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S O M E  Q U A N T U M  M E C H A N I C A L  P R O B L E M S  I N  L O B A C H E V S K Y  

S P A C E  

A. V.  S h c h e p e t i l o v  1 

Quantum mechanical problems are considered for potentials satisfying Bertrand's problem in Lobachevsky 
space. The self-adjointness of the corresponding Schrbdinger operators is proved. The energy levels are 
calculated both from the Schr6dinger equation and by means of the Bohr-Sommerfeld method. The effect 
of the quantum binding of classically infinite motion was discovered and is presented for the/~rst time. It 
is shown that the quasi-classical limit is equivalent, in a sense, to the Euclidean limit. 

1. As is well known, there are two select potentials of the central potentials in the space E '~. the 
Coulomb and the oscillator, for which all finite trajectories of a classical particle are closed--provided that  
they exist. One of the three versions of the Bertrand problem [1] consists of obtaining such potentials. 
An analogous problem on the sphere S 3 was studied in [2], and in the Lobachevsky space L 3 in [3]. It 
was shown that  in each of these cases, there also exist two select potentials (which we call Bertrand-type 
potentials), for which all finite trajectories of classical particles are closed. In [4], the quantum-mechanical  
problem was considered for these potentials for the case of the group SU(2) ~_ S 3. 

Our aim is the s tudy of quantum mechanical problems with Bertrand-type potentials in the spaces L 2 
and L a. First, we present a new method for solving the Bertrand problem for n ;2_ 2 in spaces L '~ and S'L 
In our opinion, this solution is simpler than  those presented in [2, 3, 5]; moreover, our approach explicitly 
reveals the similarity of the two cases to each other, as well as to the case of the space E '~. 

Let ds 2 be the s tandard metric on the unit sphere S n-1. For n _> 2, we consider the following two 
models of simply connected spaces with constant  section curvature: 

L ~ = {0} u (0 , 1 )  × S "-1, 

wi:h the metric 
ds 2 = 4R 2dr2 + r2 ds~ 

(l-r2) 2 ' r E [0,1) 

and the section curvature s = - R  -2 (the Poincar@ model in a ball [6]), and 

s ~ = {0, ~ )  u (0, o~) × s ~-I  

with the metric 
ds 2 = 4R 2dr2 + r2ds 2 

r ~ {o, oc) (1 + r2) 2 ' 

and the section curvature ~ = R -2 (stereographic projection). 
The Lagrange function of a point-like particle with a unit  mass propagating in a central potential  U(r) 

1-2 U(r). One can easily see tha t  the motion is two-dimensional, as in the Euclidean case, i.e., i s £ =  ~s - 
the trajectory of the particle lies on L 2 C L '~ or S 2 C S ~. Now, let n = 2, ds~ = de, 0 _< ¢ < 27r, and let 
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us introduce the quant i ty  

= ~ , - o o  _< ( <_ +oc,  for S 2, 

I ( ~ )  1 
= 2-~ r +  , ~ < ~ _ < + o c ,  for L 2, 

and 
1 E2  ' ~ = - ,  0 < ~ _ < o c ,  for 
r 

Then the equation for the t rajectory reads 

t 

¢ = M ( 2 ( E  - U(r(~)) - M2~ 2 - s M 2 )  -~d~,  

where M is the momentum integral and ~; is the section curvature. Since the term ~M 2 can be absorbed 
into E, in all spaces, one can check whether the trajectories are closed in the same way as was done in [1] 
and [7] for the Euclidean case. The analysis gives two possible potentials,  U1 = k~ (analog of the Coulomb 
potential) and U2 = k~ -2 (analog of the oscillator potential).  To make the description clearer, let us return 
to the coordinate r. 

For S 2, we obtain 

klr2 

u ~ ( r )  = ( ~ _ - 2 - i ) 2 '  

k2r 2 

7-- i7' 

0 < r < l ;  

l < r < _ o o ,  

kl, k2 > O. 

and for L 2, 

u{(~)  : k ~ + , u{ (~)  - (~2 + 1)2 

The b~(r)  singularity divides S 2 into two separate domains of motion along the equator r = 1. 
The particle cannot  leave either of these domains, which explains the two-parameter  form of the solu- 
tion U~(kl, k2,r). For kl = k2, one can t reat  U~ as a potential  in Riemannian space-- the  factor space of 
the sphere S 2 with respect to the central symmetry.  In terms of the distance p to the point r = 0 on the 
Riemannian sphere, 

k p 
Uf(p) = - ~  cot ~ ,  

k p 
U{(p) = - ~  coth ~ ,  k > 0 ,  

C02/I~ 2 
U~(p) - ~ -  tan 2 R '  p = 2/1; arctan r, 

a)2R 2 
U~(p) - 2 tanh2 p 1 + r  ~ ,  p = R log 1---2~. 

Here the constants are chosen in such a way that  in the Euclidean limit R ~ oc, we obtain U~ = - k / p .  
U ~ = I  2 2  s A ~ 5w p . Note tha t  the replacement R --+ iR changes Uj toUJ ,  j = 1,2, and tha t  [ 3kU1)] = 4~rkh(0), 
as in the Euclidean case. Here A3 is the Laplace-Bel t rami operator  in L 3 or S 3. However, in contrast to 

the Euclidean case, Aa(U~ J) ¢: const. 

2. Consider the spaces L 2 and L a. In the Beltrami model [6], L n = {0} U (0, 1) x S '~-1, with the metric 

ds2=R2( dv2 v2ds21) 
( 1 -  ~2)2 + f - ~  , , e [0,1), 
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while Ul(v )  - U I = - k ( R v )  -1 ,  U2(v) - U~ = ½R2w2v 2. The Hamit tonian of the particle in L 2 reads 

1 (1  l - v2  2'~ 
v p .  + + U ( v ) .  g 2 ( p , , v , p ¢ , ¢ ) = ' ~  ( - 2,2 2 

Consider the case U1. The t ra jectory of the particle is 

v = p ( l + e c o s ¢ )  -1, 

where 

P -  R k '  M = Ipel = const, e = 1 

The conditions for the existence of a motion with energy E are 

+ E + 5 . 

k 2 M 2 

E >_ 2M 2 2R 2 for 

k 
E > - - -  for 

R 

M 2 
- - < 1 ,  
R k  
M 2 
-->I. 
R k -  

The conditions for the motion to be finite are 

k 
M <  v/-R-k, E < - ~ .  (1) 

One can see tha t  for M _> v/-Rk, in contrast to the Euclidean case, finite motion is impossible for any E. 
The period of rotat ion along a closed orbit is [3] 

For U2, the trajectory has the form 

V 2 - -  M 2 ( M2 
- -  R 2  \E + 2R---- 5 - 

E + ~ - ~  - w 2 M  2 sin 2¢ 

The existence conditions for a motion with energy E are 

M 2 M 
E > M w - - -  for - -  < 1 ,  

--  2 R  2 c z R  2 

w 2 R  2 M 
E > - -  for - - > 1 .  

2 w R  ~ - 

The finiteness conditions for the motion are 

M 2 w 2 R  2 

2R-- 5 < E < - - ~  (2) 

At M >_ coR 2, finite motion does not exist for any E.  The period of rotat ion along a closed orbit is [3] 
T = 2RTr(w2R 2 - 2E)-½.  
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3. The Bohr-Sommerfeld  quantization.  For L 3, the Hamil tonian has the form 

1 ( 1 - v 2 (  P~ 
, = . - v  ) P v +  v2 \ s i n  2%b 

H3(pv v,p,o,~',p¢,¢) ~ (1 2,2 2 

0<_¢_<r r ,  0_< ¢ ,=  27r. 

The integrals of motion are M 2 2 = P~o + P~ sin-2 ¢,  L = PC, and E = H3. The basic cycles on the 
three-dimensional torus are chosen analogously to the Euclidean case [8] and have the same Maslov indexes. 

Let us consider U1. The quantization conditions have the form 

4 j / ¢  TM 

7rh l 

L d ¢ -  -- - 4 n l ,  nl  = 0 . = h i , + 2  . . . .  

~ M  2 L2 
s i n s c d ¢ =  ( M - I L I ) = 2 + 4 n 2 ,  n 2 = 0 , 1 , 2 . . . ,  

where ~1 = arcsin ~ and ¢2 = rr - ¢1, and 

! 

(l-v2)v  d r =  

2v~R ( ~/_E _ k V/- k )  4 M  2 + 4 n 3  ' 
- h - ~+ E+~ h n3 = 0, 1 , 2 . . . ,  (3) 

where vl and v2 are the roots of the last integrand. Thus, taking into account the finiteness conditions, we 
o b t a i n L = n l h ,  M = h(½ + n2 + lnl]), 

n2h2 k2 
En - 2R 2 2n2h 2 , 1 < n < - - - ~ ,  (4) 

where n := 1 + n 3 -4- r~2 -}- Intl. The degeneracy of the energy levels is n 2, as in the Euclidean case. Note 
that  the Bohr quantization,  which takes into account only circular orbits, leads to the same result. Also 
note tha t  En grows monotonously in the range of n described above. 

Consider U = U2 on L a. In this case, Eq. (3) is replaced by the condition 

-~ w2R2 - M = 2 + 4n3, n3 -= 0, 1, 2 . . . .  

As a result, subst i tu t ing n := 2n3 + n2 + In1], we obtain 

( h 2 ( n + 3 ) 2  0 < n <  h 2 E (3) = hw n +  2R 2 , _ . (5) 

The degeneracy of the levels is the same as in the Euclidean case, namely, (n + 1)(n + 2)/2. Similarly, 
for U = U2 on L 2, we have 

wR 2  2(n+1)2 0 < n < - -  - 1. (6) E~ 2) = hw(n + 1) 2R 2 ' h 

The degeneracy is n + 1. Evidently, at  R --+ oo, the expressions for En, E(~ 3), E(, 2) become the known 
formulas for the Euclidean case. 
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4. Now let us consider the corresponding spectral problems for the Schrhdinger equation 

h 2 
- - - A ¢  + U¢  = E¢,  

2 

where A is the Laplace-Beltrami operator on L 3 or L 2. 

4.1. First, we formulate some results relating to the self-adjointness of the operators - A  + U in L n. 
All spaces of the summable functions are understood w.r.t, the invariant measure in L". We present L ~ in 

= ~-~n [dxi~2 _ n d x l  t h e f o r m R n  = { x E R n , x ' ~ > 0 } ,  ds 2 (x~)-2z_..i=l~ ~ , d # ( x ) = ( x  '~) A . . . A d x  n, + 

0 2 0 
A = ( z " )  2 (Oz , )2  (n  - 2)z 

i=1 

It is clear that the operator A is elliptic. 
Let V(x) • ~:~oc(Ln), V(x) > O, be a real-valued function. Let us define /i = - A  + V(x) on C0m(L '~) 

and let 

q(¢' g ) : =  (A¢' g) = /R~_ (xn) ,_  ~ Ox---- 70x--- 7 + ~ - ~ ]  dx 1 A . . .  A dx n, ¢, g • C g ( L " ) .  
i----1 

Obviously, A is a positive-symmetric operator on C~°(L n) C/:2(Ln).  Thus, by virtue of Theorem X.23 on 
p. 200 of [9], its Friedrichs extension A is self-adjoint. At the same time, D(A) C D(q), where D(q) = { f  • 

I q(S, f )  < 
Almost all of the results of [9] obtained for the Euclidean case can be applied to the case of spaces L" 

(Theorems 1 and 2). More generally, they can be applied to any infinite-volume complete Riemannian space 
without boundaries. The only difference consists in the necessity of making calculations in terms of local 
(e.g., normal [10]) coordinates. 

T h e o r e m  1. The following formula holds: 

£;1 IL~ ~ - A ¢  + V¢ E E 2 D(A) = {¢ E L:2(Ln)IV¢ • ,oc~ J, (Ln)}, A¢ = - A ¢  + Vqk 

(Hereafter, derivatives are understood as distributions.) 

T h e o r e m  2. Let V 6 £~oc(L'~), V >_ O; then - A  + V is self-adjoint in C~(Ln) .  

The next quite-standard result ensures that the second partial derivatives of functions from D(A) are 
locally summable. 

2,2 T h e o r e m  3. Let V C £1o°°c(L"), then D(A) C Wlo c . 

P roof .  Let f E D(A) and let fi be a domain in L ~ with a compact closure. Then (Af)lf~ 6 £2(fl). 
whence, by virtue of the claim on p. 177 of [11], f in '  E W2'2(fl'), Vf~' C_ f~. Since ~ is arbitrary, we obtain 
the required result. 

The formulation of Theorem 4 is taken from [9], but its proof is slightly altered since one cannot use 
a Fourier transformation to prove the basic estimate. The proof relies on the transitivity of the isometry 
group L n . 

T h e o r e m  4. Let V E £°C(L3) + £2(L3), V being a real function. Then A is self-adjoint in C ~ ( L  3) 
and is self-adjoint in 

D ( - A )  = {¢ e £2 (L3) I -  A ¢ e  L2(L3}. 
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P r o o f .  By virtue of Theorems X.12 and X.15 from [9], it is sufficient to prove the following estimate: 
Va > 0 3b > 0 such that V¢ • D ( - A ) ,  the inequality !1¢11~ <- aIIA¢tl2 + bll¢II2 holds, where II" 112 is 
the norm in /22(L3) and I1' Iloo is the norm in / :~(L3).  Let l] C_ L 3 be a domain with compact closure. 
According to Theorem 8.24 from [11], the set 

P ( B )  = {¢ • D ( - A ) ,  IlzxOIt2,a + IlClh,a < B} 

is a compact inclusion in C(~ ' ) ,  VfY c_ a ,  VB > 0. Here I1 [12,a is the norm in t;2(fl). Let us show that 
Va > 0 3b > 0 such that V¢ • D ( - A ) ,  the inequality II¢llc<~,) < allACll2,a + bllCll2,a holds. We assume 
the inverse. This means that 3a > 0, {b,~} -+ oc, {¢,~} C D ( - A )  such that 

II¢~llc(~,) > allAC~ll2,a + b.l l¢.l l2,n =: a . .  

Without loss of generality (in proper normalization}, we can assume that IlzxC.ll2,a + 11¢.!12,~ = 1. Since 
P(2) is compact in C(~Q'), then 3¢nk --+ ~ in C(~  ~) and, hence, in t:2(fY). The sequence ank is restricted 
and (since b,~ k --+ oc) II¢~ll~,a ~ 0. However, this implies 11¢.~[[2,a, ~ 0 , ~  = 0, and IIA¢.~II2,~ ~ 1. 
Passing to the limit, we come to a contradiction: 0 = I1¢11c(~,) --- a > 0. Thus, Va > 0 3b > 0 such that 
g¢ • D ( - A ) ,  the following inequality holds: 

It¢llctn,) < allACll2,n + bllCil~,n < allA¢ll2 + bllCtt2- 

Let the point x • L a be arbitrary. There exists an 7-isometry mapping x into x ~ • 12 ~. Then 

tlz (¢ o )11  = IIA¢il2, 11¢o~112 = 11¢II2, 

and, thus, 
[ICll~ _< al[A¢ll2 + bll¢l]2. 

4.2. Further, let us solve the Schr6dinger equation with the potential U1 in L s and the potential U2 
in L 3 and L 2. It follows from the theory of elliptic equations that the eigenfunctions are infinitely smooth 
at the points where the equation coefficients are smooth. It also follows that in our spherically symmetric 
case, the eigenfunctions can be found by separating the variables. Consider U = U1 in L 3. The replacement 
u : = v - 1  1 < u < _ ~ c g i v e s  

1 R 3 d u  A w s 
A = ~ (u 2 - 1 )  2 + ( u  2 - 1 ) A s  , ~o3-- (u 2 _ 1 )  2 , 

where w s2 is the volume form on the unit sphere S 3 with a standard metric. Let g, = W(u ) r~ l ,m(X) ,  x E S 2  
As '~ l ,m = - l ( l  + 1)¢1,,~, where (Ih,m is a spherical harmonic. The equation for W has the form 

a + bu + cu  2 
w " ( u )  + (u2 _ 1)2 w ( ~ )  = 0, (7) 

with a = 2R2EB - 2 + l ( l + l ) ,  b = 2 R k h  -2 ,  c = - l ( l + l ) .  Note that in order to pass to the Euclidean 
limit, one should make the replacement r = R / u  and let R -+ oc, keeping r constant, which becomes the 
Euclidean radius. 

Equation (7) is a Riemannian equation [12] with three singular points +1, oc, where its solution as a 
function of the complex variable has branching points. The critical exponents at these points are 

p~l)= l + ~ / 1 - a - b - c  p~t)= 1 - ~ / 1 - a - b - c  

2 ' 2 ' 

p(-1)1 = l + x / 1 - a + b - c  p(-1)2 = 1 - ~ / 1 - a + b - c  
2 ' 2 ' 

PC°°)I = l, p ~ )  = - 1  - I. 
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In accordance with Theorem 4, we are interested in solutions for which 

(U 2 _ 1) 2 < OC and A W ffPl,m(X) ¢ / 2 2 ( L 3 ) .  (8)  

The first condition in (8) excludes the p~l) asymptot ic  behavior at u --+ 1 and imposes the restriction 

1 - a - b - c > 0 .  (9) 

It also excludes the p~OO) asymptotic  behavior at u --+ oc, l > 0. The second condition in (8) eliminates p~:) 

at l = 0. Thus, the eigenfunctions should have the asymptot ic  behavior (u 1)PC, '~ - as u --+ 1 and u -t as 

Using the general theory of the Riemannian equation [12], let us bring Eq. (7) to a hypergeometric 
( t )  -- t )  

form by means of the replacement y({) = W ( u ) ( u -  1)-& (u-t- 1) -p~ , ~ = ½(1 - u ) .  Then 

~(1 - {)y" + (7 - {(c~ +/3 + 1))y' - c ~ y  = 0. 

The critical exponents of function y are a and/3  at the infinity point, 0 and 1 - 7 at the zero point, and 0 
and 3' - a - / 3  at unity. Thus, 

1( ) 
oe=p~m) +p~l) + p ~ - l ) = l +  l + ~  x / 1 - a - b - c -  x / 1 - a + b - c  , 

'( ) / 3 = p ~ O O ) + p ~ l ) + p ~ - l ) = _ l + ~  x / 1 - a - b - c - x / 1 - a + b - c  , 

1 - 7 = p ~ l ) - p ~ l ) = - x / 1 - a - b - c ,  7 = 1 + v / i - a - b - c ,  a - / 3 = 2 l + 1 .  

The required function y({) should have the following asymptot ic  form: const at 0 and ~-~ at ~ -+ -.x:,. 
Thus, 

y(~) = F(a, /3,  7, ~) and lim F(c~,/3, ",/, ~)~1~ = O. 
- " +  - -  , : 3 ~  

Since ([13]), 

and 7 > 0, a - / 3  > 0, and 

lim F(a, /3 ,  7, {){e  = r(7)r(~ - / 3 )  
~+-~ r(~)r(7 -/3) 

1( ) 
7 - / 3 = 1 + / + ~  x / 1 - a - b - c + x / 1 - a + b - c  > 0 ,  

it follows t h a t c ~ = - m + l ,  r n = l , 2 , 3 . . . , i . e . ,  

- , / 1 - a - b - c + ~ / 1 - a + b - c = 2 ( m + l ) = 2 n ,  n =  1,2.3 . . . .  (10) 

whence 
b 

~ / 1 - a - b - c +  v ~ l - a + b - c =  - .  
n 

Summation and subtraction of (10) and (11) give, accounting for (9), 

(11) 

b 

x / 1 -  a + b - c = -~n + n, ~ / 1 - a - b - c  - 
b 

-- - -  - n > O .  
2n 
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Thus,  subst i tu t ing the values of a, b, and c, we obtain 

t~ 2 n2h 2 k 2 v ~ k  
En - 2R 2 2R 2 2n2h 2, 1 <_ n < ~ (12) 

Note tha t  at these values of n, the energy En grows monotonously.  As before, its levels are n 2- 
t~ 2 degenerate.  Equat ion  (12) differs from Eq. (4) by an addit ional  term,  g-~. We now show tha t  this te rm is 

responsible for an interesting e f fec t - - the  quan tum mechanical binding of a classically infinite motion. 
The second condit ion for a classical motion to be finite, Eq. (1), may not be satisfied for En from (12). 

k = U[nax; in addition. Indeed, choosing R k  such tha t  V~Rkh -1 = nl  + ¢, ¢ > 0, one can make En, > - ~  
52 

the inequality E~ - U~ a× < g~- always holds. Note tha t  the opera tor  of the square of the total  angular 
momentum is - h 2 A ,  and its eigenvalues are h21(l + l) = h2(n - m ) ( n  - ra + 1) < h2(n - 1)n < Rk.  This 
satisfies the first condit ion from (1). 

Now let us tu rn  to the radial eigenfunction W,~,L, which corresponds to the energy E~. For a = 1 - m, 
Rk /3 = - - m - - 2 l ,  and 7 = 1 + h - ~ - n ,  y(~) = F ( a , / 3 , 7 , ~ )  is a polynomial  of degree exactly ( m -  1). Its 

explicit form is 

"~-~  ( a ) ~ ( / 3 ) p  .~  

p=I 

Rk _ n) and p [ - U =  1 ( 1 _  Rk _ n) ,  we obtain w h e r e ( c ~ ) p : = a ( a + l ) . . . ( c ~ + p - 1 ) .  Since pp) = ½(1 + ~--ffz~ ~ 

/ t k  

u - 1  

In order to pass to the Eucl idean limit, one should first set u = R / r  and mult iply Wn,l by R n - l ,  
subsequently lett ing R --+ oc. Then  r becomes the Euclidean radius. 

The  equat ion for the radial  eigenfunctions of U2 can also be brought  to the form of a Riemannian 
equation with an independent  variable t = u 2. We present only the results. The  eigenvalues corresponding 
to the potent ia l  U2 in L 3 are 

= h2 2) ~ _ _  
E~ a ) 

4w2 R4 , 

w R  2 / ........... h 2 3 
0 <_ n < ~ ~/1 + 

V 4w2R 4 2" 

The degeneracy of the energy levels is (n + 1) x (n + 2)/2,  as in the Eucl idean case. 

corresponding to E (3) have the form 

where 

a = 1 - 1 + h------g-- , x E S 2, 

P(3.t)(t ) = 1 + ~ ( - k ) j ( - k  - l -  ½)j 
' j=l  j ! ( - a  n~j ( 1 -  t) j ,  n = 2 k + l .  

The eigenfunctions 
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For the potential  U2 in L 2, 

E $ )  - 2R 2 (n + 1) 2 + aJh(n + 1) 

~ R  2 / h 2 
0 <_ n < ~ V1 + 4w2R--------- 4 1. 

h2 
4w2R 4 ' 

The degeneracy of the energy levels is n + 1, as in the Euclidean case. We see that ,  in contrast  to the 
Euclidean case, the exact eigenvalues En for U1 and U2 differ from the corresponding quasi-classical values 

from (5) and (6). The eigenfunctions corresponding to E(~ 2) have the form 

_ " - " ~ n  a n ( 2 ) ,  2, e x p ( i m ¢ )  ' ¢ . , m ( U , ¢ )  = (u  2 1) ~ u l ~ , ~ t u  ) 

where 
k ( - k ) j ( - k  - I ~ l ) j  (1 - t)~,  

p(2)n.mx(t~, = 1 + ~ j!(-'---~--n-+ ½)--j 
j = i  

= 2k + Im]. 

Note that  at R --+ oc, in all cases, these eigenfunctions (under proper normalization) become the known 
eigenfunctions of the corresponding problems in E 2 and E a. 

One can easily see tha t  the energies En (a) and E(~ 2) grow monotonously as the level number n increases 
within the range pointed out above. Similar to the case U1, the finiteness conditions for the classical 

h 2 
motion (2) can be violated for maximum n. Meanwhile, as before, E(~ a) exceeds U~ n ~  by no more than gh-~, 

h 2 while E(, 2) exceeds U~  a~ by no more than  g-~. 
This result initiates the following problem. Let M be a Riemann manifold of infinite volume and 

- A  + U(x) be the SchrSdinger operator  on M 9 x such tha t  Um~ = sup U(x) < oc. It is required to find 
the upper bound for En - Umax, where En are the eigenvatues of this operator.  

All of the above formulas for the eigenvalues demonstra te  tha t  the quasi-classical limit is equivalent 
to the Euclidean limit in the sense tha t  for h--+ 0 and for R--+ oc, the leading te rm in the eigenvalue 
asymptotic expansions is given by the corresponding classical fornmla in Euclidean space. 

The author is grateful to S. Yu. Dobrokhotov, V. V. Belov, al " M. V. Karasiov for useful discussions. 
and to A. I. Shafarevich, who also drew the author 's  a t tent ion to papers [2-5]. 

R E F E R E N C E S  

1. P. Appel, Traitd de Mdcanique Rationnelle, Gauthier-Villars, Paris (1953). 
2. J. J. Slawianowski, Bull. Acad. Pol. Sci., Sdr. Sci. Phys. Astron,, 28, No. 2, 99-108 (1980). 
3. V. V. Kozlov, Vestn. Mosk. Gosud. Univ., Ser. 1, Mat. Mekh., No. 2, 28-35 (1994). 
4. J. J. Slawianowski and J. Slominski, Bull. Acad. Pol. Sci., Sdr. Sci. Phys. Astron., 28, No. 2, 83-94 (1980). 
5. V. V. Kozlov and A. O. Harin, Celest. Mech. Dynam. Astron., 54, 393-399 (1992). 
6. M. Postnikov, Lectures in Geometry: Linear Algebra and Differential Geometry [in Russian], Mir, Moscow (1986). 
7. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin-Heidelberg-New York (1978). 
8. V. V, Belov and E. M. Vorobiev, Problems on Complementary Chapters of Mathematical Physics [in Russian], 

Vysshaya Shkola, Moscow (1978). 
9. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2. Fourier Analysis. Self-adjointness, 

Academic Press, New York-San Francisco-London-Paris-Tokyo (1975). 
10. H. Cycon, R. Froese, W. Kirsch, and B. Simon, Schr6dinger Operators with Applications to Quantum Mechanics 

and Global Geometry, Springer, Berlin-Heidelberg-New York (1987). 
11. D. Gilbarg and D. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin (1983). 
12. W. Golubew, Vbrlesungen /iber Differentialgleichungen, Deutsch Verk Wiss., Berlin (1958). 
I3. M. Abramowitz and I. Stegan (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Math- 

ematical Tables, Wiley, New York (1972). 

1564 


