
Landscape Ecology vol. 11 no. 4 pp 197-202 (1996) 
SPB Academic Publishing bv, Amsterdam 

A note on contagion indices for landscape analysis 

Kurt H. Riitters I*, Robert V. O'Neill 2, James D. Wickham I and K. Bruce Jones 3 
1Tennessee Valley Authority, Historic Forestry Building, 17 Ridgeway Road, Norris, TN 37828, USA; 2Envi- 
ronmental Sciences Division, Oak Ridge National Laboratopw., Oak Ridge, TN 37831, USA; 3United States 
Environmental Protection Agency, Las Vegas, NV 89193, USA 

Keywords: Spatial pattern, image texture, information index, computation, statistics 

Abstract 

The landscape contagion index measures the degree of clumping of attributes on raster maps. The index is 
computed from the frequencies by which different pairs of attributes occur as adjacent pixels on a map. 
Because there are subtle differences in the way the attribute adjacencies may be tabulated, the standard index 
formula may not always apply, and published index values may not be comparable. This paper derives formu- 
las for the contagion index that apply for different ways of tabulating attribute adjacencies - with and without 
preserving the order of pixels in pairs, and by using two different ways of determining pixel adjacency. When 
the order of pixels in pairs is preserved, the standard formula is obtained. When the order is not preserved, a 
new formula is obtained because the number of possible attribute adjacency states is smaller. Estimated conta- 
gion is also smaller when each pixel pair is counted twice (instead of once) because double-counting pixel 
adjacencies makes the attribute adjacency matrix symmetric across the main diagonal. 

Introduction 

To landscape ecologists, "contagion" refers to the 
degree to which mapped attributes are clumped 
into patches of the same attribute class. Classical 
definitions of the contagion index (O'Neill et al. 
1988; Li and Reynolds 1993) consider the observed 
pairing of attributes on raster maps in comparison 
to the case of random pairing when attribute fre- 
quencies are equal. The contagion index is used 
often in the literature despite the limitations of 
using single-valued indices to represent complicat- 
ed map patterns. One reason is that the index seems 
to be an effective summary of overall clumpiness 
on maps (Turner 1989). Another reason may be 
that in typical map collections, the contagion index 
is highly correlated with indices of attribute diver- 
sity and dominance (Riitters et al. 1995; Cain et al. 
in press) and thus may be a surrogate for those 
important pattern indices (O'Neill et al. in press). 

Modifications of the contagion index have been 
suggested to capture more of the information about 

pattern complexity that is necessarily lost when 
using a single-valued index. Gardner and O'Neill 
(1991) derived attribute class-specific contagion 
estimators for different null hypotheses of pattern. 
Pastor and Broschart (1990) proposed the electivity 
index to measure the contagion of each pair of 
attribute classes separately. Cressie (1993, Chapter 
7) describes other multi-parameter statistical mod- 
els that are used to model spatial adjacency on 
raster maps. In general, the analysis can be made 
more realistic and the sensitivity to real pattern dif- 
ferences can be improved by adding additional 
parameters. 

Sometimes, however, it is desirable to use sin- 
gle-valued indices. For example, multivariate state 
spaces with dimensions corresponding to conta- 
gion, fractal dimension, and patch shape categorize 
landscapes by simultaneously considering several 
aspects of pattern (O'Neill et al. in press). In these 
cases, a premium is placed on economy of parame- 
ters for any one dimension, and the ideal case is 
that of single-valued indices. 
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To calculte contagion, the pairing of attributes is 
usually first summarized in an "attribute adjacen- 
cy" or "co-occurrence" matrix which shows the 
frequency at which different pairs of attributes 
appear side-by-side on the map (e.g., Haralick et 
al. 1973). Further analyses depend on the study 
objectives and approach to determine the model 
complexity and the number of parameters that will 
be used to summarize the attribute adjacency 
matrix. 

At first glance, it appears to be a simple matter 
to construct a table of attribute adjacency frequen- 
cies - one simply counts the number of times that 
each pair of attribute classes is adjacent on the 
map. But several procedures are in use, including 
counting each pair of pixels (picture elements) 
twice instead of once (e.g., Haralick et al. 1973; 
Musick and Grover 1991). While there are valid 
reasons for adopting a particular procedure, the 
details are not usually given when a contagion 
index is reported. This would not be a problem if 
the computing formulas were the same for these 
different procedures, but they are not. This makes it 
difficult, if not impossible, to compare published 
~:ontagion values from different studies. 

Contagion indices from the entropy of attribute 
adjacency 

Consider a map made up of pixels, each with an 
attribute class, ct (k = 1...t). Each pixel pair (i,j) has 
an attribute adjacency type Aq (q  = 1 . . . n )  corre- 
sponding to the attribute class values (ci,@) of the 
pixels. When the order of pixels in a pair is pre- 
served, n a = t 2, otherwise n = (t 2 + t)/2. For exam- 
ple, if the map has t = 2 attribute classes and order 
is preserved, then there are four types of attribute 
adjacencies (A 1 = {1,1}, A 2 = {1,2}, A 3 = {2,1}, A 4 
= {2,2}).  When pixel order is not preserved, n = 3, 
and the attribute adjacency types are {1,1}, {1,2}, 
and {2,2}. 

Suppose there is a position operator (O), a rule 
by which a pixel is considered to be adjacent to 
another pixel (Gonzalez and Woods 1992). To help 
distinguish among different ways of calculating 
contagion, define O as "one pixel below or one 
pixel to the right", and define 01, as "one pixel in 
each of the four cardinal directions". The first rule 

counts each immediately-adjacent pixel pair once, 
and the second rule counts each pair twice. It may 
be easier to think of these rules as counting 
"edges" as opposed to counting "pixel pairs". 

Let np be the total number of pixel pairs in the 
map that satisfy O, and let F be a matrix whose ele- 
ment fq is the frequency of pixel pairs satisfying O 
that are of attribute adjacency type q. The propor- 
tion pq = fq / rip estimates the probability that a pair 
of pixels satisfying O have attribute adjacency type 
q. 

The entropy (E)  of attribute adjacency is calcu- 
lated by summing the observed proportions over 
the number of attribute adjacency types or "states" 
(equation [ 1]). 

E = - Y~ q='' 1 Pq ln(pq) ( 1 ) 

The maximum possible entropy is also of interest 
because contagion indices are typically computed 
by scaling a statistic to its maximum possible value 
under the null hypothesis that there is no contagion 
(O'Neill et al. 1988; Li and Reynolds 1993). In 
general, entropy is maximum when all possible 
states are equally likely; that is, when all attribute 
adjacency types occur with probability 1 / n .  Thus, 
when the pixel order is preserved, maximum 
entropy (E,,,o~.) is given by equation [2] (note that n a 
= t2 ) .  

n 1 1 
E a~(ordered ) = _ ]~q"--I t-~ In (t-~) (2) 

= 21n(t ) 

When the pixel order is not preserved, E,,,,~,. has the 
value shown by equation [3] (here, note that n = 
( t ~ + t )/2 ). 

2 In ( 2___~ E, , ,~ . (unordered )  = -~qa_ l  t 2+ - ) (3) 
- t 2+t 

= ln(t 2+t )-ln(2) 

Li and Reynolds (1993) proposed a ratio estimator 
of contagion that is scaled to the interval [0,1] 
(equation [4]). This estimator yields a zero value 
when the entropy of attribute adjacency is at the 
maximum, that is, when there is no evidence for 
"contagion". 



E 
C = 1 -  - -  (4) 

E max 

Substituting Emo ~. when pixel order is preserved 
(equation [2]), the contagion formula is equation 
[5]. 

n a 

C(ordered) = 1 + ~ q=! Pq In (pq) (5) 
21n(t) 

This estimator is computationally equivalent to a 
ratio estimator of contagion defined by equation 
number 23 in Li and Reynolds (I993). When pixel 
order is not preserved, the formula for contagion 
substitutes equation [3] into equation [4] to yield 
equation [6]. 

I I  a 

C(unordered) = 1 + ~ q=l Pq In (pq) (6) 
ln(t 2+t )-ln(2) 

Now it is possible to explore how the different 
rules for defining pixel adjacency affect apparent 
contagion. Suppose that pixel order is preserved, so 
that equation [5] is appropriate. In comparison to 
rule 0 a, the "double-counting" rule 0 b tends to 
even out the proportions of different attribute adja- 
cency types (the values of pq). To see this, recog- 
nize that the pixel pair (ci, c j) is also counted as the 
pair (cFi), which "smooths" the attribute adjacen- 
cy matrix by making it symmetric across the main 
diagonal. Entropy is gained whenever information 
(in this case, information about asymmetry) is lost, 
and therefore the calculated value of contagion 
becomes smaller. Both values of contagion are 
"correct", even though they are different, because 
both position operators (O n and 0 b) are justifiable. 
The important point is that position operators must 
be specified if contagion values are to be com- 
pared. 

Pixel order is arbitrary under rule O~, and so rule 
0 b may be attractive for the very reason that it 
obscures any ordering. The "lost information" may 
not be considered worth preserving; increased 
entropy would never be noticed if pixel pairs were 
always double-counted. Yet there is another way to 
obscure pixel order without double-counting, that 
is, by using rule O~ but not preserving the order of 
pixels when each pair is counted. This approach 
avoids the artificial "smoothing" of the attribute 
adjacency matrix. It is also consistent with the 
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motivation of an entropy calculation which re- 
quires that each "state" be distinguishable from all 
others. 

Examples 

Figure 1 shows three artificial raster maps with dif- 
ferent degrees of clumping or contagion. Each map 
is made up of 144 pixels and each pixel is one of 
three possible attribute classes (c k = {1,2,3}). The 
frequency of each attribute class is 48 in each map. 
The frequencies and proportions of different 
attribute adjacency types are shown for three "cas- 
es" for each map. In case 1, rule O a (single-count- 
ing) is used and the order of pixel attributes is pre- 
served. In case 2, rule O is used but the order of 
attributes is not preserved (hence the existence of 
"undefined" states in this case). Rule 0 b (double- 
counting) is used in case 3. The total number of 
pixel pairs counted is 264 for cases 1 and 2, and 
528 for case 3. 

The calculated values of entropy and contagion 
for the different scenarios are shown in Table 1. 
For each map, the contagion value is largest for 
case 1 and smallest for case 2. Case 3 yields an 
intermediate value which is closer to the value 
obtained for case 1. These examples demonstrate 
that, for the same map, the calculated value of con- 
tagion can vary by an order of magnitude among 
the different ways of counting and tabulating pixel 
pairs, even if the same basic formula (equation [4]) 
is used. 

What does contagion mean? 

Contagion usually implies that pixels having the 
same attribute class tend to be adjacent. The conta- 
gion indices "work" when clumping is present 
because they are affected by the relatively higher 
frequencies of the t same-class attribute pairs (ci, c j) 
where i = j. But the indices are equally affected by 
relatively higher frequencies of adjacency between 
any two attribute class pairs (ci, cj), even when i ;~j. 
This means, for example, that relatively frequent 
pairing of "streams" and "riparian vegetation" will 
increase the calculated value of contagion even in 
the absence of "real" clumping (of just one cover 
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Fig. 1. Attribute adjacency frequencies and proportions lbr three example maps with low, moderate, and high contagion. CASE 1 counts 
each pair of adjacent pixels once (rule O,r see text for explanation), and preserves their order. CASE 2 counts each pair once but does not 
preserve order. CASE 3 counts each pair of adjacent pixels twice (rule O o, see text). In each adjacency matrix, the left margin shows c i 
and the top margin shows c) in the pixel pair (CrCj). The contagion indices calculated for these examples are given in Table 1. Note: " - - "  
under CASE 2 means that adjacency state is undefined. 
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Table 1. Landscape indices of contagion for the three example maps shown in Figure 1. The calculations are based on the number of 
different adjacency states, and proportions of different adjacency types as shown in Figure 1. The equation number from the text is in 
brackets next to each index for map 1. 

Map Landscape 

number index 

CASE number (from Figure 1) 

1 2 3 

1 Entropy (E) [ 1 ] 2.19274 [ 1 ] 1.72994 [ 1 ] 2.19435 
E .... [2] 2.19722 [3] 1.79176 [2] 2.19722 
Contagion [5l 0.00204 [6] 0.03450 [5] 0.00131 

2 Entropy (E) 1.79583 1.64651 1.81289 
E,,~. 2.19722 1.79176 2.19722 
Contagion 0.18268 0.08107 0.17492 

3 Entropy (E) 1.36446 1.36446 1.43241 
Em,~. 2.19722 1.79176 2.19722 
Contagion 0.37901 0.23848 0.34808 

type). For example, in the map with low contagion 
in the second example scenario (case 2, above), the 
calculated contagion value is larger than expected 
for this reason. 

The indices are also affected by variation in 
attribute class frequencies (Li and Reynolds 1993). 
Recall that the derivations of all maximum values 
assumed an equality of attribute frequencies. When 
some attributes are relatively more common than 
others, then some types of attribute adjacencies are 
necessarily more frequent than other types. The 
maximum entropy (or minimum contagion) under 
the null model can never be realized; there must be 
some amount of contagion, and this will vary with 
attribute frequencies. This effect was demonstrated 
in Gustafson and Parker's (1992) simulation study. 
Cases can be made for considering this to be "real" 
contagion, an artifact of  unequal-probability sam- 
piing, or an inappropriate application of the conta- 
gion index. 

In summary, when the contagion index is small, 
it may be inferred that the attribute class frequen- 
cies are more or less equal, and that the frequencies 
of same-class adjacencies are about the same as the 
frequencies of  different-class adjacencies. When 
the index is larger, it may due to a real tendency for 
clumping, perhaps as a result of variation in attrib- 
ute class frequencies. Or it may be caused by a 
high frequency of adjacencies between two differ- 
ent classes. 

If entropy (like angular second moment) mea- 
sures overall image "texture" (e.g., Haralick et al. 
1973; Musick and Grover 1991; Gonzalez and 
Woods 1992), then so must its contagion deriva- 

tives. An image with "coarse" texture typically dis- 
plays a certain amount of clumpiness (possibly a 
result of unequal attribute class frequencies), 
whereas an image with "fine" texture does not 
(compare the example maps in Fig. 1). These intu- 
itive connections among pattern indices are sup- 
ported by large empirical correlations between 
indices of attribute diversity, dominance, conta- 
gion, and texture (Riitters et al. 1995). 

S u m m a r y  

Connectivity and texture are recurrent themes of 
spatial analysis in many fields including ecology, 
image processing, and statistics. As a result, there 
are many map-based measures of  the tendency for 
attributes to clump or coalesce. The choice among 
them will depend upon circumstances, including 
the particular hypothesis, the format of available 
maps (e.g., vector versus raster), the map parame- 
ters (e.g., grain size and extent), and the scale of  
analysis (e.g., pixel-level versus patch-level). The 
scope and depth of analysis are also important. 
Whereas summary indices are needed to study 
many aspects of  pattern simultaneously (e.g., frag- 
mentation, patch compactness, and fractal dimen- 
sion), more complicated models are needed to par- 
tition the detailed information from any one sum- 
mary index. While no single measure can possibly 
be appropriate in all circumstances, it is relevant to 
ask whether the selected method yields the desired 
information. 

The standard computing formula for contagion 
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only applies when a particular method is used to 
reduce raster map data to an attribute adjacency 
matrix. Recognizing the need to compare contagion 
values obtained from the literature, it seems pru- 
dent to document the method used to construct the 
attribute adjacency table whenever a contagion 
index is reported. It may also be worthwhile to 
simply report the entire adjacency matrix, for this 
will enable others to fit more complicated conta- 
gion models such as those described by Gardner 
and O'Neill (1991), Pastor and Broschart (1990), 
and Cressie (1993). 

An alternative, single-valued contagion estima- 
tor that is unaffected by the data reduction method 
is the sum of the main diagonal ("same-class") ele- 
ments of the attribute adjacency matrix (Wickham 
and Riitters 1995). This index is defined as the pro- 
portion of all adjacencies that are same-class adja- 
cencies. The value is not affected by adjacencies 
among different classes, and the same value is ob- 
tained for all of the ways that pixel pairs could be 
tallied. 

Acknowledgements 

The research described in this article has been 
funded in part by the United States Environ- 
mental Protection Agency through Interagency 
Agreement DW64935962-01-0 with the Tennessee 
Valley Authority, through Interagency Agreement 
DW89936104-01-0 with the Oak Ridge National 
Laboratory, and through Cooperative Agreement 
CR-819549-01-5 with the Desert Research Insti- 
tute. This manuscript has been reviewed by the 
Environmental Protection Agency and approved for 
publication. 

References 

Cain, D.H., Riitters, K. and Orvis, K. 1996. A multi-scale 
analysis of landscape statistics. Landscape Ecology, in 
press. 

Cressie, N.A.C. 1993. Statistics for Spatial Data. Revised Edi- 
tion. John Wiley and Sons, New York. 

Gardner, R.H. and O'Neill, R.V. 1991. Pattern, process, and 
predictability: the use of neutral models for landscape analy- 
sis. hi Quantitative Methods in Landscape Ecology. Edited 
by M.G. Tumer and R.H. Gardner. Springer-Verlag, New 
York. 

Gonzalez, R.C. and Woods, R.E. 1992. Digital Image Process- 
ing. Addison-Wesley, Reading, MA. 

Gustafson, E.J. and Parker, G.R. 1992. Relationships between 
landcover proportion and indices of landscape spatial pat- 
tern. Landscape Ecology 7:i01-110. 

Haralick, R.M., Shanmugam, K. and Dinstein, I. 1973. Textural 
features for image classification. IEEE Transactions on Sys- 
tems, Man, and Cybernetics 3: 610-621. 

Li, H. and Reynolds, J.F. 1993. A new contagion index to quan- 
tify patterns of landscapes. Landscape Ecology 8: 155-162. 

Musick, H.B. and Grover, H.D. 1991. Image textural measures 
as indices of landscape pattern, h7 Quantitative Methods in 
Landscape Ecology. Edited by M.G. Turner and R.H. Gard- 
ner. Springer-Verlag, New York. 

O'Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., 
Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., 
Zygmunt, B., Christensen, S.W., Dale, V.H. and Graham, 
R.L. 1988. Indices of landscape pattern. Landscape Ecology 
1: 153-162. 

O'Neill, R.V., Hunsaker, C.T., Timmins, S.P., Jackson, B.L., 
Jones, K.B., Riitters, K.H. and Wickham, J.D. 1996. Scale 
problems in reporting landscape pattern at the regional 
scale. Landscape Ecology, in press. 

Pastor, J. and Broschart, M. 1990. The spatial pattem of a 
northern conifer-hardwood landscape. Landscape Ecology 
4: 55-68. 

Riiners, K.H., O'Neill, R.V., Hunsaker, C.T., Wickham, J.D., 
Yankee, D.H., Timmins, S.P., Jones, K.B. and Jackson, B.L. 
1995. A factor analysis of landscape pattern and structure 
metrics. Landscape Ecology 10: 23-29. 

Turner, M.G. 1989. Landscape ecology: the effect of pattern on 
process. Annu. Rev. Ecol. Syst. 20: 171-197. 

Turner, M.G. and Gardner, R.H. (eds.). 1991. Quantitative 
Methods in Landscape Ecology. Springer-Verlag, New York. 

Wickham, J.D. and Riitters, K.H. 1995. Sensitivity of land- 
scape metrics to pixel size. Int. J. Remote Sensing 16: 
3585-3594. 


