
Annals of Operations Research 33(1991)351-362 351

LEAST-COST NETWORK TOPOLOGY DESIGN FOR A NEW SERVICE:
An application of tabu search*

Fred GLOVER
Center for Applied Artificial Intelligence, University of Colorado, Boulder, CO 80309-0419,
USA

Micheal LEE
Public Service Company of Colorado, Denver, CO, USA

and

Jennifer RYAN
Department of Mathematics, University of Colorado at Denver, Denver, CO 80217-3364,
USA

Abstract

We describe an implementation of the tabu search metaheuristic that effectively
f'mds a low-cost topology for a communications network to provide a centralized new
service. Our results are compared to those of a greedy algorithm which applies corresponding
decision rules, but without the guidance of the tabu search framework. These problems
are difficult computationally, representing integer programs that can involve as many
as 10,000 integer variables and 2000 constraints in practical applications. The tabu
search results approach succeeded in obtaining significant improvements over the greedy
approach, yielding optimal solutions to problems small enough to allow independent
verification of optimality status and, more generally, yielding both absolute and percentage
c o s t improvements that did not deteriorate with increasing problem size.

1. Introduction

We describe an empirical study using tabu search to find a low-cost topology
for a communications network to provide a centralized new service. Such a new
service may be a phone-in service to access data, or more broadly may involve any
application where the object is to connect the users to the service, rather than to each
other.

The following section presents the problem formulation. In section 3, we
describe a method based on the tabu search metaheuristic to solve this problem.
Section 4 discusses the results, comparing them to those of a greedy algorithm which
applies corresponding decision rules, but without the guidance of the tabu search
framework.

*This research was partially supported by the Air Force Office of Scientific Research and the Office
of Naval Research Contract No. F49629-90-C-0033.

© J.C. Baltzer AG, Scientific Publishing Company

352 F. Glover et al., Least cost network topology design

2. The new service topology design problem

The problem under study is that of finding a low-cost design for a communications
network that introduces a new service. The problem derives from a practical application
in the telecommunications industry whose importance is underscored by the US West
commissioned study reported by Ryan [8] (see also Parrish et al. [7]). The new
service at the core of this problem is provided by computers located in certain
switching offices called pIaO~orms. There may be more than one way to set up a
platform. Generally, a higher capacity platform has a higher installation cost. Demand
for the service can originate at the platforms or at any other switching office. An
entire new set of circuits must be built to carry the new traffic, due to regulatory
restrictions on the use of the circuits of the existing network.

Many practical applications involve just two types of circuits, consisting of
voice-grade circuits and digital circuits. Our algorithm solves a general version of
the problem, where any number of circuit types may be available. Each type of circuit
has associated with it an installation cost and an operational cost. The installation
cost is a one-time fixed cost, and the operational cost is an ongoing variable cost that
depends on the volume of traffic using the circuit.

The network design must specify at which switching offices the platforms
should be located, and what type of platform should be installed at each site. The
design must also determine where the various types of circuits should be installed.

To formulate the problem mathematically, let P denote the set of platform types
and L the set of circuit types. Each platform type Pi ~ P has two associated parameters:
a platform installation cost Pc and a platform service capacity Pcap- With each of the
available circuit types l ~ L we associate the parameters/ic, lo~ and lea p, which identify
the circuit installation cost per unit distance, the circuit operational cost per unit flow
and the circuit capacity.

A potential solution to the problem may be represented by a pair (V, E), where
V is the set of nodes to be serviced and E is the set of ordered pairs, or edges, which
can be a site for one or more circuits. Each v ~ V has the following parameters associated
with it:

v d demand generated by v,

vin demand flowing into v (for service or transshipment),

You t demand flowing out of v,

v c demand servicing capacity of v,

re; number of platforms of type i at v.

All of the above parameters are nonnegative integer variables to be given values by
the problem sotution except for vd, which is part of the original problem data (assumed
positive and integer). Note that unless v has been designated a platform site, vt,. is

|

0 for each i and Vc is O. Further, the difference vtn + Vd -- Your must be nonnegatlve

F. Glover et al., Least cost network topology design 3 5 3

and must not exceed vc. The parameter Vd is the only constant in the above list. The
current servicing capacity of a node v e is a function of the values of the vpi's.

Each e = (i, j) ~ E is associated with the following parameters:

ed i

ed~

ec

el

demand flowing from vertex i to vertex j,

demand flowing from vertex j to vertex i,

total demand that can be carded on e,

set of circuit types which make up e.

The value of e c is a function of e t and the capacities of the circuits in et. Also, at
most one of eai and ed, is positive.

Finally, for eacl~ pair of nodes i and j in V, we denote by dij the distance
from i to j. The distance dij is a constant, independent of the current solution; it is
the length of edge e = (i, j) if such an edge exists, and is o,, otherwise. The cost of
installing a link between nodes i and j depends on dij. In real terms, it affects the
cost of digging the ditch to install the cable. Again, all values are assumed to be
nonnegative integers.

The total cost W to be minimized is composed of the total edge costs Wt and
the total node costs W V, which are calculated as follows:

WV = "~ ~.~ ?)pk Pk: ;
v~V p ~ P

e=(i,j)~E lk~ et

where flOWek is the flow on the circuit of type k on edge e. For edge e = (i, j) , the
quantity f lowek is easily determined by considering edi + edj. (the total flow on
edge e) and et. T h e various circuits in e t are used greedily, that is, the links with the
smallest operational cost will be saturated before a more expensive link is used. Our
algorithm ensures that there will be no unused links in e t.

Thus, the new service topology design problem is to minimize W subject to
the following constraints:

• the edges with et nonempty must form a connected network;

• for each v ~ V, 0 _< Vd +/3in - - Uout --< Uc = ~i ~ P "Opi Pieap;

" for each e = (i , j) ~ E, ed; + edj --< ec = X~,t/cap.

We denote a particular solution, which includes the assignment of platforms, circuits,
and a feasible flow, by x. The cost of this solution will be denoted W(x) = W v + W e.

354 F. Glover et al., Least cost network topology design

3. The heuristic approach,

Our approach for finding the least-cost topology design is divided into two
component phases which are applied in altemating succession. The first phase consists
of a platform location routine, which assigns the platform locations and tentatively
assigns circuits and platform capacities by routing the demand at each node to the
nearest platform. The second phase consists of a circuit assignment routine, which
takes the output from the first phase, assigns platform types to the platform locations,
and makes local improvements by testing for each node v the economy of routing
any of the flow to the neighbors of v through v. Each phase has its own associated
tabu search control parameters.

Hertz and de Werra [4] have noted that tabu search functions more effectively
when the topography of the solution space is not too "flat", i.e. where the terrain does
not induce the search to visit long successions of solutions whose objective function
values are very similar. Several methods have been suggested to improve performance
when such regions are encountered. Glover [2] has presented the concept of strategic
oscillation, which drives the search to progress for selected distances beyond "boundaries",
such as specified by objective function levels or measures of feasibility, and then to
drive "in reverse" to meet and cross the boundary from the opposite side. Such an
oscillatory approach either directly or indirectly produces greater fluctuations in the
objective function and generally avoids the symptomatic "flat trajectory" behavior.
Hertz and de Werra [4] suggest altering the formulation of the problem in such a way
that all feasible solutions meet the desired objective value, and create a new objective
function that measures infeasibility.

In this study, fluctuations in the objective function are strategically induced by
nesting the two tabu search phases in a particular way. Specifically, a complete
solution pass of the second phase is executed for each iteration of the first phase. That
is, each time the first routine makes a "move", which in general is a nonimproving
move, the second routine attempts to reoptimize.

The main structure of the outer loop, which creates the platform location
assignments and other tentative associated assignments of the first phase, is as follows.

Let x = initial solution;

Let x" = x;

Let T = { };

Repeat

Let S(x) = Neighborhood1(x);

Let x ' = Optimiz%(S(x), T);

If W(x') < W(x) then

Let x* = x ' ;

Let x = x':

Until (Stablel(x))

F. Glover et al., Least cost network topology design 355

The set T is the tabu list, which is initially empty. The function Ne ighborhood 1
returns a set of transformations which will vary the distribution of the platform
capacity in the network. The function Optimize~ takes the set of possible solutions
given by the neighborhood function and calculates the next trial solution, taking the
tabu status of the possible moves into consideration. Opt imize 1 also performs the
update to the tabu list and calls the routine to solve the circuit assignment problem.
We now describe each of these functions in detail

There are two types of transformations returned by Neighborhood 1. One distributes
the platform capacity to nodes which have no platforms, the other undertakes to
centralize the platform capacity at a certain node. The function Ne ighborhood 1 is
sketched below.

Let S (x) = { };
For a l l i E V w i t h i c ~ 0

For all j E V w i t h j ~ i
i f e = (i , j) ~ E a n d e c > 0 t h e n

if Jc = 0 then
S(x) = S(x) vo {(1,j, i, a/j)};

else

S(x) = S(x) L; {(2,j, i, flij)};
endif;

endif;
endfor;

end for;

where

1 means distribute capacity from i to j ;

2 means centralize capacity from j to i;

o~ij is an approximate cost of distributing capacity from i to j ;

flij is an approximate cost of centralizing capacity from j to i.

The cost of distributing capacity from i to j is approximated by

aij = (cost of entire network per demand serviced)
- (average cost of demand serviced at i).

The cost of centralizing capacity from j to i is approximated by

f l i i= (average cost of demand service at i)
- (average cost of demand serviced at j) .

The Opt imize 1 function calculates the next trial move by applying the best m
transformations returned by Ne ighborhood 1, where m is a parameter to be fixed

356 F. Glover et al., Least cost network topology design

before running the program. (We have thus created a "candidate list" of moves, see
Glover [3].) Before calling the routine to solve the circuit assignment problem,
Opt imize 1 greedily routes the demand of each node to the nearest platform. A sketch
of the function Opt imize 1 is given below.

Partially order the set S(x) in order of increasing cost.
Apply the first m transformations (or, j, i, S) as follows:

if (or, j) ~ T then
if 0r= 1 then

add a platform to vertex j ;
Let T = T u {(2,j)};

else (or = 2)
delete all platforms at vertex j ;
let T = T w {(1,j)};

endif;
endif;

Clear all routings;
RouteDemand;
Opt imize2(Neighborhood 2 (x));

The RouteDemand procedure greedily routes all demand to the nearest platform,
making tentative circuit assignments to carry that flow. Platforms which provide
excess capacity after an iteration of Optimize1 are removed in the routine Optimize2.

The implementation of the tabu list T above, which has the function of excluding
certain pairs (or, j) from consideration during the search, is critical. One of the goals
of a tabu list is to prevent cyclic behavior. The simplest forms of such lists are
designed chiefly to prevent the reversal of moves made on recent iterations.

However, a high degree of specificity in characterizing the moves that are
prevented from being reversed can be counterproductive relative to maintaining
an appropriate balance of diversity in the solutions generated (see, for example,
Glover [2], Malek et al. [6], Skorin-Kapov [9]). Consequently, it is important to
isolate appropriate attributes of moves as a basis of defining tabu status (membership
on T), which have the effect of preventing certain classes of moves rather than certain
specific moves from being performed, for the duration that the associated tabu status
remains in effect. Our choice of attributes consisting of the pairs (or, j) , which proved
much more effective than attributes designed to prevent more specific move reversals,
can be explained by the following reasoning. Suppose that i, j and k are elements of
V, and that one of the most recent moves consisted of centralizing capacity by a shift
of capacity at j to node i. Then the move to distribute capacity from k to j (rather
than the narrower "reversal" from i to j) should be prohibited because capacity had
just been deleted from j and would probably end up being centralized at i again. After
the move which centralizes capacity from i to j is made, (1 , j) is placed on the tabu

F. Glover et al., Least cost network topology design 357

list, which has the desired effect of prohibiting a move to distribute capacity from
k to j for any k. Similarly, after a move which distributes capacity from i to j is made,
(2, j) is placed on the tabu list to prohibit the centralization of capacity from j to any
other node k. Empirically, this intuitively-based determination of tabu attributes was
found to work very well.

The circuit assignment routines Neighborhood 2 and Optimize 2 make local
improvements in the circuit sizing in an attempt to reduce costs. The circuit assignment
neighborhood function Neighborhood2 creates a set of two types of moves. The first
type of move will add the different platform types to nodes with platforms. The
second type of move seeks to optimize the circuit types on the edges which carry
demand. This is done heuristically by checking for each node v and each neighborhood
w of v whether costs can be decreased by routing the flow to w through v. If such
a change is made, the tentative circuit assignments are altered to reflect that change.

The circuit assignment optimization function Optimize 2 then continuously applies
the moves selected by Neighborhood 2 until a fixed number of moves have been
made. When new circuits are added to an edge, or new platforms are added to a
vertex, older circuits and platforms which are in excess of the necessary capacity are
automatically deleted. An additional simple tabu list is used to prevent cycling in this
process by straightforwardly designating the identities of platforms and circuits deleted
to be the attributes for defining tabu status for addition. Following suggestions of
Glover [2], we experimented with tabu list lengths in the range 5 to 9. Tabu lists of
length 7 or 8 were found to work well for both the platform location routine and the
circuit assignment routine.

4. Results

The algorithm described in section 3 was implemented using Turbo C 2.0 on
an IBM AT compatible microcomputer. Random test cases were generated for problems
containing 5, 6, 10, 25, 40, and 50 nodes. Because of the relatively recent identification
of the practical import of this problem 0~yan [8]), data from specific applications are
unavailable, but the dimensions examined subsume the range to be expected in such
applications. It is to be noted that a 25-node problem corresponds to an integer
program with 2575 variables and 650 constraints, while a 50-node problem corresponds
to an integer program with 10,150 variables and 2550 constraints (using three circuit
types and three platform types, which were the parameters of our test problems). The
method always found known optimal solutions to the five- and six-node test cases
(corresponding to integer programs with 162 variables and 42 constraints). Due to
the combinatorial complexity of the problem, optimal solutions to the 10-, 25-, 40-
and 50-node test cases are not known.

To provide a basis for relative evaluation, results for these cases have been
compared to a greedy algorithm which assigns a fixed number of platforms to those
nodes having greatest demand, and routes the flow by the same process used in the
outer loop of our algorithm. This "greedy" method of platform location was used by

358 F. Glover et al., Least cost network topology design

Anderson and R a s m u s s e n [1] . .The a lgor i thm o f Parr ish et al. [7] also requires that

a s ingle p la t fo rm site is chosen in advance.
Ave rage running t imes for our me thod and the g reedy me thod are g iven in

table 1. T h e first c o l u m n indicates the average t ime to f ind the g reedy solution. The
second and third co lumns give the average t ime to f ind the best solut ion in the tabu

Table 1

Average running times for test problems

Test case Avg. time for greedy Avg. time to best for tabu Avg. tot. time for tabu

5 node - - 30 seconds
6 node - - 30 seconds

10 node 25 seconds 42 seconds 2 minutes 19 seconds
25 node 1 minute 31 seconds 11 minutes 55 seconds 19 minutes 51 seconds
40 node 2 minutes 8 seconds 18 minutes 45 seconds 46 minutes 28 seconds
50 node 3 minutes 15 seconds 25 minutes 40 seconds 2 hours 2 minutes

search, and the ave rage t ime the tabu search ran, respect ively . The g reedy method

was not tested on the 5- and 6-node prob lems . Solut ion va lue compar i sons with the
base l ine greedy method are g iven in table 2. Sample p e r f o r m a n c e graphs are g iven

Table 2

Comparison of test results with greedy solution

Test case Greedy solution Tabu search solution Percent improvement

10 node 1 124094 101182 18.5
2 110702 98941 10.6
3 115074 99576 13.5

25 node 1 262874 211470 19.6
2 264986 213867 19.3
3 263143 217149 17.5

40 node 1 409076 333441 18.5
2 395973 333274 15.8
3 398089 333080 16.3

50 node 1 529842 417079 21.3
2 562618 409024 27.3
3 526636 427000 18.9
4 536319 414894 22.6
5 510631 415931 18.6

in figs. 1 and 2. The spikes cor respond to an i terat ion o f the p la t fo rm ass ignment
routine. F igures 3 and 4 i l lustrate pictor ial ly the input and the output o f the a lgor i thm.

As shown in table 2, the tabu search approach pe r fo rmed s ignif icant ly bet ter than the

F. Glover et al., Least cost network topology design 359

C
0

S

t

600000

~80000

560000

540000

520000

500000

480000

4 6 0 0 0 0

4 4 0 0 0 0

420000

400000

50 Node Test Case

±~o 3go ~ 4 o 72o sbo l ~ e o x2~o '~44o ~6~o ~e~o
I t e r a t i on

Or~edw MiniMuM t ~ O S t = 5 0 5 2 1 4 ~ t i ~ = 0 0 : 0 2 : 0 5 . 5 0

H i n i M u . ~ t = 4 0 1 1 5 ~ ~ t i ~ = 0 0 : 4 0 : 4 ~ . 9 3

T o t a l e x e t l o n t i m e = 0 R : 0 8 : 4 ~ . 8 6

Fig. 1. Sample performance graph.

C
0

S
fi

600000

575000

550000

525000

500000

47~000

45000O

4 2 5 0 0 0

4 0 0 0 0 0

375000

3~0000

50 Node Test C ~ e

190 '3~0 570 7GO 9~0 1~40 1330 1520 17~0 ~900

I t e r a t i on
Oveedw MiniMUM ~5t 1 4 B 7 9 1 4 ~ t i ~ = 00:01:56.17

MiniMu~ ~ t = 3 9 7 8 5 9 B ti~ = 00:2~:~2.29

T o t a l e x ~ . c u t t e n time = 0 1 : 5 5 ; 4 3 , 8 5

Pig. 2. Sample performance graph.

360 F. Glover et al., Least cost network topology design

5 0 N o d e TesL C a s e

£000

9oo

8OO

7OO

6OO

500

4O0

300

200

0

®

1~o 2~o 3~o ~oo soo 6rio ~5o .~o 9~o ~o~o

(a)

5 0 N o d e TesL C a s e

L O 0 0

9 0 0

8 0 0

7 0 0

6 0 0

~ 0 0

4 0 0

3 0 0 .

2 0 0 ,

£ 0 0 .

O .

fi 1~o z~o 3,~0 4~0 silo 65o ~',~o e~o' 9~o lo'oo

(b)

Fig. 3. Input (a) and output (b) of the algorithm.

F. Glover et al., Least cost network topology design 361

5 0 N o d e T e s t C a s e

~000

900

000

7O0

600

SO0

400

300

200

~00

0

®
°,

IGo z~o 36o 46o 5~o 66o T~o 86o 960 I~oo

(a)

5 0 N o d e T e s t C a s e

I000

900

000

TO0

6O0

ZOO

400

300

200

lbo z~o 3~o 4~o s~o 6~o Tbo ebo 940 1o'oo

(b)

Fig. 4. Input (a) and output (b) of the algorithm.

362 F. Glover et al., Least cost network topology design

greedy procedure. The differences identified in the table, which identify cost
improvements that average greater than 15% (and above 20% for the 50-node problem),
translate into significant financial savings in practical settings [7].

Some general patterns were observed in the solutions found. When the costs
of platforms were very low in relation to the circuit operational costs, platforms were
distributed to every node and a minimum amount of routing was performed to
maintain connectivity. When the costs of the platforms were higher, a correspondingly
greater degree of centralization occurred.

Several possible avenues for improvement are apparent. The evaluation of the
network at each iteration is only approximate; there is no guarantee that the flows
based on each chosen assignment of circuits and platforms are determined optimally.
The application of a minimum cost flow routine would give an exact evaluation of
the network. Although this would probably be too expensive to perform at every
iteration, it may be worth doing every "few" iterations", and in particular as a means
of refining the candidates for best solutions generated by the method in its present
form.

Minor improvements were obtained in some cases when the routines were made
more aggressive by making more than one move per iteration. An attempt to identify
the "optimal" number of moves per iteration in early runs could be the basis for a
strategy to allow faster solutions of later runs.

References

[1] C. Anderson and C. Rasmussen, A genetic algorithm for the new service network topology
problem, in: Heuristics for Combinatorial Optimization, Section 7 (1989), pp. 1-23.

[2] F. Glover, Tabu search, Part 1, ORSA J. Comp. 1(1989)190-206.
[3] F. Glover, Candidate lists and tabu search, Preprint, CAAI, University of Colorado (1989).
[4] A. Hertz and D. de Werra, The tabu search metaheuristic: How we used it, Ann. Math. AI

1(1990)111-121.
[5] M. Lee, Least cost network topology design for a new service using the tabu search, in: Heuristics

for Combinatorial Optimization, Section 6 (1989), pp. 1-18.
[6] M. Malek, M. Guruswamy, H. Owens and M. Pandya, Serial and parallel search techniques for

the traveling salesman problem, Ann. Oper. Res. 21(1989)59-84.
[7] S.H. Parrish, T. Cox, W. Keuhner and Y. Qui, Planning for least cost expansion of communications

network topology, US West Advanced Technologies Science and Technology Technical Report.
[8] J. Ryan (ed.), Final report of mathematics clinic, in: Heuristics for Combinatorial Optimization

(1989).
[9] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, Research Report HAR-

89-001, W.A. Harriman School for Management and Policy, SUNY at Stony Brook, NY (1989),
to appear in ORSA J. Comp.

