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Already in 1945, Chermnikov [1, 2] had isolated a very interesting class of groups, name-~
ly the p-groups of type V=5A0), where 5 is a complete Abelian group, ( is an element
of order P, with a finite center %UV) ; here, as usual, (&) is the cyclic subgroup with gen-
erator (L. As it turned out, because of their properties, these groups are close to the
Frobenius groups and to the dihedral 2-groups. Thus, for example, all cyclic subgroups of
the form (hM, he 8, conjugate in V with (@) and the quotients of the upper central series
of the group V are finite elementary Abelian groups. In the investigation of groups with
various finiteness conditions, in certain situations it is necessary to distinguish as a spe-
cial case the question of the imbedding of a subgroup of type V into the group. This cir-
cumstance has compelled the author to look at the group V from the point of view of its
characterization regarding imbeddability in a sufficiently large class of groups. However,
the investigation, started in this direction, has exceeded the purpose set initially by the
author in connection with the mentioned characterization and has led to the necessity of in-
troducing a new class of groups, the so-called MP -groups (see definition in Sec. 2). 1In
the present paper we have obtained the characterization of MP -groups with p»finite handles
in the class of groups without involution (the fundamental theorem in Sec. 2). As an applica-
tion of this theorem we give only one result {the theorem in Sec. 7), but this does not ex-
haust by far the possibilities of the application of the fundamental theorem to abstract
group theory and beyond.

The case when the group contains involution is not considered here (except for a remark
in Sec. 6) since it requires a special approach, based on the characterization of Lie-type
groups in the class of (periodic) groups.

The notations used in the paper are standard [3, 4].

1. Known Results, Definitions, Auxiliary Propositions

1. Merzlyakov's Theorem., The group Ou,tG- of outer automorphisms of an arbitrary

Chernikov group G is almost torsion-free ([5]; see also [6, p. 458]). From here it follows,
in particular, that the orders of the periodic subgroups of the group Out C- are finite and
bounded in their totality by the index of the maximal normal torsion-free subgroup [5, 6]
(their finiteness has been established in {7]).

2. 1f an Abelian D -group G has an automorphism of order P with a finite centralizer
in G, then G- is a Chernikov group [8, 9].

3. Feit—Thompson Theorem. A finite group of odd order is solvable [10].

4. Burnside's Theorem. Let G be a finite group of the form G-":B,’\Azwhere B is an

elementary Abelian q-»group, A is an elementary Abelian p-group of order P and g =f= p .
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Then there exists in A a nontrivial element * such that ( ("L)ﬂ B+ { [11].

5. Let G be a finite group of the form G=wrrA, where K is a P—group, and A is
an elementary Abelian p -group of order p . Then K “'-gr(CK(“Lﬂ"bé A Y.

The _p_ro_oi_f follows from Frattini's lemma and from Proposition 4.

6. Let (- be a finite solvable group and let L. be the Fitting radical. Then CG(L\S
Lo 13].

7. Podufalov's Lemma. Let G be a finite group of the form G-=Q?\(Q)~(OA) , where 9

is a {P’q(}' -group and ( [5)sS, Q is a  -group, '/,’*s’ and (L is an element of order P + W .
If S A(Q) is a Frobenius group with complementary factor (&), then QX1Q) = Q * (@) [12].
8. Frattini's Lemma. Let G— be a finite group; let L. be a normal subgroup in G-, and
let P be a Sylow D -subgroup in L. . Then G=Nép\.L {3, Lemma 17.1.8].
9. If a finite p-subgroup (P+# 2) has a unique subgroup of order D, then it is a

cyclic group [13].

10. A Chernikov P-—group is a LA -group and the normalizer condition is satisfied in
it [3, 14].

11. Let G be a P ~group of the form G =0DPxA, where D is an infinite complete Abeli-
an group and A is an elementary Abelian group of order pz. Then in A there exists an ele-
ment U =f={ such that PN (*’\ is infinite [15, 16].

12. Let G be a p-—group of the form G = P M(Q), where P is an infinite complete Abeli.
an group and (L is an element of order p with finite CGEO.,\ . Then the following assertions
hold:

1) UG) is an elementary Abelian group, WG) < P .
2) all the elements of the form WO or Qhlhe P) are conjugate with (L with the aid
of elements from P [16].
13. Let (- be a group; let .. be a complete Abelian p -group, and LL4G, and let Q
be an element of order [ from ( with finite . N CGKOJ‘; . Then

1) Céaf_.\‘; = Ccr’\(m;//_a , where 6—==G—/L’.

2) if K is a finite {Ql) -invariant subgroup in [, , then in N(K}/K =T the centralizer
C‘_(O.K\ = RCC;\\();WV\,' where R is an elementary Abelian subgroup in L/K .

Proof. The assertions 1) and 2) follow from Proposition 12.

14. Dietzmann's Lemma. A finite invariant set of elements of finite order from an

arbitrary group generates a finite normal subgroup [14, 17].

15. Let G be a group; let H be a proper subgroup in it; let (L be an element of prime
order P> 2 in G, and assume that for each q,GG-\ ng(&,&ﬁ) there exists a Frobenius group
with complement (). Then G-’-F?\Né\(m, where F)\((L} is a PFrobenius group with kermel
F [18] (see also [191).

16. A group G is said to be a Frobenius group with complement H and kernel F if
G’=F?\H = -—G-\UH , and HOHYI=1 for any «‘%G G~H,

17. Let & be an infinite complete Abelian p -group satisfying the minimality condition.
We introduce the parameter m,=m, (G =moz { St : 'S is a Sylow { -subgroup in Aut(G)
By Proposition 1, m,P is a finite number and ', ,= 5% . The number My is called the p-

torsion parameter.
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18. Let G be an infinite complete Abelian D -group, satisfying the minimality condition
and let G = A%B | Then

\ SAN
mP(G') 2 M iA) mP(B}' 16D

Proof. Obviously, Awt;’\A\ % Au.t&& is imbedded in AU.T)(G). From here we obtain the
inequality (1).

19. Let G be an infinite P-group, being a holomorphic extension of a complete Abelian
group B satisfying the minimality condition, with the aid of some group of automorphisms A
G=BxA .

i LG MP(B) contains elements of order Pz , then YG) is an infinite group.

Proof. Obviously, L = 'Z;(G\ C & . We shall prove the theorem by induction on the rank

= [(B\ . Let { be some element of order P from L(A\ By virtue of Proposition 12,

= BﬁCé_C\ is an infinite group. Let V be its complete part. Obviously, V is an A-
invariant subgroup. Since A is a group of automorphisms of the subgroup 'B, we have V+B
and, consequently, their ranks L (V} { (B) satisfy the inequality 2(\7} <UB®). 1f

(A\ > V , then the assertlon of the propos:.t:.on holds. Let V % C (A\ Obviously, in
G/\/ an element from V induces an almost regular automorphism in B/V From here, in view
of Propositlon 12, 'L(B/V » (CV)) is an elementary Abelian group But then 'X,P < Q s and
since B= V X 6 , it follows, by Propos1t10n 18, that m V) < m (B) and thus, pm (V3<
m (B\ From here T = ‘Z,PmPW} < V and T contains elements of order P By the induc-
tion hypothesis, the intersection \] ne (A) is infinite. The proposition is proved.

20. Let & be an infinite Chernikov P-group, and let B be its complete part. If
bﬂ(’b(@\)”‘”“’) has elements of order PQ , then &) is infinite.

Proof. The quotient group G/C (B is isomorphic to the group of the automorphisms of
the group B , which leaves fixed the subgroup of B containing elements of order P By
Proposition 19, YAG) is an infinite group. The proposition is proved.

21. An element % of the group (- is said to be almost regular if Cé%} is a finite
group.

22. let C, (L be elements in the group (. The element ( is said to be Q-real if
V = gr(C,Q) is a Frobenius group with kernel containing the element ( and with complement
() . 1f V is a finite group, then V = gr(Q,af) [18, 19].

23. A group G is said to be Gv—biprimitively finite if, for any finite subgroup H in
the quotient group NGSHVH , any two elements of prime order q, generate a finite subgroup.

24. Gorchakov's Lemma. Let ( be a locally finite group with Abelian Sylow D -subgroups
relative to some P. Then OP(G-\ N LUG) is a P'—group [20].

25. Thompson's Theorem. The kernel of a finite Frobenius group is a nilpotent group
{22, 111].

26. Let G be a group; let D be a finite P—subgroup of G*, and let V be a locally

finite normal Pl -subgroup of G. Thenin G = G—/V one has the relations

Ng(PV[V) = NAPW/V,
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Ce (PVVY = CLPNIV,

27. If a locally finite P -group G- has an element of order P with a Chernikov central-
izer, then G is a Chernikov group {8].

28. Let G be a finite P -solvable group, P#Z, S=0,,(G), and CéS)S S . 1f G does
not have sections of type 9/[(2,3) , then every Abelian normal divisor from the Sylow P -sub-
group of the group G is contained in 9.

The proof of the proposition is given in [21, pp. 93-94].

2. MP-Groups, Examples, Fundamental Result

Definition. Let & be a group; let B be its infinite normal complete Abelian P-sub-

group satisfying the minimality condition; let P be an element of order Q/; and assume that
the following conditions hold:

a) the locally finite P—subgroups of CGSO/)B/B are finites;

b) if some complete Abelian P-subgroup C of the group G is contained in the set

U gr(a.a¥), then Cs8B.
F€a

The group G- from the definition is said to be an Mp ~-group, while the subgroups B,
(Q) are called the kernel and the handle, respectively, of the MP -group G. Inan MP -
group G- the handle &) can be of the following types:

1) in Q(GJ\ the locally finite P ~subgroups are finite;

2) in C (GA the locally finite P -subgroups are finite;

3} in C (O,) the locally finite subgroups are finite.

In accordance with the mentioned demarcations relative to the handle of an Mp -group G-
a handle of type 1) will be said to be P-finite, one of type 2) will be called P -finite,
and one of type 3) will be said to be finite.

Examples of MP ~groups (with finite handles):

Example 1. Every Chernikov group having an infinite P ~-gubgroup and an almost regular
element of order P is an MP -group.

Example 2, A holomorphic extension of a group from Example 1 with the aid of any group
of outer automorphisms.

Example 3. Every holomorphic extension of an infinite Chernikov P -group with the aid
of a group of outer automorphisms is an MP ~group.

The assertion in Example 1 is obvious, while the assertions of Examples 2 and 3 follow
from Proposition 1.

Example 4. 1If G is an MP -group with a finite handle () , then CG(-GA may have infin-
ite P—subgroups. For example, it is sufficient to take a direct product of a group from
Examples 1 and 2 and of a free periodic Novikov—Adyan group [23].

Example 5. One can give an example of an MP -group G with handle (@) in which for
some element If the subgroup gr (a,,a"‘)B/ﬁ is an infinite periodic group. For example, let
P be a p—group of type P‘—'BN&), where B is a complete! Abelian group, iC} =p thcx is
finite, | is a free Novikov—Adyan group of period P and T =V A (S) . We consider the
group H =P*T and in it the subgroup G = (B XY) A(Q), where Q=CS. Obviously, & is
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an Mp -group with handle () and kernel B . Making use of the properties of the Novikov—
Advan group [23], one can easily find in YV and element U such that (@, O/t§E>/B will be
an infinite periodic group.

Example 6. The kernel of an Mp ~-group need not coincide with the maximal complete
Abelian P -subgroup of the group. Indeed, let G=HxXT , where H= P »(), P is an in-
finite complete Abelian P~group, el =P . QH(CA is finite, | is a free product of a quasi-
cyclic p-group S and of a cyclic group &m of order P . Obviously, G is an Mp -group
with kernel P and finite handle (6@)' and B is imbedded in the maximal complete Abelian P-—
subgroup BxS + B .

In this paper we shall prove the following:

Fundamental Theorem. Let Cr be a group without involutions, and let ® be its infinite

complete Abelian P-subgroup, satisfying the conditions:

1) H =Nc’\5) is an Mp -group with kernel ® and P -finite handle (@)

2) for every Q€ G~ H‘t the subgroup (Q/,Q/%) is finite;

3) ‘CG_(O/)'- HN CéOA\ < 0® and H(\Qéﬂf\ contains all the P, -elements of finite order
from CG(—(M :

4) if Q is a finite Q) -invariant q,-subgroup from H satisfying QGCG\M+4 and
q%P , then Nég)é =

Then B < G—

We show on examples the existence of groups in which condition 4) is automatically sat-
isfied, while each of the conditions 1)-~3) is independent from the remaining ones.

Example 7. Let H be the group from Example 1 without involution, and let T be some
nontrivial group of involutions. In the periodic (according to S. I. Adyan) product G=
H*T , for the subgroup H and its almost regular element QU of order P the conditions
1) and 3) hold, while condition 2) is not satisfied and G is not an MP -group with handle
(o) (regarding the abstract properties of periodic products, see [24]).

Example 8. Let Cr‘=<0)'bV , where V is a p-group of type V =AM, B is a com-
plete Abelian group, and &, ¢ are elements of order P Obviously, Né.&\ and Q) satisfy
the conditions 1) and 2), Méﬂ): ”G(B)né;;_(a)l=oo and G is not an Mp ~-group.

Example 9. Let § be a locally finite Frobenius group with complementary factor B, a
quasicyclic P -group, and let (U be some element of order P in B. conditions 2) and 3)
hold for Néb) =8 and the element (v, but B is not an MP -group with a P-finite handle.

The proof of the fundamental theorem is given in Secs. 3-6, where one assumes that the
theorem does not hold, i.e., H ‘f'—@* . We consider the set U of triples of type {T,V, 0)
where | is a group without involutions, NT(VX is an MP -group with kernel V' and with a
P -finite handle (€}, satisfying the conditions 2)-4) of the theorem, and Né\ﬁ%T. In the
set U we consider the subset XY of triples (G-,B,O/’ with the least rank €P= UB) of the
kernel B . 1In view of condition 1) of the theorem and Proposition 2, € is a finite number.

But then M, = Mo {\51 : S is a Sylow P -subgroup of Aut(B) } is also a finite num-

P
ber (Proposition 1).
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3. Subgroups of the Second Kind and Type {m)
LEMMA 1. Let LG— B Ov\ be a triple in Jy . Then the following assertions hold:
D (&, 8¢, Ou?)e‘b for each Q€ G ;
2) N (H\ =H , where H=N \Eﬂ
k) 1f § is an Q) —1nvar1ant finite subgroup in B and N (S) # H , then (N (S
B.a) € ¥, (N(S)/S, B[S, as) € Y.

4) if S is an (Q) -invariant infinite subgroup from E) then N (S)

5) if P is a maximal, locally finite (Q) -invariant P—subgroup from H then p/B is
a finite group;

6) (G,B,Ogh’\G dy for any heH and, in particular, in view of Proposition 12,

(G-,B, "LQ:\G dy for any veB

7) if p is a finite, (@) -invariant P-—subgroup in H .Ném fH and Qép\nB is in-
finite, then DB < CGLP\ and (Nép),B,G/\).(cGSP\'(Oz\, B,a) € ¥,

Proof. The statements 1) and 6) are obvious. The statements 3) and 4) follow from
Proposition 13, the assumptions of the theorem, and the definition of the set . we prove
5). We assume that §= PI® is an infinite group. By Proposition 13, Cﬁ(aﬁ = CP(QA&IB ,
where O =QB and, therefore, ‘('/—(0.,)\4 ©® . By Proposition 27, P is a Chernikov group;
let V be its complete part., By Proposition 12, \V < L¢ gr (a; Q/h’) and we have obtained a

—

contradiction with the definition of an M -group [see condition b)]. Consequently, P is
a finite group and statement 5) is proved If we had N (HY # H , then in N (H)\H there
would exist an element L such that 8‘ +B, 3 <H, and BB® is an W -1nvar1ant subgroup
in H , while BBHB is an infinite group. But then we would obtain a contradiction with the
assertion 5) of the lemma, which has already been proved. Consequently, H= NéH\ and as-
sertion 2) is proved. We prove 7). Let H4‘= CéP)'(a\r\H and let B, be the complete part
of the intersection BN C (P) . As above, one can easily show that N (H\n Cép\ )y = =H
and the triple (c (p\(OA B (Gl)) satisfies the conditions of the theorem and ff (6\ 2.,
If we would have CP(B‘) < 2, , then in view of the definition of ;@ we would obtaln 6 4
C{PY. () and by statement 4) of the lemma, we would have C(P)( H . since C (M«

N (P\ and 5 ql (P) < N (P) .’.l‘/éN Lp} , making use of statement 5) and TheoremGiS.l.Z of
[3], we can see that N (p)“H in sp1te of the conditions of the lemma. Consequently,

EP(B1) = P and B1 =B « But then, obviously, (NG(-P)' B,OJ\ € b,(Cép)'(Ou),B,a,)éb .
Statement 7) is proved and thus the proof of the lemma is concluded.

Definition 1. A finite, nontrivial, ({l)-invariant subgroup R in B 1is said to be a
subgroup of the second kind if N(R} % H ; otherwise it is said to be of the first kind.

LEMMA 2. Let K bea fltu.te, (A -invariant P -subgroup of the group G’ Then
R=N, (K)NB= G,;(K)HB.

Proof. Let L. be the nilpotent radical of the subgroup K #4 . Since K is a solvable
group (Proposition 3), we have L+4. By Lemma 1, (GHa0)1€R) is a triple-counterexample
If for some 71,€R we would have LN CG_(’L10/) +1 , then, making use of condition 3) of the
theorem and of the normalizer condition in nilpotent groups (Theorem 16.2.2 in [3]), as well

as of the automorphic admissibility of !_. in K, we would prove that K < H, and in this
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case the assertion of the lemma is obvious. Let CG("LOAQ [.=1 for some "€R . Then, on
the basis of Proposition 4 and of the representability of the subgroup gr (L,,R-, 04) in the
form L. AR 20}, we obtain R« Céf_.\ . From here and from Proposition 6 there follows
that Rx [, QK AR and R <CéK) . The lemma is proved. ’

LEMMA 3. Let K be a finite, nontrivial, (Q)-invariant P -subgroup from & and let
T=N dN4H.

Then the following assertions hold:

1) if L is the nilpotent radical of the subgroup K, then [ ANQ) is a Frobenius
group and In K“_. the Sylow primary subgroups are cyclic and (K » (O;)/L)= KXL. (L),

2y if L %K , then there exists an («a) -invariant Sylow q,—-subgroup P of the group K
such that P < L, T = KNT (P),and No(P)<H, L ¥ H.

Proof. The fact that [, XN () is a Frobenius group has been established in the proof

of Lemma 2. From here, in view of Propositions 6 and 7, we obtain

(K@) L = K/L={aL),

We prove statement 2). Let [... ’!‘ K and let P be a Sylow Qv~subgroup in K. P 4- L R
and O € N (P\ From statement 1) it follows that P N (04\ + { . From here, making use
of the normalizer condition in P [3, Theorem 16.2.2], as well as of condition 4) of the
theorem, we obtain N (P)< H . It remains to show that L ‘# H . Indeed, by Frattini's
lemma (Preoposition 8), we have 1 = KN (D) while, by statement 1), K=/[C (Q/) where
CK(QA‘ H [condition 3) of the theorem] From here, if L < H , then K<H , and, since,
according to what has been proved above we have NT(P) < H , we would obtain 1 < H , con-
tradicting the assumption of the lemma. Consequently, L 4» H,

We assume that P = p/_./L is a noncyclic group. In this case, on the basis of Proposi-
tion 9 we conclude that D has an elementary Abelian subgroup Vv of order Oyz . According
to what has been proved above, Vx (L), since L= /.--4 P4 , where P1 is a Sylow Q -sub-
group in L , it follows that [..\ is a V -invariant subgroup. By Proposition 5, L4=
sr(l (lM\ we Va‘) Consequently, ( (Lb} S x{w) , where W is the Qy—preimage of the
element win K. Obviously, W€ C (OA 1 From here, by condition 4) of the theorem, Su,<
H . But then L <H and thus, also L <H , which contradicts the relation L + H,
proved earlier. Consequently, P is a cyclic group and the lemma is completely proved.

LEMMA 4. Let P be a finite P-subgroup in G and let WE P . 1f R= Bﬁp+4
and NG-(P\ # (M) , then B has subgroups of the second kind.

Prﬂ_f_: Let @ =PNH. Obviously, N (m)%H and in N({Q} N H  there exists an
element C . Then, L =RN LIR) +4 [3, Theorem 16.2.3]. By v1rtue of the automorphic
admissibility of X(R) in @ , we have L. < U(@) and, in addition, L. < Bt = B <
Hc=H. If C(L.) 4 , then, obviously, C(L\ {- H and, in this case, L is a subgroup
of the second klnd. Let C(L\ < H . But then (L, QA<C(L\ < H . We select in L,
an element t + { and let 5 (t\ *{Q). We consider the subgroup 8 5 By Proposition 11,
in S there exists a nonidentity element "U such that QC}’U N 54 is an infinite group. If
‘b=hv0n where h,e('b\ < B , then, by virtue of Lemma 1 and condition 3) of the theorem, the

intersection H ncc_’(_'lo) N 61 is infinite. But then we obtain a contradiction with condition
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1) of the theorem and with Lemma 1. Consequently, welt)<® . 1f CG_('L\ 4 H, then ()
is a subgroup of the second kind. Let CG('HSH . In this case, 51 < H and since B{ is
an (Q) -invariant complete Abelian P-—subgroup and CB(OA is finite, it follows, by Proposi-
tion 12, that 81 <hLeJB,gr (o, Ov%) . From here and from{Lemma 1 [see its statement 5)] it fol-

lows that Bc = 6{=6 and (€ Né&}:H , which is not possible. The cobtained contradiction
proves the lemma.

Definition 2. A finite, nontrivial, (@) ~invariant P-—subgroup X in H is said to be
a subgroup of type (m) if NG_(M‘f H.

LEMMA 5. Let P be a subgroup of type ( » ) and assume that \Nép)NG(_mﬂHicoo Then H
has a subgroup of the second kind.

Proof. Since BP is a Chernikov P -group, we have NB(P\ﬂ B = R1 + { (Proposition 10).
From the conditions of the lemma it follows that the centralizer R1 in G—4 = Nép\ has a fin-
ite index in G-‘ and by Dietzmann's lemma (Proposition 14), the closure of R‘ in G'd is
finite, Consequently, in Gv-1 there exists a finite normal subgroup 7»1 , containing the
subgroup gr (P,R). Let 9 be an (Q) -invariant Sylow P -subgroup in %1 and let R1< s .
If S(0) 4 H , then, by Lemma 4, B has a subgroup of the second kind. Let S5<H and, con-
sequently, R‘ 4 S . From here, on the basis of Proposition 28, we conclude that R1 <
Oyo(L) = L. By Lemma 2, gr (P,R) < P =0(L)4G,.

Consequently, G-2= N(‘,(p‘l) % H and QW€ G-z . Again by Lemma 4, we obtain that P <H.
Let R2= BN G?.‘ By virtue of Proposition 10, Rz"f a and thus Ra =f R{ and R‘ < Ra .
As far as the pair (G—z, RZ.) is concerned, we proceed in the same way as for (G-“Rq)' . Repeat-
ing these arguments, we construct in H a strictly increasing chain of finite, (0)-invari-

ant P-subgrcups
P=P<P<, <P «
0 1 n
so that G =Nc,(pn)4H’ = 0,4,...

n+4
From Lemma 1 it follows that \pnf Rh‘ , =4,2,..., are bounded in their totality. From

(2)

here it follows at once that for sufficiently large IV the subgroup Rn has a nontrivial sub-

group, normal in G i.e., a subgroup of the second kind., If, however, the chain (2) has

s
a finite number of lmt::'ms, then from the method of its construction there follows the exist-
ence of a subgroup of the second kind. The lemma is proved.

LEMMA 6. If H does not have subgroups of the second kind, then the following state-
ments hold:

1) every finite P -subgroup, containing the element (L, is contained in H;

2) if P 1is a subgroup of type (), G, =N(P), H=HNG,, G,=¢,lP, H=H/P w=af.
then CE@) < F‘—,' )

3) if P is a subgroup of type ( «), then BnP=1,

DobeH=geH and C(0)<H,

Proof. Let S be a finite p -subgroup of the group G, containing the element Q. We
assume that S‘ =HNSY =f= S . 1In this case, NC’(SD ‘f- H [3, Theorem 16.2.2]. Since WE S
and \Céﬂz\: HﬂCéQAkoo {condition 3) of the theorem], it follows, obviously, that \NG(SO:H
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NéSﬂ\ < ¢ and, by Lemma 5, H has subgroups of the second kind, in spite of the assump-~-
tions of the lemma. Consequently, S<H and statement 1) is proved. If we would have

Ci('d,\ ‘f- H& , then the complete preimage 52_ of the subgroup (@) in G would be a subgroup
4

of type (#) , containing the element Q. . Reasoning regarding the subgroup 52 in the same
way as regarding 8 , we would obtain a contradiction with the conditions of the lemma. Con-

sequently, C-é(a/\ < H4 and statement 2) is proved. Statement 3) is proved in a similar
%

panner. Since Q¥ €H , we have L &€ H%-‘ The subgroup B% » (a/\ is a locally finite D~
group, containing the element (L. By statement 1) we have E)Q < H and, in view of Lemma 1,
we have %B% = B ; thus, %6 H . The lemma is proved.

LEMMA 7. The subgroup H contains a subgroup of the second kind.

Proof. We assume that the lemma does not hold. First we show that H has subgroups
of type (x) . We consider the subgroup L zgr((},, %), o€ G~NH . By condition 2) of the
theorem it is finite and, by Lemma 6, O.,% %H, thus, L 7{ H. 1f 0.(L)=A , then in
view of the solvability of L. (Proposition 3) we have (L. )%4 Since Q € L‘%y we have
that O (L Y+ (0) is a finite P -subgroup, containing the element (v and, in view of the as-
sumptlon regarding the absence in H of subgroups of the second kind and by Lemma 6, we have
0 (L Y<H . But then O(L ) is a subgroup of type (x'

lee £ =0, (L?) #1{. By Frattini's lemma, /.. F N , where q is a Sylow P -sub-
group in (}Op' (L\ Yand @€ N (Dﬂ 1f N (Q) 4 H . thenb%Q is a subgroup of type (% ). Let

N (Q)< H also in this casé, F -f. H . "We assume that the element U is contained in

some elementary Abelian P-subgroup R of order p" from L, . We consider the subgroup

F R . By Proposition 5, F, <gr (C (s e R ), and since I ‘fi H, it follows that
for some element {)E R‘* we have Cé%)’f?‘l . 660&&»}4H (Lemma 6). Consequently, (m is a
subgroup of type (x). It remains to consider the case when the Sylow P—subgroup from L%
has a unique subgroup of order P and, in view of the condition P+ 2 and Proposition 9,
it is cyclic. On the basis of Lemma 3, the solvability of L., and the fact that it is gen-
erated by two elements of order F,, we conclude that L = ‘:C}% 10/ is a Frobenius group with
complement (Q). By Proposition 15, G = F)\Né&&:ﬂ, where ~ENQ@) is a Frobenius group. But
then BN F =4 and thus, BA@INF =4, and, in view of the representability of ( in the
form F XN N (@Y , it would follow from here that in C—/F the subgroup (B )\(OAF/
equal to BF?F)‘ (0F) . However, this is not possible since (B X () E/F & Bx(@) is not
an Abelian group. All the considered cases have confirmed the presence of subgroups of type
H in G

In view of the assumption regarding the absence in & of subgroups of the second kind

fbo

s

and by Lemma 6, every subgroup of type («) intersects B at the identity. From here and
from Lemma 1 there follows that, in G— , there exists some subgroup P of type (x) , not con-
tained in any larger subgroup of type (a).

We introduce the notations
(}1=Nép\, H=HNG, S=BnNC, Cﬂ:G}/p
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H=H/P, 5=3P[P a-=op.

In view of Proposition 10, S + {4 and, by what has been proved above, g +{ . Purther-
more, ﬁég’ . Indeed, if 5;63 , then 0;‘-="bh- , where %éﬁ, heP , and h=’b~‘{1j By
Proposition 12, the elements h and Q are conjugate through some element X2&B: zthe=a .
But then the subgroup P” would obviously be a subgroup of type () and QU € P .  From

here and from Lemma 5 it would follow that H has subgroups of the second kind, in spite of
the assumption. Consequently, .O.-,é S . Since 54 H , it follows by Lémma 6 and Theorem
16.2.12 of [3] that the inequality N- (H\ + H would mean that H has a subgroup P 5 "f:'\
of type (%) and this would contradlct the assunptlon that P N B _4 Consequently, NG-(H \ ==
H . Then by Lemma 6, C—\QJ) < H . Making use of the same considerations that have been
ap1p13.ed at the beginning 1of the proof of the lemma and taking into account that P has been
chosen as a subgroup of type (#) of maximal order, it is easy to show that the subgroups of
the form L = gr ({Q, 0.2), where g € 6-4 N }-'14 , are Frobenius groups with complement ()

By Proposition 15, 62 =F » Nauﬁ.«)) , where FX(@) is a Frobenius group.
— 4 —
Let t be an element of order P from S let t 60..(04 and let t be the preimage of

% in 8. We consider the subgroup F A Q , where Q —(‘b (a,} . Since the elements (L and
(Lt are conjugate in B ™(0) (Proposition 12), it follows that the groups K =gr(@f,5ﬂ).
¢ F\H are finite {condition 2) of the theorem and Lemma 1] and K has the form K

2) XL , where 'L is an elementary Abelian P—-group of order P and Q,t €L, By Lemma 1,
the cyclic subgroups of the form (R} , h€ & , are handles of M -groups H and, there-
fore, a subgroup of the form & A (L), %€ S , is also a Frobenius group with complement (QL'V)
From here it follows that Q = and, thus, t,a, € L . By virtue of l,emmas 2 and 6, Z) <
C (t\ and E%H Obviously, the complete preimage of the subgroup (t) in G’ is a sub-
group of type (#), having a nontrivial intersection with B . The obtained contradiction con-

cludes the proof of the lemma.

4. Selection of a More Convenient Counterexample

Let ¥ bea subgroup of the second kind from the lower laver of B and of the largest
order in the set of all such subgroups. By Lemma 7, \(3‘:4 and, by Lemma 1, (T[Y Bf
oY) € ¥y , where T =N W\ By Lemma 7, there exists in T/Y a subgroqu of the
second kind. 1If Y is the complete preimage of Y1 in T1 s then Y4 is a subgroup of the
second kind in T( . If Tz= NT(YJ , then (Tg[\{q’ B[\li’ Q,YJ € ¥ (Lemma 1). Regarding
this triple, we proceed in the same way as before. Repeating these reasonings, we construct

a strictly increasing chain of subgroups of the second kind
Y<Y4<Y.’L<"‘<Yw<"" (3)

To this there will correspond a decreasing chain of subgroups T‘i 2 Tzz,., p Tn,.. such that

(T oY BN joN)eds, n=42,....

n+d

m
In the chain (3), starting with a certain index n, the subgroup \{n. P . where m’p is the
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parameter introduced in Proposition 18, has elements of order pz'. Without loss of generality,
we shall assume that already Y:\Phas such elements.

Let £ = C (\(’ V=g1‘(E 0.) . By Proposition 12, V=F N

LEMMA 8. Let P be a subgroup of type (%) and P < E . Then B< CV(P)

Proof. Since Y‘< CV(P) and Y1 has elements of order P" , it follows, by Proposition
20, that CV(P)r\ B is an infinite group. From here, Lemma 1, and the definition of a sub~
group of type (w) , there follows the assertion of the lemma.

In view of Lemmas 1, 7, 8, V has a subgroup K of type (#) in E such that Y4 £ K and
if K1 is a subgroup of type (w) in [ and K&K4 , then K4=(Bﬂ Ki)'K,

Obviously, (CV(K) 2Ma), B,0) € Yy, and each subgroup of type () from CV(K) , containing
%(K) s, is a subgroup of the group B‘Z)(K} . Therefore, in the sequel we shall assume that K
is an Abelian group.

We set

V=Clr0), Q=HAY,, E=ENV, V,=Ex@), 6=V/K,
H=Q/K, B=8K/K, E, =E[K, 0,=0aK.

We shall need the following:

Remark. If & is a finite (u,)-lnvarlant P -subgroup from H N E and N (S\‘fH
then § < 6 .

The proof of this assertion follows from the definition of the subgroup K and from
Lemma 8,

EEMMA 9, The tr:i;ple (G;!’g, &,{) lies in iy ; moreover, any subgroup of type (») from
H1ﬂ E4 belongs to B and CG‘(Oq) < Hq.

Proof, 1If CG({LQ <H4 , then, in view of the remark and Lemma 1, the assertion of the
—_— 2
. . = = o) . i , : <
lemma holds. Let CG1(0,43 tf-’ H1 We set )(1 Cé&,?ﬂHv %1 C’Gq{ 43 Obviously 1%1 X{\ o)
L =BN7%L +1 » and \74'.0 ([_. \\ < 00 . Consequently, by Dietzmann's lemma (see Sec. 1),

the closure S of the subgroup 1:. in 'Z is finite. In view of the selection of the sub-

group K and Proposition 26, in the complete preimage of the subgroup OP(S\ in V , any of
its p -subgroups centralizes the element (L . From here and from condition 4) of the theorem,
there follows that NG(OPQS)) <R, - But DP{S) < % and thus '\L{ < H , in spite of the as~

sumption. Consequently, 0%°(8) =14 and 8 is a finite (Q/\-invariant p -subgroup from E1 and
L”< 8§ ., 1f P=H ﬂS%S , then, in view of the normalization condition in § [3, Theorem
16.2.2], we have (P)%H and, according to the remark, P< B and L =P . 1If, however,
P=8 , then by sun::lar considerations, L. $ and N (L 3 4 H

_ Wedemote =N (L) .G =GlL, . H GOH1, H r“. o, =0y Ly, %2=0§z&ou\, A=
Hlﬂ %2 . 0bv1ously,'f- #-‘-X ’Z, X\é OO L B/L N "Z/ s where L;z is the complete preimage
of Zz in G— If regardlng the triple ( CT?. H,~ sz) and the pair (7\1,%\ we reason in
the same way as in the consideration of the triple (G- H Q/\ and the pair (X %\ ., then we

can show that NE( L‘z} %ﬁz . Returning to the complete prelmages in C» , we obtaln G——
1

317



NG_(LJ‘*H . Repeating these arguments, we construct a strictly increasing chain of (Cbg ~in-
1

variant finite subgroups of the group B

= < £

t=LcLel, <. <L <., (4)
such that

N(LMH G= G Hy= H Lo X =42,

Covi

_ By Proposition 13, the complete preimage of the subgroups th. in G-‘ are contained in
8%4 and, since VL{Z XA < o0 , where X{‘-‘-' Ccrfaq\ 0 H4 , it follows that, without loss of
generality, one can assume that each subgroup G,.n=12 , contains an element /z, =
ajzz/z/ , where a,/éﬂ Z G:X 0 (a,), fls some element, independent of the 1ndex 2,
from Z, X L =42 ,,,.

By the definition of the subgroups L” we have

An, 2,7, ¢
byy=b,, =1 n=1,2

2~ y gy o

Since gr (alﬂ,é,z_,/) < 3 and & is an Abelian group, it follows that

vy =Ly B=h2Z,... . (5)

If [ is the union of the chain (4), then from (5) and from the inclusions Z 6// n=1,4...,
there follows that Z,<§t<// . Consequently, in Eﬂﬂ there exists an 1nfinite (a, )-
invariant subgroup 4. From here, passing to the preimages in the group V and making use of
Lemma 1, it is easy to show that 2"';3 and 2‘,‘ eﬁ'; in spite of the assumption. The ob-
tained contradiction concludes the proof of the lemma.

In the following lemma we record a more suitable selection for a counterexample.

LEMMA 10. 1If the theorem does not hold, then there exists a group 6 without involution.
possessing an infinite, complete, Abelian p -subgroup 3 and an element @ of order Y such

that the following statements hold:
(G,8,a)et;
2) b=Exl@), N(B)=H=DN@), D<F;

3) if P is a subgroup of tvpe (») from L , then P<B and (A/G(p)’ 3,(.2)6‘3',
(N PP, 8/p ,aP)et

4) if R is a finite (@) -invariant subgroup of the second kind and AR <7 , where /
is a finite subgroup from & and f/k is a p'-group, then p<Z(f),

5) if U is a finite subgroup from @D , then the intersection Q:([f) NA is infinite;

6) (@ <H.

Proof. The statements 1)-3) and 6) have been proved above (see Sec. 4). We prove 4).
In fact, the group 5 is a section of the group V, , introduced above. If S and // are the
complete preimages of the groups AR and 7, respectively, in V, , then 3 is an Abelian
Sylow p-subgroup in /V and, in view of the definition of the subgroup Y and the conditions
Y< Y,ngS , the lower layer of the subgroup s is contained in Z (/V) . But then, ac-
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cording to Proposition 24, /V-"-'S X /V, s Where A/, is a p'—group. Obviously, from here there
follows the validity of the statement 4). Statement 5) follows from the definition of the

group V, and from Propositions 20 and 24. The lemma is proved.

5. Structure of Subgroups of Type é}=gr(a,a‘¢), 965\,6/

By condition 2) of the fundamental theorem, the subgroups Lﬂ are finite and solvable

(Proposition 3). Imn the sequel, in the consideration of the subgroups Lf} one assumes that
g€ GNH.

LEMMA 11. For { the following statements hold:

1) if P is a finite /o-subgroup of the group G and @€ # , then p<ﬁ,

2) if a&/‘/ , then ge// and 6’ (@) <H.

Proof. By Lemma 10, p..p M (@), where <£ and ,Z7=,Z’7 Ny . 1f (@)# Z , then
/D #/ [statement 6) of Lemma 10 and Theorem 16 2.3 of [3]]. We assume that p ’7&/7
Since pz is an (@) -invariant subgroup and p /V (/D)np 7{' Ved [3, Theorem 16.2.2], it
follows that /7 is a subgroup of type («) and, by Lemma 10, p ch . Again by Lemma 10,
(/V (/7 )/p 5/,0 ,ap )Q.ﬂr and in the subgroup ,17/\(:217) , where — = p/}g , the inter-
section cp— (@ )ﬂp ,D is different from ,D (Theorem 16.2.3 from [3]) From here and
from Lemma 310 1t follows that ,D< {oﬂ ﬂN p ))/,D Returnlng to the complete preimages, we
obtain that ,1-2 <0 , where }3 is the complete preimage of ,D in 62 and /D #/D » Which
contradicts the definition of the subgroup /'{2 . Consequently, ,Z7<// and statement 1) is
proved. As far as statement 2) is concerned, in fact, it has already been proved (see the
corresponding assertion from Lemma 6).

LEMMA 12. Let ,g be a Sylow p-subgroup of the group Zz; , containing the element 42 .
Then:

1 F = 0 (L ) is the kernel of the Frobenius groups /fq' A(Q) and /-} A (a?);

Z)A /:)\/Z;:and%</q;

3) p/’qj (R,=A4nN g} is an elementary Abelian group of order <p

4) }; pA /Q? = f-;c /?;

Proof. Since yeé' \/9/ » by Lemma 11 we have ayﬁﬂ and Af ¢ V4 and, as mentioned

above, é'q is a finite solvable group. From here and from Lemma 2 there follows statement 4).

We show that the case /? </ is not possible. Let Q be an (@) -invariant Sylow p—sub—
group of the group 0; (L ) By Lemma 11, Q <4 . From here, in view of A <H , we

obtain 0,0,"0([/?) < K . T‘nen, Z’,@ 0 (é )A/ (Q) {Frattini's lemma; see Sec. 1) and

Z'/? S{/y . Consequently, {Q) 5{//

By Lemma 10 we have 0 éZnEa/\/ (Q) and, therefore, é’, is a subgroup of type (%)
for 4 #7{ and, by Lemma 10 (Q /q? If we would have a =£Sk§ , then on the basis of
Lemma 10 [see statement 5) in 1t:] and the definition of the subgroups @,b (Z/ }we would con-
clude that é} = qo;'ﬂ ([/}) . Since, according to what has been proved above, , (L,)< H,
we would also have Alq < /4 , which is not possible. Consequently, é’ *{ and H? 0 | =
But then also in this case, in view of the representation /’~E/\ (@) we obtain f ,0’,0 (é;

which, as mentioned above, leads to a contradiction with the assumption A; # A .

319



Consequently, ;':? ¢ # . We show that R} 4[/3, By Lemma 2, ﬁ5<0 (F <7£/}
Let & be a Sylow (@) -invariant P —subgroup from 6",, \/: INE=W . By Lemma 11, Q< H
and since ;'j? ¢ﬁ/ , it follows that 4 is a subgroup of type (=) for Q%/ . By Lemma 10,
Q<5 . But A, < W and thus sz . From here and from the Abelian property of the
group Rg there follows that /Q} is a Sylow subgroup in (,7 {W}

By Lemma 2, &’,P (W): QO' (W) X /?}; and since 0, W) is automorphically admissible
in W and Wéégp, we have k} Q[/‘?

We introduce the notations:

where S; is a component of the subgroup /D in £ a=czky . Let X be a maximal element-

ary Abelian subgroup of the group CS; (Q) . We consider separately two cases.

IXI 2/0 . By Proposition 5,

—

@‘gf ( (Z?}ZGX ) (6)

The complete preimage of any cvclic subgroup (‘Z) , ZGX » is an (@)-invariant p-subgroup
of the group k74 and, as follows from Lemma 10 and the condition R} -‘# 57 , it is not a sub-
group of type («x). But then, obviously, from (6) we obtain F} <H , in spite of the above-
proved relation F sf// Ccnsequently, one has the second case:

2) !X‘SID . If X { , then S, ={ and, obviously, A § AlE). M_aking use of
Lemma 3 [see statement 1) in it] and taking into account that the group L} is generated by
two elements of order 2 it is easy to show that it has the Frobenlus property with kernel
/Z} . Obviously, from here it follows that F M {a) and ;/'; ,\(cz,) are Frobenius groups with
kernel F} _

IXI =p . We consider in P the subgroup A' Z)X (@), where (Z)= X We show
that € Z(/U ) Obviously, ZeZ(,b.) If é‘-(A) 7é /D , then, in view of the nilpotency

7

of the group ,0 in /V (A) (A), there exists agn element /b such that ag az . From

7 —
here we obtain that all elements of the form @gz” . /S./G </7 ,» are conjugate with @. If

/, 1is the nilpotent radical of the subgroup F,, then, in view of Lemma 3 and the condition
F%// , the subgroups 7 #// and 7 A @), dél are Frobenius groups. By Proposi-
tlon 4, in A there ex1sts an element C#/ such that 0—- (C)nf‘# { , where @zfﬁy/ky

If for some /G, we would have C €gr (O.Z'O' ) , then, obviously, the subgroups 7A(Q} would

not be Frobenius groups for each (4543, s in spite of what has been proved above. Consequent-
ly, ce(z) and, moreover, f < CAQ (Z) . However, the last inclusion would contradict the
condition -9f // since the complete preimage of the subgroup (8) in 6’ would be a subgroup
of type (a&) , not belonging to 3, in spite of Lemma 10. Consequently, 0 (A)-—- and
5€Z{5_)_ . But then 5} is a cyclic group (Proposition 9) and, obviocusly, Z:? }; )‘p,?
where ’f? is an elementary Abelian group of order pz. From here, from Lemma 3, and from the
fact that the group A} is generated by the elements @,2¢# , there follows that 7’:?,\ (a,
/;)\(0}) are Frobenius groups with complementary sets (@) , (@#) . All the statements of

the lemma are proved.
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LEMMA 13. Let /4 be a subgroup of type /I:(z)x(a,) , where % is an element of order P
from 2D .= . 1f éﬂ 0'/)% H, then the interscction 55 (d/) N A is finite.

Proof. We assume that 0 @) n B is infinite. By Lemma 1, (c (al) 5 Q)€Y where S
is the complete part of the intersection ﬁgﬁd) NA . But then B <€G' (d) On the other

hand, by Lemma 10 [see statement 5) in it], 5 (’Z“) ig infinite. Consequently, N=3n

6’ (T )ﬂ@(d) is infinite, and /V< ({:2) s whlfx is not possible. The obtained contradiction
proves the lemma.

LEMMA 14. Let d be the element from Lemma 13, and let R=5{'}GG (d) . Then K<
Cpd).

Proof. Llet /= 6’@ (d), v=7-f7/$/, X"‘/y’_(k) Assume first that |7 Xl<oo. By Dietz-
mann's lemma (see Sec. 1), the closure U of the subgroup K in 7/ is finite. Since U is
generated by some subgroups, conjugate with R in 7, on the basis of Lemmas 1 and 2 we con-
clude that 0 (U} <Z (U} From here it follows that if Q is a Sylow p-subgroup of the
group 0 ((/) then Qq UaT . Obviously, (/<£ and, in view of Lemma 11, we have
<D . By Lemma 10 [see statement 3) in it] we have Q<E and =K. From here and
from the definition of the subgroup U there follows that (/=R . But then R < X . Now
it is clear that if R<Y , where Y is a finite subgroup of the group G and 7T< NG(Y)'
then R < Cg ().

We assume that R4 X . Then one can assume that Np (R,Y=X for each nontrivial («)-
invariant subgroup K; of the group K. Indeed, this can be easily proved taking intec ac-
count the beginning of the proof, the second statement of Proposition 13, and the fourth
statement of Lemma 10.

Now we consider the situation in 675 (d)/(d) , For the sake of the simplicity of the

reasoning, we preserve the same notations. By lLemma 11, 07,(&) < V . First we probe that

G,XEX ‘#5&X (gﬁ 7) . The implication age V#JGVSX is true by virtue of Lemma 11. We
assume that ge 7\)( and a{éx . We consider the subgroup Lg= gr (a,a’) . Since VSX
and Kg]'\)(sfx\/ , bv condition 2) of the theorem, the group [zg is finite. Taking into
account that /= (7 (d)/(d) , with the aid of Lemma 12 we obtain that Z,f ( Ag)x Sg) Aa)
where S «X. For some element /LEZ; we have al e&’;)x(a) and, by Lemma 11, 5/5 eV .
From here, 5:: Zﬁ-’ .  But V X and /i EX and, therefore, ge)( , in spite of the assump-
tion, Thus, if {E 7\ , then ég;fx . 1f for some element cef\x we would have SC #/,
then, in view of the above-made remark regarding the nontrivial @) -invariant subgroups
from R , we would obtain [’C</Vr(56) SX. , which is not possible. Consequently, for any
fef\X the group Zr5 is a Frobenius group with complement {@). By Proposition 15, 7=
F )\Cr (@) , where F A(Q) is a Frobenius group with complement (2)

Since 2<C (a) and the elements @ and 2@ for ‘lei? are conjugate in G {more exact-
ly, some of their preimages in 0@(0’)), it follows that the subgroups Aﬂ gr (Ta af') are
finite for geF\XnF . Let § be some element from R* and 1et £ be some element from
F~XNF . Bv Lemmas 1 and 12, W =gr (sa,a5)={0p,(W) XR[;))\ {sa) , where RgsR
and R‘ﬁﬁ/ . According to what has been proved above, we have @ eX and thus, W¢X
But, as mentioned above, Nr (Rg)sx and, since W< /Vr (Rg)sx (this can be seen from the
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above~indicated structure of the subgroup W )}, we obtain a contradiction with the relation
W¢ X . The lemma is proved.

LEMMA 15. For each 9€5\/'/ the group L has the form [; (0 (Ly) X R}) »r(aj,
where /?9 is a subgroup from B.

Proof. We assume that for some C€ GE~H the subgroup Z‘C does not have the form in-
dicated in the lemma. By Lemma 12, /QGQ éo and in Z/ //? the Svlow p-—subgroup is an
elementary Abelian subgroup of order pz Bv Lemma 10, /V (}? )/ Q/?C)é.g— and,

therefore, without loss of generalitv, we con assume that a}ready &c —F’*A , where
A=()x(@), t'=1 m yeD~A3.

Furthermore, A</7’, F ¢ H , and F is niliotent as the kernel of a Frobenius group {(Prop-
osition 25). From here, making use of Proposition 4 and of the normalizer condition in F
{3, Theorem 16.2.2], we prove the existence in A f an element d—#/ such that @(d}ﬂﬁ-{
Obviously, R,=8ﬂ 60 (d)?é/. By virtue of Lemmas 13 and 14, R; is a finite group and
C’G(d) </V[;(RI) . By Lemma 10,

(N, (RYR, , BIR, aR)es
and in W=/\/G(R,)/R, all the conditions of Lemmas 13 and 14 regarding the element dk, are
preserved, i.e., ?z//?y =3/R,n€w(0%)4'k and K /R is a finite group; moreover, (. (d/?,)%
Wﬂ///ﬁ . By Lemma 14, k/;?é (d,?} and. since c {d)/?/ﬁ < 6 (d/? ) , we have
é’ {d) <N (/7) where kz is the complete preimage of the subgroup Rz/k in G Regarding

the quotlent group /V R )/Rz we proceed as before. Repeating these reasonings, we construct

in 8 a strictly increasing chain of finite (@) -invariant subgroups

K<Rz<...</?a<--- (7)
such that 6 (a’)<A/ (/? ) n={a2,... 1f A is the union of the chain (7), then C (al) <
/V {R) . But then, by Lemma 1, /V (E)“/]I and, consequently, 0 (d)< H , in spite of the

assumpt:lon. The lemma is proved.

6. Conclusion of the Proof of the Fundamental Theorem

LEMMA 16. Let 5; be an @-real element from F~JZJ) . Then, without loss of generality,

one can assume that the subgroups A&t =gr (2, Q “). t€ﬂ , are finite Frobenius groups with
complement (@) .
Proof. By Lemma 15,

Ly =(0y (L)% §) X (@),

where op/([té) A {@) is a Frobenius group with complement (@) and Sf <B . We show that
56,/\/0 St) . Since Sé A(@) is a Sylow P -subgroup of the group ét , it foll(;»ws, by Lemma
10, that Q,tgfé{ St and in 0 (Z/t) there exists an element C such that at‘c éa ’, where

AGS <45 . By Prop051t10n 12, for some element Zeﬂ we have ﬁa a‘? and éfc a

From here, f&"f ’ZEC {a}</'/ (Lemma 10) or z,‘f—fzfc . "5 (,J zfc . Since f- {65
St <.B ce C&(St) and ﬁ is an Abelian group, we have A 6’55’ (St) and, in addition,
aeA/ (St . From here we obtain that @7 a’e/\/ Sb‘) . But then
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K. (8,)> e (2,0 %)= & (0,%)= & (a,6)

(Proposition 22). Consequently, 66 A/G-('S&‘)

Thus, we have proved that if in the set of the subgroups of type Ag s zfeB , there
exists at least one subgroup which is not a Frobenius group, then B has a subgroup S, of
the second kind, normalized by the element f , d.e., JG/V(S) ,. The triple (ﬁ,, 3 S ,
&S ) lies in & {(Lemma 10), where G 6 /5 Apply:mg to this triple reasonings sim-
ilar to the previous ones, we show that either in 0 all the subgroups are of the type At =
gr [a Q‘J’ ) , where iEB/S, ,a= 03 . é’ 55,, is a Frobenius group with complement (a) , Or
B/S, has a subgroup 32/51 %S/ of the second kind, normalized by the element 6 , Where Sz
is the complete preimage 32/57 in B. Reasoning in this manner, we construct a strictly

increasing chain of subgroups of the second kind
<
S’ SZ<"O<Sm<CQC (8)

so that fe/\/ (5 ) /Z—/E . If the chain (8) would not terminate at a finite index,
then its union ._9 would be infinite and 67&:/V (.9) . But then by Lemma 1 we would obtain
56 (S) // , which is not possible. Consequently, the chain (8) terminates at the fin-
ite 1ndex 7 and for the triple (/V (5 )/ 5/5/2,&,5;) € &~ the assertion of the lemma
holds. The lemma is proved.

In the sequel we assume that for the triple (6,13,62)6 & the assertion of Lemma 16
holds, i.e., for some &~-real element b€F D and any element Z€ B , the subgroups
Az"" gr (0,(2%) are finite Frobenius groups with complement (@) .

LEMMA 17. Let 7 be an element in B . Then ZA=%, where %€ CG (aynsB , ¢ is an
@ -real element in £~JD.

Proof. By Lemma 16, éb‘ = gr (cz,a“) is a Frobenius group with complement (@) : Aé=
Fz.f A (@) . In view of Proposition 16 and Lemma 10, there exists in Fé an element € such
that f&"- @ . From here we obtain that Z&6C7'= ze(/z; (@) < # (Lemma 10) and Zé=1c.
and since 7 §,C€£ , we have zeD .

We consider the equality

otta = azea. (9)

Obviously, at ale/ and a&‘ , & are conjugate in H (Proposition 12). The elements &
and 5&, are also conjugate in 5’ since they are contained in the Frobenius group (0,5’)
with complement (@) and kernmel containing the element f (Proposition 16). In addition,

ga(// and, in view of condition 2) of the fundamental theorem and of Lemma 15,

L= (ot ba) = F x(ba),

where F=0P/(Z/)x S and §<8.

From (9) it is clear that a/waeé . Since az#/ and u‘ef , we have, obviously,
awca § £ . From here and from Q2@ EL there follows that @ZQ €l ~F . But all the
elements from 4 SF oare conjugate with some elements from (a)# . In this case, by condi-

tion 2) of the theorem, the subgroup Z=gr{a,azczz) is finite and ZS{// » while gr (2,72C) =
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Z . But then Z agr(‘cz,cz"%gr(a,a':) = gr (@,C) (Proposition 22) and 7€/ . Since 2zeD,
making use of Lemma 15 regarding Z , we obtain that 7€ S . The lemma is proved.

We proceed directly to the proof of the fundamental theorem. If the theorem were not
true, then all the preceding lemmas were true and, in particular, by virtue of Lemmas 16 and

17, £~ would contain an @ -real element & such that
- Ze
fg = ’2'{[’# for any 3. 10)

where Zf eBn 6’& (a), €4 1is an Q-real element from £~ . We multiply Eq. (10) on
the right by the element Q@ and we consider the subgroup XL‘ gr(&'ta 5a) From (10) it
is clear that /Zt ée)(t and Xt —81‘(2’Zl fa). since (@, £)=F x(a) is a Frobenius group
with kernel ~ and gEF , it follows that @ and &z are conjugate through some element d
from / (Proposition 16): a,d= ba . The triple (G—Q:}a: 82 ) lies in of and all the pre-
ceding lemmas hold for it (Lemma 1). We show that JB<# , where 7 = Ugr(a a’)

We assume that for some element Ueﬂ one has the relation X S{ /7/ . Since the sub-
group Xa is generated by two elements Q‘Q \ ba , conjugate with certain elements from (Q)#
by condition 2) of the theorem, and in view of the assumption that C“‘adﬁ/d, the group Xa

has the form

X,= (0, (X)X $,) x(ba),

d =4
where Su < B% (Lemma 15). But z{;”a EXa nAk and, therefore, ¢, Ue Sa and, in addition,
Xa = gr (z;’a, fa) . From here it follows that Xa is a finite Q@ -group, containing the
element 4z and, by Lemma 11, Xa</$/d , in spite of the assumption. Consequently,

z;’ée gr(c,a.6a) <H® foramy  feB. (11)

In view of Proposition 12, ['Zt[sp and, therefore, Z"aé X# < //d . But ﬂiﬂ and from
(11) there follows that A< 772% . On the basis of the last inclusion and the definition of
an Mp-group, we conclude that 5=ﬂd and a’e/\/é; (B)=# . But then feH , in spite
of the assumption. The obtained contradiction concludes the proof of the theorem.

COROLLARY, Let 6: be a group without involution; let B be an infinite complete Abelian
P —subgroup; let @ be an element of order Y of the group 5; let V bea subgroup from
ﬁﬂog{a) ofs finite index in 5ﬂ€ (@), assume that the triple (&, /V (B),a) satisfies the
conditions 2)-4) of the fundamental theorem; and let //-/V {B) be an /V -group with kernel
B and handle (@) . Then /V (V)</7/

Proof. We denote /“NG(V) H,=HAT . 1t is easy to show that /‘/ is an M -group with
handle (a) and kernel B while /V (//) // and, in view of Propositions 12 and 13, the
triple (f/V, ///V QW satisfies, obkusly, all the conditions of the fundamental theorem.
But then 7'/V=/4/V and 7'"//, . The corollary is proved.

We note that condition 2) in the fundamental theorem can be relaxed to the following
one: the subgroups gr (a,a?) ,9’6 6'-'\//, are finite if §&~A is nonempty and any finite
subgroup, containing gr (a,a’), is a @-solvable group (p>2) having no sections of type
S/ {2,3) . Such a group G may have involutions. Asamatter of fact, taking into account this
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remark, we have characterized the /\{D -groups with P -finite handles (p)Z) in the class of

all infinite groups.

7. An Application of the Fundamental Theorem

LEMMA 18. Let G be a group and let & be an almost regular element of prime order 2
in 5’, satisfying the condition:

all the subgroups gr (a,ay), 96 6:, are finite, (12)

Then one of the following statements holds:

1) the Sylow O -subgroups in 6, containing the element @, are finite and conjugate
among themselves, and the number of such subgroups. is finite;

2) G has an infinite, (@) -invariant, complete, Abelian p—subgroup.

Proof. Let

A .5

7 2,-0.,

Y7,

Il,clo (13)

be an infinite sequence of distinct finite O -subgroups and let aep,b s =42,... . Since
0[; (@) is finite and Z(pﬂ)<6;(a), n=4,2..., it follows that the sequence (13) has an in-
finite subsequence

- S )

Yy ‘n

3 s

such that

2,=2(F)=2(8 )=~ LB )= m L * 1

We consider 5 /V (Z) In -5—, =G/Z the number of subgroups of type p“;z/z; is
infinite, OZ E. (,”_ /Z and, obviously, C (QZ) is finite and, therefore, as shown above,
there exists in 6?, a finite p -subgroup Z ?‘Z such that QZ € /V (Z ) and the number
of finite P -subgroups containing the element CLZ is 1nf1n1te If 52, 4’2 are the com-
plete preimages of the subgroups (Z ) Z in 5’ then @ NG (Zz Regarding Gz /Zz

we proceed similarly to the previous case. Reasoning in this way, we construct a strictly

increasing chain of finite p -subgroups
Z’<Zz<...<ZIL<..,, (14)

which does not terminate at a finite index and CZ&/VG (Za ) y fA=f2,... . 1f 2 is the uniom
of the chain (14), then Z is an infinite, locally finite O-subgroup and ae/VG (Z) . Ob-
viously, A =7 ((2) is also an infinite, locally finite group. From here, based on Proposi-
tion 27 and on the finiteness of the centralizer [2 () , it is easy to show that Z has an
infinite, (@) -invariant, complete, Abelian subgroup.

Assume now that G does not have an infinite set of finite p-subgroups, containing the
element @ . We show that, in this case, the assertion 1) of the lemma holds. We assume that
some Sylow L -subgroup S from &, containing the element @ , is infinite. Since 55(d) is
finite and S is infinite, it follows that the set of elements of the form a" , /Z«ES , is
infinite. But then the set of finite o -subgroups of the form (a,a") 4eS , is infinite
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[condition (12)], in spite of the assumption regarding the finiteness of the set of such sub-~
groups. Consequently, the Sylow o -subgroups containing the element @ are finite, and their
number is finite. Let be the set of such subgroups, and assume that for some pair 5,
K e % , the subgroups S and R are not conjugate in & and, from all the subgroups from

, not conjugate with 5 in 6, the intersection = Sﬂ/? has the largest order for K.
We consider V-—-/VG (-@) Since Q€& , it follows that V ig a finite group. We denote
5/=Sﬂ V, /?,=,?nV . 1In view of the normalizer condition in & and K [3, Theorem 16.2.2],
we have S%-@ /? %e([? , and o@=3 ﬂk . If 82 ,/?2 are Syvlow p-subgroups from Y and
S,s 32 s R SRZ, then, by Sylow's theorem, 82 and R are conjugate in V , i.e., for
some element z,‘e\/ we have 5-2 But then JI< S < Rz and /? QL& . By virtue of
the definition of the subgroup K , we obtain /=J§ since 4NJ>2 S >,27 and 5 #0, Z,ei(’?
On the other hand, ,@<Ré </ = 3 and /?t +0 . Consequently, R n S R > 0 and,
again, in view of the definition of the subgroup }?, we obtain that 1?t S , whlch contra-
dicts the assumption on the nonconjugacy of K and § in (. The obtained contradiction
means that the subgroups from % are conjugate in & . The lemma is proved.

THEOREM. Let 61 be a group without involution; let @ be an element of prime order £
in & with centralizer CE(G) y which is a fiﬁite 2 -subgroup satisfying condition (12).
Then 5‘ has a complete, Abelian, normal P -subgroup .5 such that, in 5"/5 » the Sylow p-
subgroups containing the element @8 are finite and conjugate and their number is finite.

Proof. 1If in G every Sylow o -subgroup, containing @, is finite, then, in view of
Lemma 18, the assertion of the theorem holds and, in this case, 5=/. Assume that the ele-
ment & is contained in an infinite o -subgroup. By Lemma 18, & has an infinite, (@) -in-
variant, complete, Abelian /D—Subgroup. By Zorn's lemma, in the set of such subgroups we
select as B a maximal subgroup and we consider H= /V () . since a€H , it follows that
condition (12) holds in // fﬂﬁﬁ (for the element aréLB) and, in view of Proposition 13,
the centralizer éi—(a) is finite. If A7 would have an infinite, (ED —-invariant, complete,
Abelian QO -subgroup V , then, in view of Proposition 27 and Theorem 21.1.4 of [3], its com-
plete preimage Y in & would be an (@) ~invariant, complete, Abelian p —subgroup such that
B<Y and BF YV s but this is not possible in view of the selection of B as a maximal {a)
égyariant, complete, Abelian /7-subgroup. Consequently, statement 1) of Lemma 18 holds for
A/ and the element @ . From here and from the finiteness of the centralizer Ck(cu there
follows, obviously, that the triple (G,B, (m) satisfies the conditions of the fundamental
theorem and, by this theorem, Bab . The theorem is proved.

Example 10. In the last theorem, condition (12) is essential. Indeed, this can easily
be seen in the example of the free product of an infinite Chernikov p-group, possessing an
almost regular element of order /a(lp#Z) , and some nontrivial periodic group without in-
volution. If, however, one takes the periodic product of the mentioned groups, then we ob-
tain an example of a periodic group without involution in which all the conditions of the
theorem hold with the exception of condition (12), while the assertion of the theorem does

not hold for such a group.
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