define a mapping q~ for the 
tuples ti, 1 _< i <_ n, as follows: q~ maps null to null and maps a total value t[Aj] to the 
distinguished total value aj e DOM(Aj) for each Aj e U. From the definition of ~ it 
follows that 3~be4~(TABLE(R)) such that t} _< q~(h), where t'ieORD(O(T)) and 
t'i[MANY(R)] = ~(h[MANY(R)]), 1 _< i _< n. Now, since h are joinable over S, 
then t',, 1 _< i _ n, are also joinable over S with the resulting tuple t 'e ORD(~(T)). It 
follows that t e r  since t'_< ~(t) and ORD(d?(T))~-ORDus((b(T)), implying that 
r ~ SAT(D w { t><~ [R]}) as required. 

(ONLYIF): If D]= c,<~[R] then SAT(D~{~<3[R]})=SAT(D). Thus, Vre 
NULL(TABLE(R)), ORCHASED(r) ~ SAT(D u { t><3[R]}), since by Theorem 4.2 
ORCHASED(r)ESAT(D). It follows from Lemma 4.1 and Corollary 4.3 that 



INFERRING NULL JOIN DEPENDENCIES IN RELATIONAL DATABASES 427 

Vr ~ NULL(TABLE(R)), ORCHASEu(r) ~ ORCHASEouI~tml)(r). Thus, the result 
follows by the if part of Lemma 4.5. • 

We note that the above results are also obtained for embedded NJDs, since in our 
formalism embedded NJDs are a special case of NJDs, i.e. when W c U. It is 
interesting to observe that, when using marked nulls, testing implication for embed- 
ded data dependencies (embedded JDs being a special case) is, in general, known to 
be only partially decidable. As a consequence of Theorem 4.6, in our context, the 
or-chase procedure is decidable for embedded NJDs as well as for NJDs. 

The following corollary follows directly from Theorem 4.6. 

COROLLARY 4.7. Let P be an inference procedure for NJDs, which returns true if 
and only if ORb(T) ~- O R o,,xt( T). Then P is a sound and complete inference procedure 
for NJDs. 

EXAMPLE 4.2. Let R = (ABC, ABD, AE} and D = {~xJ[{ABC, ABDE}], ~,<~ 
I-{ABD, AE}]}. Then it can be verified that ~(ORCHASED(TABLE(R))~ 
ORCHASED~t~tRj)(TABLE(R))), where ORCHASEo~t~tRI~(TABLE(R)) is shown 
in Figure 4.3, since the tuple t - (al, a2 v null, a3, null, as> e ORCHASED~t~tRI~ 
(TABLE(R)) but t q~ ORCHASED(FABLE(R)), implying D I# t~z [R]. 

Example 4.2 illustrates the fact that unlike the classical chase procedure, in the 
or-chase procedure a tuple of distinguished total values does not necessarily indicate 
NJD implication. 

EXAMPLE 4.3. Let R ' =  {AB, BCD, CE} and O = {t>o[{AB, BCDE}], ~ [ { C E ,  
ABCD}]}. Then it can be verified that ORCHASEo(TABLE(R'))~ 
ORCHASED,~C~tRqI(TABLE(R')), as shown in Figure 4.4, implying D I= t:xa[R']. 

Some of the tuples, which are less informative than the tuples appearing in Figures 
4.3 and 4.4, respectively, are omitted. This does not affect the result, since we do not 
distinguish between members in each of the equivalence classes induced by =~. 

5. Concluding remarks. 

We have defined a class of data dependencies, namely NJDs, which hold in 
null-relations, and have shown that the or-chase is a sound and complete inference 
procedure for NJDs. In order to prove this result we generalised null-relations to 
or-relations by allowing them to contain a limited form of disjunctive information. 
This result implies that the inference problem for NJDs is decidable; this is due to the 
fact that in our model for incomplete information we include only a single unmarked 
null value, i.e. null. A further implication of our result is: if r contains n distinct 
or-values then ORCHASE(r) is equivalent to applying the or-chase procedure to the 
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a l  

a l  

a l  

A B 

v null a2 v null 

v null a2 v null 

v null null 

a~ a 2 

a l  a2 

a l  a2 

al az v null 

al a2 v null 

C D E 

aa null null 

null a,, null 

null null a5 

a3 a4 null 
null a,, a5 

aa a4 a5 
null a4 a5 

a 3 null a5 

Fig. 4.3. ORCHASEo~tK1~(TABLE(R)). 

A 

17l 1 

null 

null 
a l  

a l  
null 

B C 

a2 v null 

a 2 V null 

null 

a2 

a2 

a2 v null 
i 

D E 

null null null 

aa v null a4 null 

a3 v null null a5 

a3 v null a4 null 

a3 a4 a 5 

a3 a4 a5 

Fig, 4.4. ORCHASED(TABLE(R')) ~ ORCHASED,q~IR,I~(TABLE(R')). 

2" null-relations induced by r. 
Finally, our results are more general than the ones presented in [11], since we 

make no assumptions about the acyclicity or cyclicity of the database scheme as is 
the case therein, where only y-acyclic database schemes [5] are considered. 
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