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BRANCH-AND-BOUND AS A HIGHER-ORDER FUNCTION 

G.P. McKEOWN, V.J. RAYWARD-SMITH and H.J. TURPIN 
School of Information Systems, University of East Anglia, Norwich NR4 7TJ, U.K. 

Abstract 

The branch-and-bound paradigm is presented as a higher-order function and illustrated 
by instantiations, providing two well-known branch-and-bound algorithms for the Steiner 
tree problem in graphs and one for the travelling salesman problem. We discuss the 
advantages of such a specification and various issues arising from sequential and parallel 
implementations of branch-and-bound kernels. 

1. Int roduct ion 

Branch-and-bound (B&B) algorithms are commonly used to solve a wide variety 
of problems in operational research, combinatorial optimisation and artificial intelligence. 
However, there are many differences of opinion over precisely which algorithms fall 
into the category B&B. The term "branch-and-bound" was first used in the field of 
operational research to refer to a method for solving general, mixed-integer, linear 
programming problems [ 10, 24]. Even within operational research itself, the term has 
been applied to a number of more specialised algorithms, such as Balas' 0 -1  additive 
algorithm [4], and to algorithms exploiting the special structure of topological network 
problems [14,25,40]. More controversially, in recent years it has been claimed that 
a number of AND/OR graph search procedures used in the field of artificial intelligence 
can, in fact, be viewed as B&B algorithms [21,24]. 

In section 2, we describe the components of the B&B paradigm and use a B&B 
algorithm for the travelling salesman problem. (TSP) as an illustration, although we 
do not suggest that the resulting algorithm is state-of-the-art for the TSP. A formal 
specification of each of the components is given in the appendix, where we present 
branch-and-bound as a higher-order function. Higher-order functions provide a 
mechanism for modularising algorithms in new and exciting ways. They enable us 
to encapsulate entire classes of algorithms within a single meta-algorithm, a process 
which we call algorithm abstraction. The latter has tremendous potential for easing 
the increasingly complex task of developing software for a variety of computer 
architectures. An eloquent case for the importance of higher-order functions is presented 
in [15]. 

We define a B&B algorithm to be any algorithm which can be instantiated as 
a particular instance of our B&B higher-order function. It may be shown [43] that 
all of the algorithms to which the term "branch-and-bound" is usually applied, from 
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any of  the areas mentioned above, are indeed B&B algorithms according to our 
definition. Furthermore, a number of less obvious candidates are also seen to be of 
type B&B [43]. In section 3, we instantiate our higher-order function to yield two 
B&B algorithms for the Steiner tree problem in graphs - a problem, like TSP, of 
particular relevance to topological network design. 

Previous attempts at general formulations of  the B&B paradigm are given in 
[1,5, 17,20,30,31]. The advantage of  our approach is that we have produced a clear, 
higher-order functional specification of the algorithm type B&B. The high degree of  
modularity exhibited by our specification facilitates the production of software skeletons 
which can be used as a basis for implementing large subclasses of B&B algorithms. 
The use of these skeletons for B&B is described in section 4. In section 5, a serial 
implementation of the higher-order function is described. The language Modula-2 
has been used for this implementation and the advantages arising from this choice 
of language are discussed. We conclude the paper with a brief discussion of parallel 
implementations of the B&B higher-order function. We believe that by providing the 
software for B&B skeletons, we will considerably simplify the implementation and 
enhance the portability of parallel B&B algorithms. 

2. Abstraction of the branch-and-bound paradigm 

2.1. THE SPACE OF PROBLEMS 

We consider the B&B paradigm to be an approach for solving certain types 
of constrained optimisation problems (COPs). In general, a COP has the form 

optimise f : S ~ W 

over F = {s ~ S Is is feasible}. 

s ~ S is feasible iff it satisfies each constraint in a specified set of  constraints. 
W is a totally-ordered set with ordering >>. For w~, w 2 ~ W, w 1 >> w 2 iff w~ >> w z 
and w 1 ~ w 2. 

An optimal solution of the above COP is specified as follows: 

if F ~ ~ ,  an optimal solution is some s* ~ F such that Vs ~ F :f(s*) >>f(s); 

if F = 9 ,  the optimal solution is 09, where 09 ~ S may be interpreted as "undefined". 

In a discrete constrained optimisation problem (DCOP), only a finite (although 
possibly very large) number of elements of S need to be considered in order to determine 
an optimal solution. The aim of a B&B algorithm is to limit the number of  elements 
that need to be explicitly enumerated. This is achieved using a tree search, together 
with various strategies for pruning parts of  the search tree. All of  the nodes in such 
a tree correspond to DCOPs of  the same type. The root node corresponds to an initial 
given problem and the path from the root to any other node corresponds to a sequence 
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of elementary operations which transforms the initial problem into the DCOP 
corresponding to that node. We denote by P the space of  problems in which all of 
the DCOPs corresponding to nodes in the tree must lie. 

The higher-order function for branch-and-bound is formally specified in fig. 
2 (appendix). The problem- and algorithm-dependent functions for our higher-order 
B&B function are listed in a uses functions statement. The interpretation of each of 
these functions is described in the context of a B&B algorithm for the travelling 
salesman problem in this section, and formally in the appendix. 

2.2. A BRANCH-AND-BOUND ALGORITHM FOR THE TRAVELLING SALESMAN PROBLEM 

The travelling salesman problem (TSP) is a well-known NP-complete problem 
in topological network design. In this section, we describe a simple B&B algorithm 
to solve the TSP. We have deliberately avoided incorporating performance-enhancing 
techniques in favour of conveying the ease with which a B&B algorithm can be 
described in terms of the higher-order function. For a survey of state-of-the-art B&B 
codes for the TSP, see [6]. 

Given a graph G = (V, E), where V = { 1 . . . . .  n} and costs cij  ~ 2 + u {oo} (for 
i = 1 . . . . .  n and j = 1 . . . . .  n) are defined by: 

cost of edge ( i , j )  i f ( i , j )  ~ E, 

ci j  = otherwise, 

the TSP is that of finding a minimum cost tour of  all the vertices, visiting each vertex 
exactly once. Without loss of  generality, we assume that the tour starts and ends at 
vertex 1. The TSP can now be expressed by: 

/'1 

minimise 
i=1 

subject to {s 2 

S1 

Csi'-~i+ 1 

. . . . .  s . }  = {2 . . . . .  n}, 

= S n + l  = 1. 

v I . . . . .  v k (2 < k < n + 1) is a simple cycle in G if each vertex v i ~ V only appears 
once except that v~ = v k. For this example, we can view the solution space S as comprising 
all simple cycles including vertex 1. Thus, each element of S can be represented by 
a sequence of the form s 1 . . . . .  s k ,  where s I = s k = 1 and s 2 . . . . .  s k are disjoint 
integers in {2 . . . . .  n}. s ~ S is feasible (i.e. represents a tour of all the vertices) iff 
l ( s )  = n + 1, where l ( s )  denotes the length of the sequence. Since we wish to minimise 
the objective function, we define W = 7, ÷ u {oo}, ordered by _<. 

The first step in the B&B method is to establish whether a tour of all the 
vertices has been made. If so, then a feasible solution of  the TSP has been found; 
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otherwise, we derive a set" of  new problems by branching from the most recently 
visited vertex to each unvisited vertex. These problems (called the children of the 
original problem) are added to the active list, and the B&B repeats the process on 
the problems that are selected to be solved next. 

2.3. A STATE SPACE REPRESENTATION 

Each node in the search tree represents a problem-state of  type X = P x Y.*, 
where (p, or) ~ X describes a problem p ~ P and the sequence cr ~ E* of  elementary 
operations transforming the initial problem P0 into p. In the sequel, we assume that 
x =  (p, a).  

For our TSP example, a problem p ~ P is parameterised by a sequence of  
fixed vertices (v2v 3. . .  v,n ) corresponding to a path, path(p), 1, v 2 . . . . .  v m of length 
m, and representing the problem: 

n 

minimise ~ C$i$ i  + 1 

i=1 

subject to {s2 . . . . .  s .  } = {2 . . . . .  n}, 

S 1 = S n +  1 = 1, 

si = v i ,  i= 2 , . . . , m ,  

We denote by free(p) the set of vertices not in path(p). Thus, P0 = () is the parameterised 
initial problem, and free(P0 ) = {2 . . . . .  n}. 

Y~ denotes the set of elementary operations, and Y.* the set of  all sequences 
over E. e ~ E* is the empty sequence. Corresponding to each tr ~ E* is a (partial) 
function 0" : P --~ P. We define o ( p )  = p if o" = e, but otherwise o" = a'r, a ~ Z and 
"t" ~ Y.*, and i f (p)  = a(~(p)). Then, 

X = {(p, or) E P ×  E* ] o-(p0) = p}, 

and x o = (Po, e) represents the initial problem-state. For our TSP example, we set 
E = {2 . . . . .  n} and cr ~ E* is a string of  visited vertices and represents path(p). If  
v ~ free(p), then v(p)  = (v2 . . .  vmv). 

By interpreting F as a function over P, we may denote P by a pair of  
functions ( f ,  F),  where f :  S ~ W is the function to be optimised and F(p)  
= {s ~ S[is_feasible_for  (p)  (s)}. Here, is_feasible_for is a higher-order truth- 
valued function of  type P ~ (S --~ B). Thus, F(p)  is the set of  those s ~ S 
satisfying all o f  the constraints o f  problem p. Because F(p)  c_ F (Reql  - appendix), 
we do not really need a feasibility predicate parameterised by the problem. We 
therefore define a truth-valued function is_feasible : S --~ B (where B denotes the 
type Boolean) such that 
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is_feasible ~. is_feasible_for (P0) 

As already observed, in the TSP example is_feasible(s) is true iff  s contains all of  
the vertices in V. 

In a B&B algorithm, each node x e X in the search tree is labelled with a value 
of S u { o9}. We define label: X ---) S u { co} to be the function assigning labels to 
nodes in X, such that if  label(x) e F ( p ) ,  then label(x) is an optimal solution for p 
(Req2 - appendix). For the TSP algorithm that we are describing, label((p, or)) = 
concat(path(p), 1). 

2.4. BRANCHING AND BOUNDING 

At any stage in a B&B algorithm, the best solution so far found forPo is called 
the incumbent. The incumbent is equal to o9 until some element of F is known, and 

from then onwards it is an element of F giving rise to the best value of f s o  far found. 
On termination of  the algorithm, the incumbent is an optimal solution forP0. A problem- 
state x e X becomes bounded when it is known that branching from x would not lead 
to a better incumbent. A bounded problem-state will not be expanded by the B&B 
algorithm. 

We define a dynamic function, bound: X ~ W, satisfying the admissibility property 
of Hart et al. [13] and Nilsson [32], namely that unless x is bounded the value of 
an optimal solution for p is no better than bound(x). This is formally stated in Req3 
(appendix). If A = label(x) e F(p) ,  then bound(x) = f(A); otherwise bound(x) is an 
estimate of  the value of  an optimal solution for p, unless x becomes bounded when 
bound(x) is set to _1_, the bottom element of W. For our TSP example, we define 
bound : X ---> W as follows: 

t (p)-I  

bound((p, ty)) = clv2 + ~ co, v;+1 + e, 
i = 2  

where e = c~,, if l (p )  = n, but otherwise e is a lower bound estimate on the cost of  
completing the tour (visiting all unvisited vertices and returning to vertex 1). 

For each problem-state x, there is a set of children problem-states derived by 
applying to p all those elementary operations in Z that are defined on p. We define 
a function, child: X ---> 2 x, where child(x) is a finite (and possibly empty) set of  the 
set of  children problem-states of  x comprising only those children of  x that are to be 
considered in finding an optimal solution of the initial problem. Thus, 

child(x) c {(a(p), acrl a e E and a (p )  is defined}. 

To guarantee that B&B returns an optimal solution for the initial problem, we impose 
the requirement that there is some x'  = (p ' ,  ty') e child(x) such that the value of an 
optimal solution for p '  is equal to that for p (Req4 - appendix). For the TSP, 

child((p, o')) = {((v 2. . .  7fll(p)Tfl), ~)(~) I v ~ free(p)}. 

Hence, child((p, t~)) = 0 iff l (p )  = n. 
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2.5. EXPANSION AND SELECTION 

A fundamental aspect of a B&B algorithm is the expansion of problem-states. 
The process of expanding a problem-state x involves the following. If ~ = label((p, o-)) 
is feasible forp  and hence (since F(p) c_ F) is also feasible forpo, then ~, is considered 
as a possible optimal solution for P0. Otherwise, x is branched from by generating 
child(x) and adding this set to the active set of problem-states that have been generated 
but not yet expanded. Initially, the active set is the singleton set containing (P0, e). 
A problem-state is removed from the active set when it is expanded and then becomes 
a member of the dead set, which consists of  problem-states that have been both 
generated and expanded. 

x ~ active becomes bounded (i.e. bound(x) is set to Z)  if any of  the following 
tests hold: 

(1) F(p) is known to be 9 ;  

(2) f( incumbent)  >>bound(x); 

(3) 3y  ~ active u dead :is_dom(y, x); 

(4) 3y  ~ active u dead :y ~ x ^ y = isomorph(x). 

[pruning by incumbent] 

[pruning by dominance] 

[pruning by isomorphism] 

Tests 1 and 2 are used in all B&B algorithms; tests 3 and 4 are optional, depending 
on the instantiation of  B&B. B&B using only tests 1 and 2 we refer to as basic B&B. 

The truth-valued function is_dora : X × X --~ B used in test 3 satisfies: 

is_dom(x, y) ~ (x, y) ~ dora ^ x ~ y, 

where dom is a partial ordering defined on X × X such that i fx  ~ y, then (x, y) ~ dom 
only if it is known that y may be bounded if x is generated (Req5 - appendix). An 
equivalence relation Edo m, defined by 

(x, y) ~ Edo m ¢=~ [(X, y) ~ dom v (y, x) ~ dom], 

is used in the implementation to determine a subset of  problem-states in active u dead 
to consider for pruning x by dominance. We discuss this further in section 5. 

Pruning by isomorphism is possible if an equivalence relation, iso, is apparent 
such that if x ~: y, then (x, y) ~ iso only if it is known that one of x and y may be 
bounded if both are generated (Req6 - appendix). Let [x] denote the equivalence class 
to which x belongs. The dynamic function isomorph :X ---) X used in test 4 provides 
an algorithm for determining a representative problem-state of Ix] selected from 
{x} u active u dead. 

The use of dominance and isomorphism is illustrated in our algorithm for the 
TSP because only one of the problem-states x and y need be expanded if each represents 
a path through the same set of vertices finishing at the same vertex. If y ~ active u dead, 
then x ~ active is pruned by dominance if bound(y) >> bound(x), pruned by isomorphism 
if bound(y) = bound(x), and expanded otherwise. 
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Suppose  x = (p,  or) and y = ( p ' ,  crP), then i s _ d o m : X x X - - >  B and 
isomorph :X--> X are defined by: 

is_dom(y, x) - [(free(p) = f ree(p ' ) )A (7)l(p) = 7)t~p')) ̂  (bound(y) >> bound(x))]; 

isomorph(x) = t l  

if qy  ~ (active u dead) s.t. (free(p) = free(p ' ) )  
P A (Vt(p) = 7)l(p')) ^ (bound(x) = bound(x')),  

otherwise. 

Problem-states are selected in order of precedence from the active set to be 
expanded. Only problem-states that have not been bounded are selected. The precedence 
ordering is established by a priority function [38]. We define V to be some partially 
ordered set with ordering _.  For v~, v 2 ~ V, we define v~ D v 2 iff v~ _D 7.) 2 A 7) 1 ¢ 7)2" 

priority :X--~ V is a total function defined such that x has precedence over y iff  
priority(x) D priority(y). For the algorithm that we are describing for the TSP, the 
precedence ordering establishes a best-first search. This is instantiated by specifying 
that V = W, D = >>, and priority(x) = bound(x) Vx ~ X. 

The B&B function is defined on the set B_and B state = 2 x × 2 x × (S × W). 
Our TSP algorithm is thus B&B instantiated in the way described above. 

3. Branch-and-bound algorithms for the Steiner tree problem in graphs 

We will illustrate the use of the branch-and-bound higher-order function by 
describing two basic B&B algorithms for the Steiner tree problem in graphs. This 
is an important problem in topological network design. The two algorithms we 
describe are given as instantiations of  branch-and-bound by defining: 

(a) the types of P, E (and hence of X = P × Z*), S, V and W, and 

(b) the uses funct ion  priority:X ---) ~ is_feasible:S ---) B, label:X --) S u  {o~}, 
bound :X ---) W, child :X ---) 2 x, is_dom :X x X---) B and isomorph:X ---) X. 

Given a graph G = (V, E) with cost function c : E  ---) ;~+, the Steiner tree problem in 
graphs (SPG) is that of  connecting together some given subset of  special vertices 
K a V as cheaply as possible. The solution will always be a minimum spanning tree 
of some subgraph induced by K u S, for some subset S. This subset S of vertices used 
in addition to K is called the set of Steiner vertices. 

The decision problem associated with SPG is known to be NP-complete [19]. 
However, some encouraging progress has been made concerning this problem. On 
the heuristic side, promising algorithms with guaranteed worst-case performances 
have been proposed by Takahashi and Matsuyama [42], Rayward-Smith [36, 37,47], 
Plesnik [33], and Wu, Widmayer and Wong [48]. For both heuristic and certainly for 
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exact algorithms, it is wise to incorporate various problem reduction techniques to 
attempt to reduce the size of the problem. These are based on the inclusion/exclusion 
of certain vertices/edges/subgraphs. Details can be found in [3,11]. 

In this section, the two algorithms we present are both exact and based upon 
the branch-and-bound paradigm. The first is based on edge selection and the second 
on vertex selection. Other exact methods and further results on heuristics, reductions 
and special cases can be found in [16], which is a useful collection of all the major 
papers concerning SPG. 

3.1. THE SHORE, FOULDS AND GIBBONS ALGORITHM 

The first algorithm we describe was first published in [41]. We assume 
V = {1, 2 . . . . .  n}, K = {1, 2 . . . . .  k} and the cost of edge ( i , j )  is cij = c((i , j)) .  The 
edges of G are represented by the symmetric cost matrix C = [cij], where cij = oo iff 
i = j or ( i , j )  ~ E. 

The problem space P is a set of problems of the form "find a minimum cost 
subgraph of G which contains K and the edges E 1 but excludes the edges E2". Thus, 
a problem p ~ P can be parameterised as (E x, E2). The initial problem P0 is parameterised 
as (0,  O). 

E = {e, e ' l  e e E}. We use e to denote the inclusion of e in the Steiner tree 
and e '  for the exclusion of e in the Steiner tree. I f p  = (E 1, E 2) is some problem in 
P and e ~  E l U E  2, then 

e(p) = (E x w ( e } , E 2 )  and e'(p)  = (E 1,E 2w(e} ) .  

The solution space S consists of sets of edges of the graph G. We define is_feasible(s) 
is true iff the set s of edges represents a connected subgraph of G containing all of 
the vertices of K. 

label: X ---) S u { co} is defined by label((p, or)) = label(((E 1, E2), or)) = co if the 
graph (V, E - E2) does not contain a connected Component containing all the vertices 
in K and all the edges in E I. Otherwise, label((p, or)) = label(((E 1, E2), 0")) = E 1. 

Since we wish to minimise the cost of the spanning tree, we set W = Z + ordered 
by < and then define bound:X---) W as below. 

If C = [cij] is the original n x n cost matrix and e = (u, v) is some edge, then 
we define e'(C) to be the same as C except cuo = c w = 0o. e(C) is defined to be an 
( n -  1) x ( n -  1) matrix representing the graph where vertices u and v are merged. 
The cost of an edge between two merged vertices u and v, and a third vertex w, is 
defined by min{c~w, cvw}. We can then recursively define a ( C )  for any a ~  E* by 
defining e(C) = C and a'c(C) = a(lr(C)) for some a ~ S, z ~  E*. 

A lower bound for x = (p, or) is computed from the square m x m  matrix 
C p = a (C) .  We define bound : X ---) W by bound(x) = bound((p, 0")) = ~0,, v) e e~ c,,~ 
+ min[b, c], where 
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and 

k 

b= X min {c~ll <j<m} 
i=1 

c = ( ~ m i n { c P ] l < j < k ) )  m i n { c P l l < i < k ' l < j < k } "  

The search is a depth-first search with priority to inclusion edges, so we define 
V = 2 ÷ ordered by > and set priority(x) = priority((p, (r)) = I E 1 I. 

The child function child :X ---) 2 x is defined whereby child((p, (7)) is determined 
by selecting an edge on which to branch which maximises an associated penalty. This 
penalty is computed from C e as follows: 

(1) Calculate a penalty vector T = {til i = 1 . . . . .  k} by 

(a) c/" = min{c~l 1 < j < rn}; k i = the value of  j producing c/*; 

(b) c/+ = min{c,~ I 1 < j < m, j ¢: ki}; 

(c) t i = c ~ -  c i .  

(2) t r = m a x { t i l i  = 1 . . . . .  k}. 

The edge branched on from x = (p, or) is e e = (r, kr), and so 

child(x) = {(ep(p), eecr), (e'p(p), e~cr)}. 

The algorithm of Shore et al. is B&B with initial parameter list 

({Xo), 0 ,  (inc o, valinco)) = ({((0,  0 ) ,  e)}, 0 ,  (E, oo)). 

Neither dominance nor isomorphism features, so we set is_dom to be the constant 
False function and isomorph to be the identity function. 

3.2. BEASLEY'S ALGORITHM (MODIFIED) 

The second B&B algorithm we describe is used by Beasley [7] and is based 
on formulating SPG as a shortest spanning tree problem (SST) with additional constraints. 
Computational results published by Beasley are encouraging, but the algorithm presented 
here is a simplification used to illustrate the B&B paradigm. Much of the success 
of Beasley's algorithm is perhaps attributable to the extensive use of  reduction tests 
embedded within the B&B algorithm. We have omitted these in this paper, since they 
do not illustrate the B&B paradigm. 

Let us assume V = { 1, 2 . . . . .  n}, K = { 1, 2 . . . . .  k} and the edge between i 
and j can be represented either as (i, j )  with cost cij or as (j, i) with cost cji. From 
G, construct G o by adding 
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(a) a new vertex 0 to G, 

(b) for each i > k, a new edge (0, i) of cost col 

(c) an edge (1, 0) of  cost c01 = 0. 

= 0 ,  and 

To solve SPG for G, we must solve SST for 

G O = (Vo, Eo) = (Vt . )  { 0 } , E u  {(0, i) I i E  V - K t J  (1}}), 

subject to the additional constraint that the SST T computed must satisfy 

~'i > k, [(0, i) E T :=~ degreer(i ) = 1]. 

Now, let P/denote all edges adjacent to vertex i in G. By defining xij = 1 if edge 
(i, j )  ~ E 0 is in the optimal solution and 0 otherwise, we can construct an IP formulation 
of the constrained shortest spanning tree (CSST) problem as follows: 

zST = min Z { c i j x q ] ( i , j ) ~  E0} 

subject to 

(xij] forms a spanning tree on (V o, Eo), 

Xoi + xuo < 1 V (u, v)  ~ Pi, V i  > k / /degree  constraint//, and 

XiyE {0, 1}. 

Note that the first of  these constraints can easily be expressed equationally and that 
if Zsp is the value of the optimal solution to SPG on G, then Zsp = zST. 

Following Beasley, we construct a Lagrangian lower bound program (LLBP) 
which uses Lagrangian multipliers to "price out" the degree constraint of  a CSST 
problem. The resulting SST problem can then be solved using Prim's algorithm [34]. 
For any set of  Lagrangian multipliers {si, ~ > 01i > k, (u, v) ~ P/}, LLBP as defined 
below returns a lower bound for Zsp. 

LLBP: 

where 

~a J 
minimise { c q x q l ( i , j ) ~  E 0 } - Z { s i " v l i > k , ( u , v ) ~  Pi} 

subject to 

[xq] forms a spanning tree on (V 0, E0), and 

{0, 1}, 

= Z(sj.o l (u, v) 
= Cq + Siq 

= cii + sjq 

= c q + S u j + S j q  

= Cij 

i f / = 0  a n d k < j < n ,  

i f  ( i , j ) ~  E , k  < i < n and 1 < j < k ,  

i f  ( i , j )  E E, 1 < i < k and k < j < n, 

if ( i , j )  ~ E , k  < i < n and k < j <  n, 

otherwise. 
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Subgradient optimisation is used to choose the Lagrangian multipliers to maximise 
the lower bound obtained by LLBP; we denote this lower bound by ZLB. 

The problem space P is a set of constrained SST problems presented as IP 
formulations. The initial problem Po is CSST as constructed above. 

Y. = {i, i '  I k < i -< n}. We use i to denote the inclusion of  i in the Steiner tree 
and i" for the exclusion of  i in the Steiner tree. I fp  is some constrained SST problem, 
then i (p)  is p with the additional constraint that i must be in the Steiner tree, i.e. that 

r.{x ol(u,v) e P,.} >_ 2. 

Similarly, i ' (p )  has the additional constraint that 

Each o" ~ E* can also be used in an obvious way to construct a subgraph from G o. 
If p = tr(po), then this subgraph will be denoted by Gp = a(G0). 

The solution space S consists of  sets of  edges of the graph G o. Defining 
xij = 1 if  {i, j )  E S and 0 otherwise, we define 

is_feasible(s) = true iff [xij] satisfies the conditions of  CSST. 

If we wish the use a sequential (inclusion first) depth-first search, we define 
'/2 = £* ordered by 

o" D t i f f  3i, 3 j  > 0: [ a  1 0 2 . . .  t~ = ~'1 '172 • • • ~ A (~+ 1 ---- i A ~ +  1 ---- it] 

and priority((p, o')) = o'. 
The required solution is a set of  edges forming a tree so label:X ---) S u { o9} 

is defined by label((p, a ) )  = o9 if there is no feasible solution to p, i.e. there is no 
path in the graph Gp between 1 and vertex i for some i ~ K, but otherwise label((p, tr)) 
is the set of  edges selected by LLBP applied to p. Since we wish to minimise the 
cost of  the tree, W = Z ÷ is ordered by <_ and bound :X --) W is defined by bound((p, ix)) 
= ZLB, i.e. the result of applying LLBP to p .  

The child function child : X --~ 2 x can be defined as follows. Let Vp denote that 
subset of  V - K which has not been constrained to be in or out o f  the solution by the 
additional constraints ofp .  If Vp = 9 ,  then child((p, o-)) = O but, otherwise, consider 
the tree constructed by applying LLBP to p. Let V; denote the vertices of  Vp which 
have degree 1 in that tree and VTthose vertices with degree > 1. If  VT= ~ ,  select 
i ~ V~ to maximise ' "  " ' ' Co/, otherwise select i E V~ to maximize Cop Then define 
child((p, s))  = {(i(p), ity), ( i ' (p) ,  i ' a )} .  

Finally, we set is_dom to be the constant false function and isomorph to be 
the identity function because, once again, we will use neither dominance nor iso- 
morphism in this instantiation. 

The function B&B can now be called with initial parameter list ({x0}, ~ ,  
(inc o, valinc0)), where inc 0 and valinc 0 are a solution of SPG obtained using a reliable 
heuristic. 
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4. Kernels for B&B 

The higher-order function can be implemented on a variety of architectures and 
an instantiation prescribed in a variety of languages. In section 5, we describe the 
sequential implementation of branch-and-bound kernels written in Modula-2 and 
requiring Modula-2 input which we have developed based on the higher-order function. 
Kernels to support parallel branch-and-bound written in an extended C and requiring 
input in C have also been developed, and are discussed in section 6. These parallel 
versions run on a Meiko transputer rack organised as an MIMD/MP (Multiple Instruction 
stream, Multiple Data stream Message Passing) computer. 

Figure 1 shows how a B&B program can be constructed using one of our 
kernels. In order to construct a B&B program to solve a particular problem, the user 
must first select the appropriate B&B kemel. We provide guidelines to assist him or 

problem-specific 
input data 

B&B program 
instantiation- 

dependent 
functions 

"-I B&B 
I Kernel 

optimal solution and value 

Fig. 1. Implementation of a branch-and-bound algorithm. 

her in this choice. S(he) must then implement the instantiation-dependent functions 
to complete the B&B program. One B&B program may easily be transformed into 
another by selecting a different kernel and applying a simple transformation to the 
implementation of the instantiation-dependent functions. Thus, an implementation 
may be ported from a sequential architecture to a parallel architecture extremely 
quickly. 

The resulting program finds an optimal solution to the specific problem entered 
by the user. From the problem-specific input data and the parameterisation of a 
problem in P, that problem can be constructed. By choosing to represent problems 
in this way, the amount of storage space required in an implementation to store the 
generated problem-states may be drastically reduced because the input data is not 
stored with each problem description, although a cost is incurred whenever it is 
necessary to construct a problem. For instance, in our TSP example the problem- 
specific data describes a graph and its associated edge costs. This data may be 
represented by a matrix requiring O(n 2) storage space. However, each problem p is 
parameterised by a sequence of fixed vertices requiring only O(n) storage space. In 
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a parallel implementation, the parameterisation of problems is even more important, 
although the input data must be made available to each processor because problem 
descriptions may be transferred between processors. 

5. Kernels for sequential B&B 

Our higher-order function approach toward developing kemels for B&B makes 
Modula-2 a natural choice of language. Algol-68 also possesses many features which 
make it an appropriate choice of programming language, but was not chosen due to 
lack of support at this University. The advantages of using Modula-2 for large 
programs such as this are that solutions to relatively self-contained subproblems can 
be developed and tested independently and that data structures can be hidden, thereby 
encouraging the use of top-down design. In addition, many software tools are already 
available for solving particular subproblems and can be easily incorporated into the 
code. 

5.1. BASIC B&B 

We deal first with the implementation of a kernel for basic B&B; that is, B&B 
without pruning by either dominance or isomorphism. Our implementation comprises 
two definition and implementation module pairs, Instance and HeapModule, and a 
program module, bbModule. The latter was constructed directly from the higher- 
order function making use of procedures to initialise, expand and select. It is a high- 
level description of B&B importing types, constants and uses-functions from Instance 
and an implementation of the Active set from HeapModule. 

The definition module Instance defines the types of the higher-order function, 
whilst its corresponding implementation module defines the constants and uses- 
functions. These modules are completed by the user to instantiate a B&B algorithm. 
They are the only modules which need to be accessed and amended in order to 
describe an instantiation. The instantiation-dependent types P, Y., S, ~ and W are specified 
by the user as type declarations. The representation and manipulation of the remaining 
types X, E* and 2 x are defined in terms of these user-defined specifications. X is a 
record type containing two fields of type P and E, respectively. Z* and 2 x are both 
implemented as Queue types in the absence of the basic type String in Modula-2. 
However, generic types can be implemented in Modula-2. A generic ADT (abstract 
data type) module is a definition and implementation module pair supporting an ADT 
which manages elements of some element type, but is not concerned with the type 
of the elements [28]. A generic ADT module, Queues, has been used to implement 
types E* and 2 x to avoid repetition of code and reduce development time. It will be 
seen below that Queues is used again in the implementation of B&B with dominance 
and/or isomorphism. 

Procedures are used to specify the instantiation-dependent constants Po, 
inc 0, and valinc o, and uses-functions pfiority:X---) V, is_feasible:S---) B, 
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label:X ~ S u {09}, bound:X --, W, and child:X ---) 2 x. The child function has 
been partially defined in this implementation to avoid requiring that compon- 
ents which are common to all instantiations of  B&B are specified by the user. 
Recall, child(x) c {(a(p), at7) [a ~ Z and a(p)  is defined}. The specification of 
child:X ---) 2 x is completed by the user's definition of  the following constituent parts: 

define_map: 

child_prob: 

first_op: 

next_op: 

more_ops: 

E × P  -~ B 

(a, p)  ~ true i f a ( p )  is a member of child(x) and false otherwise; 

Z × P - - ~  P 
(a ,p )  ~-~ a(p);  

P ---) Z 

p ~ a, where a is the first elementary operation to be considered 
for problem p; 

E ---) Z 

a ~ a',  where a '  is the next elementary operation to be considered 
after a; 

Z ---) B 

a ~-* false if a is the last elementary operation to be considered, 
true otherwise. 

In terms of these components, child:X ---) 2 x is expressed as follows: 

child(x) = {(child_prob(a, p), acr) I a E Ops and define-map(a,  p)}, 

where Ops is defined by the following algorithm: 

a := first_op(p); 
Ops := {a}; 
WHILE more_ops(a) DO 

a := next_op(a); 
Ops := Ops u {a} 

END (*WHILE*) 

HeapModule provides an implementation of a heap of problem-state, priority- 
value, bound-value triplets. The heap is ordered by priority values [2]. The data 
structure is hidden from the program module and procedures which are needed to use 
the heap as a priority queue are made available through the definition module. 

A library of functions commonly used in B&B algorithms is provided as a 
useful facility. In particular, we are interested in functions which "collapse" from one 
into the other and in adopting a functional approach to their implementation. For 
instance, best-first search is instantiated by defining priority(x) = bound(x) for all 
x E X, and so we avoid computing both priority and bound values since their computation 
may typically be an expensive operation. We provide a library procedure best_first 
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which copies the value stored in the bound-value field of the heap element into the 
corresponding priority-value field. 

Procedures for type-dependent input and output can also be entered by the user 
in the implementation module Instance. The procedure SetUp() has been designed 
to allow problem-dependent parameters to be defined at run-time. Problems are 
easily changed in this way without access to the implementation. For instance, the 
problem size can be defined by an input to the SetUp procedure. The procedures 
OutputSoln(solution: S) and OutputValue(value: W), respectively, print the optimal 
solution found and its value. 

5.2. EXTENDED B&B 

Now we discuss how the kernel for basic B&B has been developed into an 
implementation of a kernel for B&B which allows the incorporation of dominance 
and/or isomorphism. We call this extended B&B. 

In addition to the definitions required for basic B&B, the instantiation-dependent 
uses-functions is_dom :X × X ~ q3 and isomorph:X ~ X must be defined. Extended 
B&B has basic B&B as its core, but in addition to a priority queue (heap), a set of  
generated problem-states must be maintained by the implementation of extended 
B&B. The generated problem-states are all those problem-states in active u dead which 
have not been pruned. The generic type Queue is again used to implement this 
generated set Gen. The elements of the queue are implemented by variant records 
defined according to whether a problem-state is active or dead. Gen is a set of 
elements which are either pointers to the heap (representing active problem-states) 
or problem-state, bound-value and priority-value triplets (dead problem-states). 

A problem-state x ~ X is pruned by dominance (isomorphism) if there is some y 
in Gen such that (y, x ) ~  dom(iso). Implementing pruning by dominance and/or 
isomorphism is expensive and will only be worthwhile if the search space is pruned 
significantly. We have sought to encourage an efficient implementation by suggesting 
that Gen be divided into equivalence classes, only one of which need be searched 
to establish whether or not a problem-state should be pruned by dominance (isomorphism). 
Thus, rather than implement pruning by isomorphism by searching through the entire 
generated set, a table is used to store pointers to equivalence class representatives 
in Gen. The table IsoTable is implemented as an array of pointers to the generated 
set. When a problem-state is generated, it is installed as the representative in the table 
if one does not already exist, otherwise it is pruned. The user must provide an 
isomorphism-preserving function I: X ~ [ 1 . . .  numlso], such that 

(x,y) E Iso ~ ( I ( x ) = l ( y ) )  Vx, y E X ,  

where [ 1 . . .  numlso] is the domain o f / a n d  numlso E IN is user-defined. The value 
of numlso can be as large as the system allows. Our implementation then provides 
a hashing function which maps values from [ 1 . .  numlso] onto the domain of 
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IsoTable. Hashing techniques [2] are employed to increase the size of IsoTable 
should it become too full. 

The case l(x) = l (y)  Vx, y ~ X guarantees that 1 can always be defined, although 
we advise the user to avoid this case. Ideally, 

(l(x) = l (y ) )  ~ (x, y) E Iso Vx, y ~  X, 

and we encourage the user to aim for a function as close to this as possible in order 
to implement pruning by isomorphism efficiently. 

Recall that some equivalence relation Eao m such that 

(x, y) E Edo m '¢~ [(X, y) e Dom v (y, x) E Dora] 

must be identified in order to implement dominance. The user must provide an 
equivalence-class-preserving function D :X ---> [1 . . .  numDom] such that 

(x, y) ~ Edo m :::> (D(x) = D(y))  Vx, y E X, 

where [1 . .  numDom] is the domain of D and numDom ~ 1,4 is user-defined. Again, 
the case D(x) = D(y)  Vx, y ~ X guarantees that such a function always exists. Ideally, 
(X, y) E Edo m i f f  (D(x )  = D(y)),  but in practice it is unlikely that this will be achieved. 
A table, DomTable, is exploited to implement dominance. This table is implemented 
by an array of queues, where each queue consists of pointers to Gen. Again, a 
hashing function is used to map problem-states onto DomTable. If there is some y in 
the set of problem-states referenced by D(x) such that (y, x) ~ Dom either when x 
is generated or when it is considered for selection, then x can be pruned. By implementing 
dominance in this way, we effectively divide the search space of the generated set 
into a number of unions of equivalence classes. 

For instance, for the instantiation of the travelling salesman problem described 
in section 2, a crude definition of the isomorphism- and equivalence-class-preserving 
function is: 

I(x) = D(x) = l(p) + 1 k/x E X, 

where l(p) is the number of edges so far included in the tour, and numlso = numDom 
= t E I + I .  

Pruning by dominance and/or isomorphism is optional, but in order to instantiate 
an algorithm using one or both of these pruning methods, the user must be able to 
define the uses-functions is_Dom and/or isomorph, and also the dominance- and/or 
isomorphism-preserving functions D and/or L The overheads of implementing dominance 
and/or isomorphism have to be weighed against the amount of work that is eliminated 
by pruning problem-states. Of course, this is instantiation-dependent and so the user 
must decide between the basic and extended B&B kernels. Extended B&B has been 
implemented by introducing Boolean parameters dom and iso, which are defined by 
the user. These constant values are passed from bbModule to procedures in HeapModule 



G.P. McKeown et al., Branch-and-bound as a higher-order funct ion 395 

for adding to or removing problem-states from the active set according to whether 
dominance and/or isomorphism is being used. 

In deciding how to implement adding and removing problem-states, there are 
a number of  factors to be considered. For adding problem-states, the two extremes 
are to: 

PxI add all generated problem-states, and 

PI2 add only all those generated problem-states which cannot be pruned. 

The work of determining whether a problem-state can be pruned has to be weighed 
against the overheads of storing a problem-state that could have been pruned. For 
selecting problem-states to remove, the choices lie between: 

P21 selecting problem-states until a problem-state which cannot be pruned is selected, 
and 

P22 pruning all those problem-states in the active set which can be pruned and then 
selecting a problem-state. 

Again, the choice is between keeping the work to a minimum and keeping the size 
of the heap to a minimum. In our implementation, we employ strategies to keep work 
to a minimum unless memory overflow seems imminent. We discuss later how the 
likelihood of memory overflow is detected and propose a scheme of garbage collection. 
However, assuming for the moment that memory capacity is infinite, we first present 
our rules for the addition and selection of problem-states. 

If iso(dom) is true, then upon generation it is determined whether a problem- 
state should be added to IsoTable (DomTable), thus establishing whether that problem- 
state should be pruned. Hence, a hybrid of rules P n  and PI2 is employed for adding 
problem-states, namely: 

P13 add only those problem-states which cannot be pruned by dominance and/or 
isomorphism. 

Then a problem-state cannot be pruned by isomorphism at the selection stage, but 
may be pruned upon selection by incumbent and/or by dominance. Rule P21 is applied 
for selecting problem-states. 

More realistically, the system memory size is a limitation of the implementation. 
If the heap should become so large that memory overflow seems imminent, then a 
"garbage collection" strategy is applied. This is to prune all those problem-states in 
the active set which can be pruned by incumbent and/or by dominance. If garbage 
collection fails to solve the problem, we are then obliged to implement rules P12 and 
P22 until such time when the heap size is significantly reduced. Modula-2 provides 
a Boolean function Available, which returns True if the amount of storage space 
requested is available and False otherwise. Another function, TSIZE, returns the 
amount of memory required to store a variable of a given type. This high-level 
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facility provides a way of detecting that memory overflow is imminent without 
requiring the user to input the system memory size. 

Memory overflow may occur despite the use of garbage collection if there are 
too many problem-states in the heap that cannot be pruned. Our kernels provide 
implementations of  exact B&B algorithms and so memory overflow is not avoided 
if garbage collection fails. 

Backing store is a practical requirement of many B&B implementations with 
large memory demands, and so its use is incorporated into our implementation. In 
general, storing problem descriptions is the main cause of memory overflow. The 
problem-state field of each heap element has hitherto been described by a record in 
which one field represents a problem and another a string of  elementary operations. 
We replace the problem field of the problem-state record by an index field, referring 
to the problem's storage location in backing store. This scheme, in which each heap 
element "points" to problems in backing store, enables the heap structure to be stored 
in main memory without overflow occurring. Our main objective in introducing the 
use of backing store is to prevent memory overflow, but reasonably fast access to 
problems is also desirable. Modula-2 provides facilities for sequential and direct 
access to indexed sequential files. All of the data items in a file must be of  the same 
type, although flexibility may be introduced through the use of variant records. The 
use of backing store is optional since the overheads for storing and retrieving problems 
are significant and main memory is sufficient for some instantiations. However, file 
organisation is independent of the instantiation if backing store is used. Files will be 
volatile and transactions (to add or remove problems) frequent, and this has been 
taken into consideration in choosing the method of file organisation and access. 

6. Kernels for parallel B&B 

In this section, we consider the parallelisation of basic B&B. We are concerned 
with exploiting task-oriented parallelism because in general there is greater potential 
for this in B &B than for data-oriented parallelism. Furthermore, data-oriented parallelism 
is largely instantiation dependent, whereas we are interested in providing general 
guidelines for the B&B paradigm. Most of the parallel B&B algorithms that have 
been proposed [9, 18,35] can be described either as synchronising the expansion 
phase or asynchronously parallelising both the expansion and selection phases of the 
B&B paradigm. We now show that both of these schemes are encompassed by a 
much broader class, which we call parallel (task-oriented) B&B. Each of the algorithms 
represented by this class is precisely sequential B&B in the case where only one 
processor is available. Thus, parallel B&B can be described as a generatisation of 
sequential B&B. 

Sequential B&B can be viewed as a parallel algorithm employing a single 
processor in at least two ways. One way is to consider that the processor selects the 
problem-state of highest priority known to the system for expansion; an alternative 
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view is that the problem-state of highest priority known to the processor is selected. 
The first scheme we refer to as the Select Highest Overall (SHO) strategy, and the 
latter we call Select Highest Available (SHA). 

The SHO strategy is a highly-synchronised process. At the start of each iteration, 
the m processors are each allocated exactly one of the m active problem-states of 
highest priority to expand if there are at least m active problem-states (otherwise, 
each of the active problem-states is expanded on a different processor). MANIP 
[45,46] is an MIMD shared memory computer specifically designed for enumerative- 
type algorithms, and in particular for basic B&B algorithms using the SHO strategy. 

Under the SHA strategy, each processor asynchronously selects and expands 
problem-states from a pool of active problem-states to which it has access. There are 
three subschemes of the SHA strategy characterised by this pool. It may be common 
to all processors (SHA(global)), or to a group of processors (SHA(shared)), or it 
may be unique to each processor (SHA(iocai)). DIB [12] is an implementation, written 
in Modula, of a paralel backtracking kernel on the Crystal MIMD message passing 
computer at Wisconsin-Madison University. Basic B&B algorithms with depth-first 
priority ordering and using the SHA(iocai) strategy may be instantiated by DIB. 

(Task-oriented) parallel B&B is expressed by the following algorithm in which 
/REPEAT/ a n d / D O / d e n o t e  "repeat in parallel" and "do in parallel", respectively. 

Initialise; 
/REPEAT/ (*1 _< n < m asynchronous processes*) 

WHILE (Sel := Select(Active) ~ 9 )  DO 
V x  E Sel /DO/ 

expand(x) 
END (*For*) 

END (*While*) 
UNTIL finished; (*all m processors are idle*) 

Return inc. 

If n = 1, then this is SHO, and if n = m it describes SHA. Both SHO and 
SHA(global) employ a global pool of active problem-states; the difference between 
them is that SHO is synchronised, whereas SHA(global) is not. Parallel B&B is 
represented by a transformation of the higher-order function that assumes that some 
partition of the active set exists and that problem-states are selected in order of 
priority from a collection of subsets of this partition [29,44]. 

We have implemented kernels for parallel branch-and-bound using the SHO 
and SHA(global) strategies on a Meiko transputer rack. Details are given in [44]. A 
transputer is a general purpose computer which can exchange data across communication 
links with each of four other transputers. Process interaction within a single transputer 
and between neighbouring transputers can be expressed in the programming language 
occam. 
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The higher-order function approach is particularly attractive because the provision 
of such kernels frees users from involvement in the use of occam and in the difficult 
problem of process allocation within an MIMD parallel computer. Although to date 
there is no Modula-2 compiler for the transputer, there are compilers for both FORTRAN 
and C, and the user will be able to instantiate his or her particular branch-and-bound 
algorithm using one of these high-level languages. Since both the SHO and SHA(global) 
strategies require that a global pool is maintained, we are also in the process of 
implementing basic B&B kernels using these strategies on an MIMD shared memory 
computer, a Sequent Balance, for comparison purposes. 

The problem of selecting the "best" parallel B&B algorithm for a particular 
problem and architecture is not at all straightforward because of speed-up anomalies 
[8,22,23,26]. For instance, the worst-case scenario for any strategy using shared or 
local pools would seem to be that the problem-states with highest priority are all 
maintained in one pool; even so, this strategy may be better than one employing a 
global pool if the priority function is misleading. Other factors such as variable task 
processing times and communication overheads can also have a large impact on 
performance. Although our skeleton approach enables experimentation with different 
strategies, its main advantage is that rather than finding the "best" algorithm for a 
particular problem, it will provide a reasonably good algorithm quickly. This is 
illustrated in [29,44] by its use with instantiations of the higher-order function describing 
algorithms for SPG and for integer programming B&B. In addition to implementing 
further kernels for parallel implementations of  basic B&B, we are also developing 
kernels for parallel extended B&B. 

Appendix 

The branch-and-bound higher-order function is formally specified in fig. 2. 
The problem- and algorithm-dependent functions for our higher-order B&B function 
are listed in a uses functions statement. The interpretation of each of these functions 
has been described in this paper, and we have imposed the following requirements 
which must be satisfied by any instantiation of our B&B higher-order function. First, 
we define some useful notation. Let x = (p, o9, then: 

x <~) denotes the problem-state (~'(p), zo-), where z ~ Y.*; 

X(x) denotes the set {y ~ X I 3 ' r ~  £*,y = x<~)}; 

opt(x) denotes the value of an optimal solution for p if F ( p )  ~: ~ and denotes 
± otherwise. 

Reql 
Req2 

Req3 

Vp ~ P, Vs  ~ S: is_feasible_for (p) (s) =~ is_feasible_for (Po) (s). 

(label(x) ~ F(p )  =:~ label(x) is an optimal solution for p) ^ (label(x) = 09 
=:~ F ( p )  = 0 ) .  

V x  ~ X : x  is not bounded =~ bound(x) >> opt(x). 
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Req4 

Req5 

Req6 

{x" ~ c h i l d ( x )  I o p t ( x ' )  = op t (x)}  ¢: 9 .  

(x, y )  ~ D o m  ^ x ¢ y :=~ op t (x )  >> o p t ( y )  A (Vy" ~ X(y) ,  q x '  ~ X(X) : 
( x ' ,  y ' )  ~ D o m ) .  

(i)  (x, y )  ~ I so  ~ Vx '  ~ X(x), qy" ~ X(y)  : [ o p t ( x ' )  = o p t ( y ' ) ] ,  a n d  

(i i)  ( x , y ) ~  I s o ~ V x ' E X ( x ) , q y ' E  X ( y ) : [ ( x ' , y ' ) ~  I S O A V z E X :  

[(X', z) ~ D o m  ¢:~ ( y ' ,  z) E D o m  A (Z, X ' )  ~ D o m  ¢:~ (z, y ' )  ~ D o m ] ] .  

T o  i n s t a n t i a t e  a p a r t i c u l a r  i n s t a n c e  o f  B & B ,  a l l  o f  the  u se s  f u n c t i o n s  m u s t  b e  

s p e c i f i e d ,  t o g e t h e r  w i th  the  t y p e s  on  w h i c h  t hey  are  d e f i n e d .  T h e  B & B  f u n c t i o n  is 

d e f i n e d  o n  the  se t  

B _ a n d  B s ta te  = 2 x x 2 x x ( S x  W).  

T h e  s ta te  m a n i p u l a t e d  b y  B & B  c o m p r i s e s  the  ac t i ve  and d e a d  se ts  and  the  i n c u m b e n t  

and  i ts  c o r r e s p o n d i n g  cos t  va lue .  In  f ig.  2, w e  use  a func t ion ,  s e c o n d ,  d e f i n e d  as  

f o l l o w s :  l e t  R = A x B;  t hen  fo r  any  (a,  b)  ~ R, s e c o n d ( ( a ,  b ) )  = b. 

B&B({x0}, O, (inc 0, valinco))//inc 0' valinc0 are initial values for the incumbent and its cost// 

//x0 = (P0, e), where P0 is the initial problem// 

B&B: B_and_B_staten-* B_and B state 

bs ~ bs' 

uses functions priority: X ~ V, is_feasible: S --~ ~, label: X ---) S u {co}, 

bound: X ~ W, child: X---> 2 X , is_Dom: X x X ~ B, isomorph: X ~ X 

post (select2 = O ~ bs' = bs) ^ (select2 ;~ 0 ~ bs' = B&B(expand(bs, select2)) 
where 

expand: B_and_B_state x 2 x ---) B and B state 

((A, D, (inc, valinc)), Sel) "* (A', D', (inc', valinc')) 

uses functions is_feasible: S ~ r~, label: X ~ S u {co}, bound: X --~ W, child: X ~  2 x 

pre S e l K A  A Sel;~¢ 

pos t  (A' = A - Sel u children(Sel)) ̂  (D' = D u Sel) 

A valinc >..2> best_new_val ~ (inc', valinc') -- (inc, valinc) 

a best_new_val >> valinc ~ One', valinc') = new_best 
where 

best_new_val = second(new_best) 

new_best -- best (feasible_solns(newly_solved(Sel))) 

Fig. 2 (continuation on next page). 
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children: 2 x ~ 2 x 

T ~ U  

u s e s  f u n c t i o n s  child:X---~ 2 x 

p o s t  U = {y e X I B x e (T - newly_so lved (T) ) ,  y • child(x)} 
where  

n e w l y s o l v e d :  2 X ~ 2 x 

T ~ U  

use s  f u n c t i o n s  is_feasible:  S --~ r~  label:  X --~ S u {co} 

p o s t  U = { x • T 1 is_feasible (label(x)) } 

feasible_solns:  2 x ~ 2 s x W 

Y - ~ U  

u s e s  f u n c t i o n s  is_feasible:  S --~ B, label:  X ~ S • {co}, bound:  X -9  W 

p r e  V x • Y .  is feasible(label(x)) 

p o s t  U = { (label(x),  bound(x))  I x • Y } 

best: 2 s x w  - - ) S u { m } x  W 

U ~ ( s , v )  

p o s t  ( U  = ¢ ~ (s, v)  = ( c.o, _L)) 

^ ( U ~ e ~ ( ( s , v ) ~  U ^ V ( s ' , v ' ) •  U . v > > v ' ) )  

select2 = second(select(bs)) 
where  

select: B_and_B_state  --~ B _ a n d B _ s t a t e  x 2 X 

(A, D, (inc, val inc )) ~ ((A', D', (inc',  val inc ' )) ,  Sel) 

u s e s  f u n c t i o n s  priority: X --~ V,  bound:  X -~  W, i s_Dom:  X x X --~ B,  

isomorph: X ~ X 

p o s t  A '=A - p runed(A,  D, ( inc ,va l inc))  ^ D ' = D  ^ ( inc ' ,va l inc ' )  = (inc,  val inc)  

^ Set  c A '  ^ [ Sel = A' v V x •  Sel . ( - 3  y • A' - Sel .priori ty(y) D priority(x))]  

where 

pruned: B _ a n d _ B s t a t e  --~ 2 x 

(A, D, (inc, val inc )) ~ Del 

u se s  f u n c t i o n s  bound: X ---) W,  i s_Dom:  X × X ~ B, isomorph:  X --~ X 

pos t  Del = {x • A I val inc >>  bound(x)} 

w {x• A l 3 y ~  A u D . i s_Dom(y ,x)}  

u { x e  A I B y ~  A u D . y ; ~ x ^ y = i s o m o r p h ( x ) }  

Fig. 2. A h igher -o rde r  func t ion  for  b r anch -and -bound .  
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