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Abstract 

We describe an implementation of the tabu search metaheuristic that effectively 
f'mds a low-cost topology for a communications network to provide a centralized new 
service. Our results are compared to those of a greedy algorithm which applies corresponding 
decision rules, but without the guidance of the tabu search framework. These problems 
are difficult computationally, representing integer programs that can involve as many 
as 10,000 integer variables and 2000 constraints in practical applications. The tabu 
search results approach succeeded in obtaining significant improvements over the greedy 
approach, yielding optimal solutions to problems small enough to allow independent 
verification of optimality status and, more generally, yielding both absolute and percentage 
c o s t  improvements that did not deteriorate with increasing problem size. 

1. Introduction 

We describe an empirical study using tabu search to find a low-cost topology 
for a communications network to provide a centralized new service. Such a new 
service may be a phone-in service to access data, or more broadly may involve any 
application where the object is to connect the users to the service, rather than to each 
other. 

The following section presents the problem formulation. In section 3, we 
describe a method based on the tabu search metaheuristic to solve this problem. 
Section 4 discusses the results, comparing them to those of a greedy algorithm which 
applies corresponding decision rules, but without the guidance of the tabu search 
framework. 
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2. The new service topology design problem 

The problem under study is that of finding a low-cost design for a communications 
network that introduces a new service. The problem derives from a practical application 
in the telecommunications industry whose importance is underscored by the US West 
commissioned study reported by Ryan [8] (see also Parrish et al. [7]). The new 
service at the core of  this problem is provided by computers located in certain 
switching offices called pIaO~orms. There may be more than one way to set up a 
platform. Generally, a higher capacity platform has a higher installation cost. Demand 
for the service can originate at the platforms or at any other switching office. An 
entire new set of  circuits must be built to carry the new traffic, due to regulatory 
restrictions on the use of  the circuits of  the existing network. 

Many practical applications involve just two types of  circuits, consisting of  
voice-grade circuits and digital circuits. Our algorithm solves a general version of  
the problem, where any number of circuit types may be available. Each type of circuit 
has associated with it an installation cost and an operational cost. The installation 
cost is a one-time fixed cost, and the operational cost is an ongoing variable cost that 
depends on the volume of traffic using the circuit. 

The network design must specify at which switching offices the platforms 
should be located, and what type of platform should be installed at each site. The 
design must also determine where the various types of circuits should be installed. 

To formulate the problem mathematically, let P denote the set of  platform types 
and L the set of  circuit types. Each platform type Pi ~ P has two associated parameters: 
a platform installation cost Pc and a platform service capacity Pcap- With each of the 
available circuit types l ~ L we associate the parameters/ic, lo~ and lea p, which identify 
the circuit installation cost per unit distance, the circuit operational cost per unit flow 
and the circuit capacity. 

A potential solution to the problem may be represented by a pair (V, E), where 
V is the set of  nodes to be serviced and E is the set of  ordered pairs, or edges, which 
can be a site for one or more circuits. Each v ~ V has the following parameters associated 
with it: 

v d demand generated by v, 

vin demand flowing into v (for service or transshipment), 

You t demand flowing out of  v, 

v c demand servicing capacity of  v, 

re; number of platforms of type i at v. 

All of  the above parameters are nonnegative integer variables to be given values by 
the problem sotution except for vd, which is part of  the original problem data (assumed 
positive and integer). Note that unless v has been designated a platform site, vt,. is 

| 

0 for each i and Vc is O. Further, the difference vtn + Vd -- Your must be nonnegatlve 
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and must not exceed vc. The parameter Vd is the only constant in the above list. The 
current servicing capacity of a node v e is a function of  the values of  the vpi's. 

Each e = (i, j )  ~ E is associated with the following parameters: 

ed i 

ed~ 

ec 

el 

demand flowing from vertex i to vertex j, 

demand flowing from vertex j to vertex i, 

total demand that can be carded on e, 

set of  circuit types which make up e. 

The value of  e c is a function of e t and the capacities of  the circuits in et. Also, at 
most one of  eai and ed, is positive. 

Finally, for eacl~ pair of  nodes i and j in V, we denote by dij the distance 
from i to j.  The distance dij is a constant, independent of  the current solution; it is 
the length of  edge e = (i, j )  if such an edge exists, and is o,, otherwise. The cost of  
installing a link between nodes i and j depends on dij. In real terms, it affects the 
cost of  digging the ditch to install the cable. Again, all values are assumed to be 
nonnegative integers. 

The total cost W to be minimized is composed of  the total edge costs Wt and 
the total node costs W V, which are calculated as follows: 

WV = "~ ~.~ ?)pk Pk: ; 
v~V p ~ P  

e=(i,j)~E lk~ et 

where flOWek is the flow on the circuit of type k on edge e. For edge e = (i, j ) ,  the 
quantity f lowek is easily determined by considering edi + edj. (the total flow on 
edge e) and et. T h e  various circuits in e t are used greedily, that is, the links with the 
smallest operational cost will be saturated before a more expensive link is used. Our 
algorithm ensures that there will be no unused links in e t. 

Thus, the new service topology design problem is to minimize W subject to 
the following constraints: 

• the edges with et nonempty must form a connected network; 

• for each v ~ V, 0 _< Vd +/3in - -  Uout --< Uc = ~i ~ P "Opi Pieap; 

" for each e = ( i , j )  ~ E, ed; + edj --< ec = X~,t/cap. 

We denote a particular solution, which includes the assignment of  platforms, circuits, 
and a feasible flow, by x. The cost of this solution will be denoted W(x)  = W v + W e. 
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3. The heuristic approach, 

Our approach for finding the least-cost topology design is divided into two 
component phases which are applied in altemating succession. The first phase consists 
of a platform location routine, which assigns the platform locations and tentatively 
assigns circuits and platform capacities by routing the demand at each node to the 
nearest platform. The second phase consists of a circuit assignment routine, which 
takes the output from the first phase, assigns platform types to the platform locations, 
and makes local improvements by testing for each node v the economy of routing 
any of the flow to the neighbors of v through v. Each phase has its own associated 
tabu search control parameters. 

Hertz and de Werra [4] have noted that tabu search functions more effectively 
when the topography of the solution space is not too "flat", i.e. where the terrain does 
not induce the search to visit long successions of solutions whose objective function 
values are very similar. Several methods have been suggested to improve performance 
when such regions are encountered. Glover [2] has presented the concept of strategic 
oscillation, which drives the search to progress for selected distances beyond "boundaries", 
such as specified by objective function levels or measures of  feasibility, and then to 
drive "in reverse" to meet and cross the boundary from the opposite side. Such an 
oscillatory approach either directly or indirectly produces greater fluctuations in the 
objective function and generally avoids the symptomatic "flat trajectory" behavior. 
Hertz and de Werra [4] suggest altering the formulation of the problem in such a way 
that all feasible solutions meet the desired objective value, and create a new objective 
function that measures infeasibility. 

In this study, fluctuations in the objective function are strategically induced by 
nesting the two tabu search phases in a particular way. Specifically, a complete 
solution pass of the second phase is executed for each iteration of the first phase. That 
is, each time the first routine makes a "move", which in general is a nonimproving 
move, the second routine attempts to reoptimize. 

The main structure of the outer loop, which creates the platform location 
assignments and other tentative associated assignments of the first phase, is as follows. 

Let x = initial solution; 

Let x" = x; 

Let T = { }; 

Repeat 

Let S(x) = Neighborhood1(x); 

Let x '  = Optimiz%(S(x), T); 

If W(x') < W(x) then 

Let x* = x ' ;  

Let x = x': 

Until (Stablel(x)) 
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The set T is the tabu list, which is initially empty. The function Ne ighborhood  1 
returns a set of  transformations which will vary the distribution of the platform 
capacity in the network. The function Optimize~ takes the set of  possible solutions 
given by the neighborhood function and calculates the next trial solution, taking the 
tabu status of the possible moves into consideration. Opt imize  1 also performs the 
update to the tabu list and calls the routine to solve the circuit assignment problem. 
We now describe each of these functions in detail  

There are two types of transformations returned by Neighborhood 1. One distributes 
the platform capacity to nodes which have no platforms, the other undertakes to 
centralize the platform capacity at a certain node. The function Ne ighborhood  1 is 
sketched below. 

Let S ( x ) =  { }; 
For a l l i E  V w i t h i  c ~ 0  

For all j E  V w i t h  j ~ i  
i f e = ( i , j ) ~  E a n d e  c > 0 t h e n  

if Jc = 0 then 
S(x) = S(x) vo {(1,j, i, a/j)}; 

else 

S(x) = S(x) L; {(2,j, i, flij)}; 
endif; 

endif; 
endfor; 

end for; 

where 

1 means distribute capacity from i to j ;  

2 means centralize capacity from j to i; 

o~ij is an approximate cost of  distributing capacity from i to j ;  

flij is an approximate cost of centralizing capacity from j to i. 

The cost of distributing capacity from i to j is approximated by 

aij = (cost of entire network per demand serviced) 
- (average cost of  demand serviced at i). 

The cost of centralizing capacity from j to i is approximated by 

f l i i= (average cost of demand service at i) 
- (average cost of demand serviced at j) .  

The Opt imize  1 function calculates the next trial move by applying the best m 
transformations returned by Ne ighborhood  1, where m is a parameter to be fixed 
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before running the program. (We have thus created a "candidate list" of  moves, see 
Glover [3].) Before calling the routine to solve the circuit assignment problem, 
Opt imize  1 greedily routes the demand of  each node to the nearest platform. A sketch 
of the function Opt imize  1 is given below. 

Partially order the set S(x) in order of increasing cost. 
Apply the first m transformations (or, j, i, S) as follows: 

if (or, j )  ~ T then 
if 0r= 1 then 

add a platform to vertex j ;  
Let T = T u  {(2,j)}; 

else (or = 2) 
delete all platforms at vertex j ;  
let T = T w  {(1,j)}; 

endif; 
endif; 

Clear all routings; 
RouteDemand; 
Opt imize2(Neighborhood 2 (x)); 

The RouteDemand procedure greedily routes all demand to the nearest platform, 
making tentative circuit assignments to carry that flow. Platforms which provide 
excess capacity after an iteration of Optimize1 are removed in the routine Optimize2. 

The implementation of the tabu list T above, which has the function of excluding 
certain pairs (or, j )  from consideration during the search, is critical. One of  the goals 
of a tabu list is to prevent cyclic behavior. The simplest forms of such lists are 
designed chiefly to prevent the reversal of moves made on recent iterations. 

However, a high degree of specificity in characterizing the moves that are 
prevented from being reversed can be counterproductive relative to maintaining 
an appropriate balance of  diversity in the solutions generated (see, for example, 
Glover [2], Malek et al. [6], Skorin-Kapov [9]). Consequently, it is important to 
isolate appropriate attributes of moves as a basis of  defining tabu status (membership 
on T), which have the effect of  preventing certain classes of  moves rather than certain 
specific moves from being performed, for the duration that the associated tabu status 
remains in effect. Our choice of attributes consisting of the pairs (or, j ) ,  which proved 
much more effective than attributes designed to prevent more specific move reversals, 
can be explained by the following reasoning. Suppose that i, j and k are elements of 
V, and that one of the most recent moves consisted of  centralizing capacity by a shift 
of capacity at j to node i. Then the move to distribute capacity from k to j (rather 
than the narrower "reversal" from i to j )  should be prohibited because capacity had 
just been deleted from j and would probably end up being centralized at i again. After 
the move which centralizes capacity from i to j is made, (1 , j )  is placed on the tabu 
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list, which has the desired effect of prohibiting a move to distribute capacity from 
k to j for any k. Similarly, after a move which distributes capacity from i to j is made, 
(2, j )  is placed on the tabu list to prohibit the centralization of capacity from j to any 
other node k. Empirically, this intuitively-based determination of tabu attributes was 
found to work very well. 

The circuit assignment routines Neighborhood 2 and Optimize 2 make local 
improvements in the circuit sizing in an attempt to reduce costs. The circuit assignment 
neighborhood function Neighborhood2 creates a set of two types of moves. The first 
type of move will add the different platform types to nodes with platforms. The 
second type of move seeks to optimize the circuit types on the edges which carry 
demand. This is done heuristically by checking for each node v and each neighborhood 
w of v whether costs can be decreased by routing the flow to w through v. If such 
a change is made, the tentative circuit assignments are altered to reflect that change. 

The circuit assignment optimization function Optimize 2 then continuously applies 
the moves selected by Neighborhood 2 until a fixed number of moves have been 
made. When new circuits are added to an edge, or new platforms are added to a 
vertex, older circuits and platforms which are in excess of the necessary capacity are 
automatically deleted. An additional simple tabu list is used to prevent cycling in this 
process by straightforwardly designating the identities of platforms and circuits deleted 
to be the attributes for defining tabu status for addition. Following suggestions of 
Glover [2], we experimented with tabu list lengths in the range 5 to 9. Tabu lists of 
length 7 or 8 were found to work well for both the platform location routine and the 
circuit assignment routine. 

4. Results 

The algorithm described in section 3 was implemented using Turbo C 2.0 on 
an IBM AT compatible microcomputer. Random test cases were generated for problems 
containing 5, 6, 10, 25, 40, and 50 nodes. Because of the relatively recent identification 
of the practical import of this problem 0~yan [8]), data from specific applications are 
unavailable, but the dimensions examined subsume the range to be expected in such 
applications. It is to be noted that a 25-node problem corresponds to an integer 
program with 2575 variables and 650 constraints, while a 50-node problem corresponds 
to an integer program with 10,150 variables and 2550 constraints (using three circuit 
types and three platform types, which were the parameters of our test problems). The 
method always found known optimal solutions to the five- and six-node test cases 
(corresponding to integer programs with 162 variables and 42 constraints). Due to 
the combinatorial complexity of the problem, optimal solutions to the 10-, 25-, 40- 
and 50-node test cases are not known. 

To provide a basis for relative evaluation, results for these cases have been 
compared to a greedy algorithm which assigns a fixed number of platforms to those 
nodes having greatest demand, and routes the flow by the same process used in the 
outer loop of our algorithm. This "greedy" method of platform location was used by 
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Anderson  and R a s m u s s e n  [1] . .The a lgor i thm o f  Parr ish  et al. [7] also requires  that 

a s ingle  p la t fo rm site is chosen  in advance.  
Ave rage  running t imes for  our  me thod  and the g reedy  me thod  are g iven  in 

table  1. T h e  first  c o l u m n  indicates  the average  t ime to f ind the g reedy  solution.  The  
second  and third co lumns  give the average  t ime  to f ind the best  solut ion in the tabu 

Table 1 

Average running times for test problems 

Test case Avg. time for greedy Avg. time to best for tabu Avg. tot. time for tabu 

5 node - - 30 seconds 
6 node - - 30 seconds 

10 node 25 seconds 42 seconds 2 minutes 19 seconds 
25 node 1 minute 31 seconds 11 minutes 55 seconds 19 minutes 51 seconds 
40 node 2 minutes 8 seconds 18 minutes 45 seconds 46 minutes 28 seconds 
50 node 3 minutes 15 seconds 25 minutes 40 seconds 2 hours 2 minutes 

search,  and the ave rage  t ime the tabu search ran, respect ively .  The  g reedy  method  

was not  tested on the 5- and 6-node  prob lems .  Solut ion va lue  compar i sons  with the 
base l ine  greedy  method  are g iven  in table 2. Sample  p e r f o r m a n c e  graphs  are g iven  

Table 2 

Comparison of test results with greedy solution 

Test case Greedy solution Tabu search solution Percent improvement 

10 node 1 124094 101182 18.5 
2 110702 98941 10.6 
3 115074 99576 13.5 

25 node 1 262874 211470 19.6 
2 264986 213867 19.3 
3 263143 217149 17.5 

40 node 1 409076 333441 18.5 
2 395973 333274 15.8 
3 398089 333080 16.3 

50 node 1 529842 417079 21.3 
2 562618 409024 27.3 
3 526636 427000 18.9 
4 536319 414894 22.6 
5 510631 415931 18.6 

in figs. 1 and 2. The  spikes cor respond  to an i terat ion o f  the p la t fo rm ass ignment  
routine.  F igures  3 and 4 i l lustrate pictor ial ly  the input and the output  o f  the a lgor i thm.  

As shown  in table 2, the tabu search approach  pe r fo rmed  s ignif icant ly  bet ter  than the 
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Fig. 1. Sample performance graph. 
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Fig. 3. Input (a) and output (b) of the algorithm. 
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Fig. 4. Input (a) and output (b) of the algorithm. 
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greedy procedure. The differences identified in the table, which identify cost 
improvements that average greater than 15% (and above 20% for the 50-node problem), 
translate into significant financial savings in practical settings [7]. 

Some general patterns were observed in the solutions found. When the costs 
of platforms were very low in relation to the circuit operational costs, platforms were 
distributed to every node and a minimum amount of routing was performed to 
maintain connectivity. When the costs of the platforms were higher, a correspondingly 
greater degree of centralization occurred. 

Several possible avenues for improvement are apparent. The evaluation of the 
network at each iteration is only approximate; there is no guarantee that the flows 
based on each chosen assignment of circuits and platforms are determined optimally. 
The application of a minimum cost flow routine would give an exact evaluation of 
the network. Although this would probably be too expensive to perform at every 
iteration, it may be worth doing every "few" iterations", and in particular as a means 
of refining the candidates for best solutions generated by the method in its present 
form.  

Minor improvements were obtained in some cases when the routines were made 
more aggressive by making more than one move per iteration. An attempt to identify 
the "optimal" number of moves per iteration in early runs could be the basis for a 
strategy to allow faster solutions of later runs. 
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