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A transit equilibrium assignment problem assigns the passenger flows on to a congested 
transit (public transportation) network with asymmetric cost functions and a fixed origin-des- 
tination matrix. This problem which may be formulated in the space of hyperpath flows, is 
transformed into an equivalent problem in the space of total arc flows and an auxiliary vari- 
able. A simplicial decomposition algorithm is developed and its convergence is proved under 
the usual assumptions on the cost functions. The algorithm requires relatively little memory 
and its efficiency is demonstrated with computational results. 
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1. Introduction 

A transit equilibrium assignment problem (TEAP) assigns the passenger flows 
on to a congested transit (or public transportation) network with asymmetric cost 
functions and a fixed origin-destination matrix. In a congested transit network, the 
passengers' travel costs depend on the passenger flows. The passengers' travel 
behaviour is assumed to satisfy the user equilibrium principle [17]. The transit net- 
work consists of zone centroids, where passenger trips are generated and 
attracted, the underlying road network and the transit lines that use it. The zone 
centroids, the road network and the transit lines are used to generate a general net- 
work in which there are four kinds of arcs: walk arcs, wait arcs, in-vehicle arcs 
and transfer / alight arcs. 

The transit assignment problem has attracted the interest of many researchers 
and practitioners. In many cities the transit services are essential to ensuring the 
mobility of the inhabitants, either due to increasing road congestion or the unavail- 
ability of the private car mode, such as in developing countries. In order to provide 
a suitable service, one has to understand the route choices that passengers make 
in the transit network. 

The transit assignment (equilibrium) problem has been studied for more than a 
decade. Many models and algorithms were proposed for its solution. Two model- 
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ling aspects are relevant when one studies the TEAP. The first one concerns the 
assumption about the passenger route choice in the uncongested case, while the sec- 
ond aspect is related to how the level of congestion in the transit network affects 
the passengers' travel behaviour. Different ways of approaching these modelling 
aspects lead to various models. A good survey of the models used for uncongested 
transit networks is given by Spiess and Florian [16]. In this case, several assump- 
tions have been proposed. The "all-or-nothing" assignment is a traditional assign- 
ment model which assumes that the passengers select shortest paths based on 
travel costs that are independent of passenger flows. The multipath assignment 
assumes that several paths are found first and the passengers are assigned to paths 
in some proportion of their costs. Not all of these methods consider the passen- 
gers' behaviour at a bus stop carefully. In fact, to model the choices made by the 
passengers waiting at a bus stop, that is shared by several transit lines, all the mod- 
els assume a certain behaviour. These choices are called strategies. Spiess [15] and 
Spiess and Florian [16] formulated a transit assignment model for an uncongested 
(i.e., fixed travel time) transit network, based on the concept of an optimal strategy, 
as a linear programming problem, and solved it by a polynomial time algorithm. 
In this model, the passenger flows that correspond to the optimal strategy may use 
more than one elementary path. Similarly, De Cea and Fernandez [3] used a mini- 
mal route concept to formulate the transit assignment problem as a linear pro- 
gram. 

Nguyen and Pallottino [11] characterized and studied in detail the notion of the 
strategy, by using a graph theoretical approach, and developed the concept of a 
hyperpath. More precisely, a hyperpath fromp to q is an acyclic subgraph which is 
the union of a subset of elementary paths from p to q. To each arc of the subgraph 
is associated a conditional probability that it is traversed by a passenger who 
arrives at the beginning node of the arc. A strategy corresponds to a hyperpath, i.e., 
a subnetwork containing all the arcs of the corresponding strategy. Spiess's model 
assumes that, at a bus stop, passengers always board the first vehicle to arrive 
from the set of attractive lines of the hyperpath at that stop. The demand at a node 
is then assigned to the hyperpath in proportion to the fixed frequencies of the lines 
retained in the attractive set of the hyperpath at the node. 

Although this class of models can be useful and efficient to study transit systems 
where the impact of congestion effects on the route choice is low, they are unsuita- 
ble in the simulation of transit flows in some cities where high congestion levels 
are so severe that they affect the passenger route choices. This is the second aspect 
to consider. 

Gendreau [7] and De Cea and Fernandez [4] extended the TEAP to include the 
consideration of congestion effects not only in the in-vehicle cost but also on the 
waiting time. The first one models the waiting times by using a queueing theoretical 
approach on an expanded network, while the second models the waiting time to 
be a direct function of the flow-dependent effective frequency. However, only an 
algorithm for a,simplified version of the model is presented. Spiess and Florian [16] 
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gave a general version of a nonlinear model in which in-vehicle travel times (or gen- 
eralized travel costs) are increasing functions of passenger flows (called "discom- 
fort functions"). The main limitations of these approaches are that waiting times at 
stops are not affected by congestion and there are no cross effects of flows on the 
cost functions. A similar formulation was also proposed by Nguyen and Pallottino 
[11]. They showed that, by explicitly defining the flows and structures of the hyper- 
path, the standard equilibrium traffic assignment model could be adapted to tran- 
sit networks by substituting the hyperpath flow space for the path flow space. As in 
Spiess and Florian's model, the waiting times are not flow dependent. It is noted 
that this adaption is carried in the hyperpath flow space (not in the total arc flow 
space). In this sense, the transit equilibrium assignment model is different from the 
traditional traffic equilibrium model. We note that Spiess and Florian [16] adapted 
the linear approximation method for a symmetric transit equilibrium assignment 
problem with flow dependent arc times. 

Recently, Wu et al. [18] formulated a transit equilibrium assignment model 
(WFM) as a variational inequality problem and solved it by using a linearized 
approximation method in the hyperpath flow space. Since the WFM model is 
defined in the hyperpath space, the space required to store the hyperpath informa- 
tion is large, even though a restriction strategy is used to store only the necessary 
hyperpaths. This space increases as the number of zone centroids and the size of the 
transit network increase. 

This paper is devoted to the development of a method for the transit equilibrium 
assignment problem. First, the original variational inequality is converted to an 
equivalent variational inequality problem in a new variable space; then a simplicial 
decomposition method [10,14] is used to solve it. The advantages of this approach 
for the large scale transit equilibrium assignment are the following: 
(1) One need only store the limited number of extreme points in the space of total 

arc flows plus one auxiliary variable (total waiting time due to the frequency 
delay). This requires much less memory than the WFM algorithms, which oper- 
ate in the space ofhyperpath flows. 

(2) The solution method for the resulting quadratic subproblems is a one-dimen- 
sional search method and an extreme point is generated by a solution of a short- 
est hyperpath problem. 

However, one potential difficulty is that the cost function, in the new variable 
space, may not be strongly monotone, a condition which is required for the conver- 
gence of the simplicial decomposition method if an iterative method is used for 
the restricted variational inequality problem. In the following, we will show that 
only the strong monotonicity of the cost functions in the space of the total arc 
flows, and not in the new variable space, is required for the convergence of the sim- 
plicial decomposition algorithm. 

The rest of the paper is organized as follows. Section 2 presents the basic defini- 
tions and the formulations of the transit equilibrium assignment problem. In sec- 
tion 3, we give the basic simplicial decomposition algorithm for the equivalent 
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transit equilibrium assignment problem and a discussion of the steps of the algo- 
rithm. Section 4 presents the method used to solve the restricted variational 
inequality problem. In section 5, we report some computational results. Finally, 
section 6 concludes the paper. 

2. Basic definitions and formulations 

In the following we assume that all the vectors are column vectors. 
As shown in the WFM model, the transit equilibrium assignment problem can 

be formulated as the following variational inequality problem: find h* e ~2h such 
that 

VIP(J2h, S): S(h*)T(h-h*)>>.O, he~2h. (1) 

Here S(h)el~ m is a vector of hyperpath costs; h e R "  is a vector of hyperpath 
flows; h*~ ]R m is a vector of equilibrium hyperpath flows and Oh is the feasible 
region satisfying 

E hk = gi, i e I  , 
keKi 

hk>~O, keKi ,  i e I  , 

where hk is the flow along hyperpath k; i denotes the ith origin-destination pair 
(t7, q); I is the set of  all such indexes i; gi is the travel demand from originp to desti- 
nation q, (p, q) = i; and Ki is the set ofhyperpaths connecting the ith origin-destina- 
tion pair. 

It is known [1 l, 18] that 

S(h*)T(h-h  *) =s(v*)T(v--v *) + W T ( h - h * ) ,  (2) 

where s(v) = (s~(v)) is a vector of arc costs, v = 6h (6 is the arc-hyperpath inci- 
dence matrix) and W = (wk) is a vector ofhyperpath waiting times that depends on 
the frequencies of the transit lines, i.e., 

and 

Va = E E t ~ a k h k  
ieI keKi 

1 
wk = ~--~ 6~k 

aeA Y~a'eFSk(t(a))fd ' 

where Va is the total flows on arc a; wk is the waiting time on the hyperpath k due 
to the frequency delay in the general network; A is the set of arcs in the general net- 
work; fa is the bus frequency associated with arc a; t(a) is the tail of arc a and 
FSk(t) is the set of forward arcs at the node t. 
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Equation (2) appears to use explicitly the hyperpath related information. How- 
ever, this is unnecessary. Consider the following new variable space ~ defined by 

We denote 6 = (6, wT)  "r. Then we have the following result. 

PROPOSITION 2.1 

Assume that the set f2" = {v : v = 6h, Vh e ~2h} is a bounded polyhedron. The 
new variable space ~ is also a bounded polyhedron. 

Proof 
First, we show that ~ is a polyhedron. Accordihg to (3), we know that ~0 is the 

region obtained from a polyhedron via a linear transformation 6. Therefore ~ is a 
polyhedron. Since we assume that $2~ = {v: v = 6h, Vhe~2h} is bounded, W is a 
nonnegative constant vector and Oh is bounded, then O is also bounded. [] 

By definition, ~ is also a convex set and it can be expressed as a linear combina- 
tion of its extreme points, i.e., 

Co(el, e2, . . .) = [2, 

where Co denotes the convex hull of the extreme points (el, e2,. . .)  of ~.  
According to (3), we can see that every distinct extreme point in ~ corresponds 

to a distinct extreme point in ~2h. The reverse is not necessarily true since 6 6 ma), be 
singular. Thus a set of extreme points in Oh may correspond to a single point in O. 

Proposition 2.1 indicates that the problem can be formulated in the space of 
total arc flows v and the auxiliary variable u, by using successive hyperpath compu- 
tations to generate extreme points. The space ~ is gradually constructed by taking 
the convex hull of  the generated points of C2. Now we consider the following propo- 
sition. 

PROPOSITION 2.2 

The variational inequality problem (1) is equivalent to finding ( V * , u * ) T ~  
such that 

S(v*)T(v--v*)+(U--U*)>~O, V ( ~ )  e ~ ,  (4) 

where ~ is the new variable space. 

Proof 
Consider (v*, u* ) "r ~ C2 which satisfies 

+ (,,-- U*) 
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It follows that there exists at least an h* e Oh such that 

s(Sh*)T(6h - 6h *) + wT(h-  h*)>>.O, 

which again implies that 

S(h*)T(h-h *) + WT(h-h*)>~O. 

Conversely, suppose that we have h* E Oh such that 

S(h*)T(h-h *) + wT(h-h*)>~O, 

This means that 

It follows then that 
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(~Ts(v*))T(h  --  h*) + u -- U* i > 0 .  

S(v*)T(v-- V*) + ( . - - .* )  

VhEQh,  

r h e a .  

[] 

The following proposition is a direct consequence of a well-known theorem in 
variational inequality theory [10], i.e., 

PROPOSITION 2.3 

The variational inequality problem (4) is equivalent to the following problem: 

min G ( : ) = - s ( v ) r ( C ~ - v ) - ( f i - u )  (5) (~,.)r~ 

where (13, T fi) is a solution of the following linear program: 

min s(v)r(x--v) + ( y -u )  

and G(v*, u*) T = 0 if and only if (v*, u*) T is the solution of the variational inequal- 
ity problem (4). 

G is called the gap function and is used as a stopping criterion in an algorithm 
that will be discussed below. 

3. The basic simplicial decomposition algorithm 

In the following, we give a simplicial decomposition (SDA) and discuss in detail 
the computations required at each of its steps. 
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A L G O R I T H M  S D A  

Step 1 (Initialization): find an extreme point (e~, elu) T o f ~  and define 

E~ = (el) = \ e  I ] 

Let 1~1 = OO,/3 be a positive parameter and l = 1. Let f f  be the convex hull 
of the columns of E t and e t be an error such that e t---,-0 as l--* c~. 
(v l ,u l )T=(e l ,  elu)T. 

Step 2 (Solve the restricted variational inequality problem): find (v l, ut) T E FJ such 
that 

s(vl)T(v--VI) + (U--UI+I)~ --e  I , V ( ; )  G~  I. 

Step 3 (Solve the shortest hyperpath ) " 

ev ~ = min s(vt)Tv + 
x 

arg u .  
eu ] (v.u) r e h 

(6) 

(7) 

1 l T  Step 4 (Stopping criterion):ifG(v, u ) = 0, then stop. (v t, ul) T is the solution. 
Step 5 (Update E): if G(v l, ul)T >/01 --/3, then E 1+1 = E l U {ev, eu}T; i f  G(v l, ul) T 

< ~ - /3 ,  then E t+: = Et\D 1 U {ev, eu}T; 
where D t is the columns of E t with zero weight in the expression of (v t, ut) T 
as a convex combination of columns ofE  t. Let 

v l o, O(u)) 
l = l + 1. Goto step 2. 

In step 1, the 1 1 T (e~, eu) can be found by the solution of a shortest hyperpath pro- 
blem where the arc costs are chosen to be s(0). Step 2 will be discussed in section 4. 
In step 3, as in step 1, the shortest hyperpath problem can be solved in polynomial 
time (see [11, 16]). 

Let us consider the convergence of the simplicial decomposition algorithm 
(SDA) for the equivalent variational inequality problem. We define the steps which 
compute the shortest hyperpath problems as major cycles (also called the subpro- 
blems) and the steps of solutions of the restricted variational inequality problem as 
minor cycles. 

P R O P O S I T I O N  3.1 

If each restricted variational problem in the minor cycles is well defined, then 
the SDA converges to a unique solution (v*, u*) T of the equivalent variational 
inequality problem. 
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Proof 
For the convergence, see [10]. For the uniqueness, see [18]. [] 

The restricted variational inequality problem is in fact well defined which can 
be seen in section 4. 

4. Solving the restricted variational inequality problem 

In this section, we give a solution method for the restricted variational inequal- 
ity problem (6). Its solution requires a sequence ofaffine variational inequality pro- 
blems in f t .  A possible algorithm, which we denote the linearized method, is the 
following. Let B(v) be a symmetric and positive definite matrix. For an initial solu- 

0 0-T ~ t-~ll tion (v ,u )  =.,,, solve (Vk+l,Uk+l)r=H(vk, uk)V for k = 0 , 1 , 2 , . . . ,  where 
H(v k, u*) "r is the solution of the following quadratic programming problem: 

min S(~)T(v--~)q-~'~-~(v--vk)TB(vk)(v--Vk)+(u--uk), (8) 
(,,,u)%t~ 

where a is a positive number. Let )k satisfy (v k, uk) r = Et), k and ~ = (A I Y~'~=l Ai 
= 1, Ai >I 0, i = 1 , . . . ,  l}. The quadratic program (8) is equivalent to 

min ~(Ak)r(A- A k) + ~ I ( A -  Ak)TB()~k)(A- Ak), (9) 
Z~ 

where ~( A k ) r = s( E~A k) T E~ + E~ = s(v k) r Et~ + E~ and B()~k) is assumed to be sym- 
metric positive definite and is an approximation of (E~)TB(vk)E~. It is noted that (i) 
(Etv)rEt~ is a nonsingular matrix, since all the columns in E~ t are linearly indepen- 
dent; (ii) ~()~k) is positive definite if and only ifB(v k) is positive definite. 

Several procedures have been proposed to solve the problem (9). Here we use 
the method developed by Dussault et al. [5], where the problem is solved by a 
sequence of separable quadratic programs each solvable by one-dimensional 
search algorithms [8,9]. In our implementation, we define the linearized method as 
a projection method, if ~(~k) is a constant diagonal and positive definite matrix, 
and a Iinearized Jacobi method if B(A k) is the diagonal of Er~Vs(vk)Ev. Thus, the 
problem (9) is solved by a sequence of the one-dimensional search computations. 

Now we consider the global convergence of the linearized method for the 
restricted variational inequality problem and show that the restricted variational 
inequality problem is well defined. 

T H E O R E M  4.1 (CONVERGENCE THEOREM OF THE L I N E A R I Z E D  METHOD)  

Assume that ~)~ is nonempty closed, compact and convex. Let s(v) be a continu- 
ous mapping from R '~ into itself. Let B(v) be a symmetric positive definite matrix 
from ]R m to R '~ x ~m. Then there exists a symmetric positive definite matrix B with 
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B(v)  - B positive semi-definite for all v ~ f2~. If  there is a parameter 0 < 0 < 1 such 
that, for all (z/, u~) r,  ( C , u") v ~ : l  t, 

It/~ -* {c~[s(v') - s(v")] - B (v ' ) ( v '  - v")}tl B ~<0[Iv ~ - v"ll~, (10) 

then the sequence of iterates {v k, u~} T generated by the linearized method con- 
verges to the unique solution of the restricted variational inequality problem for 
any initial feasible vector (v °, u°) T e f t .  

P r o o f  
The existence of B is obvious since B can be selected such that 

= AminI, 

where Ami, is the minimum eigenvalue of B ( v )  and I is a corresponding identity 
matrix. 

Since (v k, uk) T and ( :+1,  uk+l)T are the solutions of the quadratic program (8), 
we have the following two inequalities 

Is(Jc-1)--}-lB(~C-l)(Jc- ~/c-I)] T(~ -- vk) q- (u - u/C) ~0, V(:)EJ:) / (11) 

and 

By replacing v and u in (i I) and (12) by :+I and u k+1 and : and u k respectively, 
and by adding them up and rearranging the terms, we obtain 

:)T ~ B(:)(:+~_ 4) (4+ 1 

[$(vk_l )  "q- l w ( v k _ l ) ( :  __ ~c -1 )  __ S(~k)]T(~k+l  __ ~c) 

[ [~-1 ( s ( v k - I )  __ $(~c)  __ 1 s ( v k _ l ) ( ~ c _  1 __ ~/c) }[[~[[vk+l __ 
1 

where the last inequality follows from the fact that 
<~ HBI/2B-IalIuIIB1/UbII2 ~ II/~-*atl~llblln. Thus we have 

(:+i _ :)rB(:)(:+I _ :) 
~< it~-1 ( O t [ s ( v k - l )  __ $(~k)]  __ B(?3k-1 ) (vk - I  __ : ) } l l ~ l l : + ,  _ :11~ ( 1 4 )  

~<011:-1 - :11~11 : + ~  - :11~ (using (10)).  

However, the assumption that B ( v )  - B is positive semi-definite implies that  

a'rb = drB-1~x/2B1/Eb 
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(v k+1 - vk)TB(v k+l -- v k) ~< (v k+l -- Vk)TB(vk)(V k+l -- vk). (16) 

Combining (15) and (16) and using the definition of II I I we obtain 

[Irk+ 1 _ vkll   011 vk - vk7 ll . 

Since S'~ is compact and convex, the algorithm is contracting in v and hence it 
follows that 

lim v k+l = ~3. 
k--~ oo 

Given ~3, according to (3), we may find a corresponding h (not necessarily unique) 
and eventually ft. 

From (12), we obtain 

S(v)T('0--Q)-'I-(U--~/)~ 0, V ( ; )  ~ l .  

By definition, (~3, fi)T is a solution of the restricted variational inequality pro- 
blem. According to Nguyen and Pallottino [11] and Wu et al. [18], it is unique in 

[] 

It is noted that, if B(v) = D (D is a fixed symmetric and positive definite 
matrix), s(v) is strongly monotone and Lipschitz continuous, the linearized method 
is convergent for a sufficiently small a [13]. 

5. Computa t iona l  results 

In this section, we give computational results for the solution method applied 
to three networks. Let us first recall several important notions in the modelling of 
the transit equilibrium assignment problem. 

As mentioned before, the road network (for modelling purposes) consists of  (i) 
zone centroids where the transit travel demand is generated and attracted, (ii) 
nodes representing bus stops and road intersections and (iii) roads or streets con- 
necting those nodes and (pedestrian) connectors linking those nodes and centroids. 
A transit line is defined by its itinerary as a set of  nodes that it passes through, and 
attributes such as its speed and frequency. The transit travel demand gi is the num- 
ber of trips from origin p to destination q (where i = (p, q)). The road network 
and the set of transit lines can be used to generate a general network where there are 
four types of arcs: 

• walk arcs - the arcs connecting the zone centroids and the nodes of the general 
network; 

• wait a rcs-  the arcs modelling the waiting of passengers at bus stops for the corre- 
sponding transit lines; 
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• in-vehicle a r c s -  the arcs corresponding to the line segments (every two consecu- 
tive nodes on a transit line define a transit segment); and 

• transfer / alight a rc s -  the arcs from the transit lines to bus stops. 

The procedure of generating such a general network is not discussed here. How- 
ever, the size of the general network is of the order of the number of pedestrian con- 
nectors plus three times that of transit line segments. For  the transit equilibrium 
assignment, we know that two attributes are associated with every arc a: cost func- 
tion sa(v) and a frequencyfa. The cost functions for these arcs may be defined based 
on theoretical and empirical considerations. In the following, for the purpose of 
numerical tests, we present a possible cost structure for the applications, as dis- 
cussed in Wu et al. [18]. 

5.1. WALK ARCS 

We assume that the costs on the walk arcs are independent of flows and given 
by Sa = al ta ,  where al  is a positive parameter and ta is a constant walk time;fa is 
OO. 

5.2. WAIT ARCS 

The costs on the wait arcs are dependent on both the flows that correspond to 
passengers waiting for the bus (Va) and the direct flows (va) corresponding to 
through passengers that share the bus capacity with the waiting flows. See fig. 1 
where the direct flow is defined as 

Vd = Vc -- Ve. 

The function form chosen is as follows: 

Sa(V., Vd) = a2[(V. + &Vd) / Kb] p , (17) 

where c~2, f12 and p are positive parameters and Kb is the bus capacity correspond- 
ing to the in-vehicle arc b. According to the definition, we have Vb = v,, + va, where 
vb is the in-vehicle flows and (17) may be rewritten as 

in-vehicle arc in-vehicle arc 

c b / 

transfer-alight arc wait arc 

e 

Fig. I. An illustration of the arcs at nodes. 



256 .1.It. Wu, M. Florian / Transit equilibrium assignment 

s o ( . o , , b )  = - Z2).  +  2v )lKb] p, 
with 0 ~</32 ~< 1. In this case,fa represents the bus frequency on arc b. 

(18 )  

5.3. IN-VEHICLE ARCS 

Here we use the same notations as in fig. 1. The costs of  the in-vehicle arcs sb 
are composed of  two parts: in-vehicle travel costs tb, which are independent  of  
flows, and discomfort  costs, which depend on the direct flows (vd) and the passen- 
gers (Va) waiting for the bus. Thus we propose the following relation: 

sb(vd, Va) = a3tb + fl3[(Vd + 73Va) /Kb] p , (19) 

where a3,/33, 73 and p are the positive parameters associated with the in-vehicle 
arc. Kb is the capacity of  the bus on arc b. Since va = vb - Va, we have 

sb(Va, Vb) = c~3tb +/~3[(Vb + (3'3 -- 1)va)/Kb] p. (20) 

fb is oo for in-vehicle arcs. 

5.4. TRANSFER/ALIGHT ARCS 

We assume that  the arc costs are independent  of  the arc flows and given by a con- 
stant walk time ta, i.e., Sa = a4ta (here O~4 is positive) andfa is oo. 

We note  that  Kb is a multiple of  the time period considered, the corresponding 
bus frequency and the bus capacity. We implemented the SDA in For t ran  77 on a 
S U N - S P A R C  2 workstat ion and ran it on three following networks. The first net- 
work  (Small) is a four zone small test network cited from Wu et al. [18]; the second 
network (Hefei) is the network of  the city of  Hefei, China, and the third network 
(Winnipeg) is the network of  the city of  Winnipeg, Canada. Table 1 contains the 
dimensions that  characterize the three networks. 

We define E G  to be number  of  extreme points generated, EL to be the remaining 
number  of  extreme points,  C P U  as the total cpu time mainly for the computa t ion  
of  the restricted variational inequality problems and the shortest hyperpaths.  The 
computed  values, G A P  and RGAP,  are the absolute and the relative gaps in the 
sense of  variational inequality theory respectively. ATC is the average travel costs. 
V / C  is the congestion measure,  which is calculated only for the in-vehicle arcs by 

Table 1 
Size of the tested neworks. 

Networks Zones Nodes Directed Transit Nodes in Direct arc Total 
arcs GN in GN demand 

Small 4 9 16 6 27 44 599 
Hefei 80 180 398 16 444 904 324,685 
Winnipeg 150 1067 2975 67 5,253 13,149 18,007 
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Table  2 
Paramete r s  used for the  tested networks .  

257 

Ne twork  Cost  funct ion  parameters  S D M  

pa rame te r s  

~1 ~2 ~2 ~3 ~3 ~3 ~4 ~ P ~ 

Small t 1 0.20 1 1 1.20 1 0.7 2 6 0 
Hefei 1 4 0.30 6.0 5.0 1.20 1 0.7 3 8.5 0 
Winn ipeg  99 1.3 0.10 1.0 0.2 1.20 1 0.7 2 5 0 

dividing the flows by the capacity of the buses over the period studied (Kb). We 
computed the average (AVE), the minimum (MIN) and the maximum (MAX) of 
this congestion measure. 

The algorithm used for the restricted variational inequality problem is the linear- 
ized Jacobi method. Since a may be different for each restricted variational 

Table  3 
C o m p a r i s o n  of  the  W F M  a n d  S D A  algor i thms on  two tested networks .  

EG Small Hefei 

SDM W F M  SDM W F M  

G A P  R G A P  G A P R G A P  G A P  R G A P  G A P  R G A  

2 211.28 2 . 3 9 E - 2  27185.2 6 . 7 0 E - 1  785160.7 1 . 0 9 E - 2  158436256 0.605 
3 75.12 8 . 6 1 E -  3 915.48 9 . 9 6 E -  2 392010.3 5 . 4 9 E -  3 2449305 0,0336 
4 12.18 1 . 4 1 E -  3 588.64 6 . 4 9 E -  2 336111.3 4 . 7 2 E -  3 473501 6 . 5 9 E -  3 
5 3.78 3.38E - 4 143.97 1.66E - 2 234252.4 3.79E - 3 401170 5.60E - 3 
6 1.70 1 . 3 9 E -  4 82.72 9 . 4 7 E -  3 118644.6 1 . 6 7 E -  3 299879 4 . 1 9 E -  3 
7 0.179 1.51E - 5 44.13 5.11E - 3 74371.5 1.05E - 3 271223 3.79E - 3 
8 0.0183 2 . 5 2 E -  6 23.16 2 . 6 8 E -  3 16615.3 2 . 3 4 E -  4 228018 3 . I 9 E -  3 
9 0.0153 1 . 7 7 E -  6 15.81 1 . 8 3 E -  3 11633.7 1 . 6 4 E -  4 195095 2 . 7 3 E -  3 

1 0  - - 9.60 1 . 1 1 E -  3 11035.6 1 . 5 6 E -  4 176963 2 . 4 8 E -  3 
11 . . . .  5066.7 7.90E - 5 160881 2.25E - 3 

12 . . . .  5801.0 8 . 1 8 E -  5 149984 2 . 1 0 E -  3 
13 . . . .  7141.8 1.01E - 4 137882 1.93E - 3 
14 . . . .  5353.7 7 . 5 5 E -  5 130925 1 . 8 4 E -  3 
15 . . . .  122034 1.71E - 3 

CPU (see) 0.73 1.18 58.62 115.73 
Average 
V/C 0.87 0.87 0.33 0.33 
Min V/C 0.10 0.10 0.02 0.02 
Max V/C 1.79 1.79 1.64 1.64" 
Average 

travel 8618.16 8622.82 218.44 219.35 
cost 



258 J.H. Wu, M. Florian / Transit equilibrium assignment 

Table 4 
Computational results at different congestion levels for small network. 

V/C Initial Final EG EL ATC CPU 
(see) 

Ave Min Max GAP RGAP G A P  RGAP 

1.68 0.24 3.58 423.99 2 . 6 5 E -  2 4.58 2.95E - 5 9 7 25.96 0.99 
0.87 0.10 1.79 211.28 2.38E - 2 1.53E - 2 1 .77E-  6 9 7 14.39 0.72 
0.46 0.04 0.92 7.73 1.13E - 3 2.33E - 3 3.42E - 7 9 8 11.36 0.68 
0.40 0.04 0.84 2.17 3 . 2 6 E -  4 9 . 2 6 E -  2 1 .39E-  5 9 8 11.07 0.96 

inequality problem, we adopt the following heuristic rule for the implementation. 
Starting with any given value of a (large), if the sequence is contracting, then we 
continue. If it is not, we reduce the value of c~, i.e., a = 7ra, where 0 < l r <  1. The 
shortest hyperpath algorithm is implemented with a heap data structure. 

Table 2 contains the parameters of the cost functions and for the SDA. We note 
that all the cost functions used are asymmetric. In table 3, we give the comparison 
of the results obtained by applying the WFM algorithm, in the space of hyperpath 
flows, and this SDA for the Small and Hefei networks. We could not execute the 
WFM algorithm for the Winnipeg network due to the excessive space requirements 
for the hyperpaths. For these tested networks, the SDA outperforms the WFM 
algorithm both in terms of the cpu time and the convergence measures (GAP and 
RGAP). For the WFM algorithm, the gap and relative gap at EG are calculated for 
a solution computed based on the (EG-1) extreme points, while, for the SDA, 
they are calculated for a solution based on the extreme points retained at the pre- 
vious iteration. In tables 4, 5 and 6, we give the results obtained for the Small, Hefei 
and Winnipeg networks respectively with SDA at different congestion levels. 
These congestion levels were created by adjusting the bus capacity. These results 
include the initial gap (GAP) and the relative gap (RGAP), the final gap (GAP) and 
the relative gap (RGAP), the number of extreme points generated (EG) and kept 
(EL) in the final solution, the average travel cost (ATC) and the total cpu time in 
seconds. For the same number of iterations, the final gap and the relative gap are 
higher for the more congested problems, which is to be expected. It is interesting to 
note that the number of extreme points left in the final solution is less for the con- 
gested problems than for the uncongested problems. 

Table 5 
Computat ional  results at different congestion levels for Hefei network. 

V/C Initial Final E G  EL ATC CPU 
(see) 

Ave Min Max GAP RGAP G A P  RGAP 

0.69 0.04 3.28 15,325,507 0.128 274,117 2 . 5 3 E -  3 19 10 334.33 75.06 
0.33 0.02 1.64 785,161 1 .095E-  2 2,217.9 3 . 1 2 E -  5 19 11 218.45 81.04 
0.16 0.0I 0.82 70,492 1.07E - 3 161.76 2.47E - 6 19 17 201.32 79.55 
0.08 0.00 0.41 9,988.9 1 . 5 5 E - 4  13.61 2 . 1 1 E - 7  19 18 198 80.9 
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Table 6 
Computational results at different congestion levels for Winnipeg network. 
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V/C Initial Final EG EL ATC CPU 
(see) 

Ave Min Max GAP RGAP GAP RGAP 

1.59 0.00 7.29 505,796.8 0.17 28,707.5 1.03E - 3 15 10 154.16 1450.1 
0.79 0.00 3.90 38,061.0 1.77E- 2 2,155.5 9 . 9 6 E - 4  15 7 120.12 1439.9 
0.52 0.00 2.75 10,669.2 5 .23E- 3 106.1 5 .25E-  5 15 9 112.27 1430.9 
0.39 0.00 8.27 3,797.0 1.93E- 3 43.12 2 .19E-  5 15 10 t09.06 1439.4 
0.31 0.00 1.92 1,926.6 1.94E- 4 43.00 2 .22E-  5 15 12 107.45 1448.5 

6. Conclusions 

In this paper, we developed a simplicial decomposition algorithm (SDA) for 
the transit equilibrium assignment problem. Although the problem is formulated in 
the hyperpath space, this problem can be reformulated in the space of total arc 
flows and the auxiliary variable. The new problem is then solved by using the sim- 
plicial decomposition approach. The resulting algorithm is a computationally 
tractable way of solving large scale transit equilibrium assignment problems. A 
proof of the convergence of the SDA is also given, which follows from the work of 
Lawphongpanich and Hearn [ 10] and Pang and Yu [ 14]. 

The size of the general network for the transit equilibrium assignment is much 
larger than that for the road traffic equilibrium assignment. Thus the problem is a 
typical large scale problem. The computations of the shortest hyperpath take more 
cpu time when the general network is getting larger, which is to be expected. Since 
the computation of the shortest hyperpath must be carried out for all the destina- 
tions, the use of parallel computation implementation seems attractive. 
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