
Adp-GROUPS 

V. P. Shunkov UDC 519.45 

Already in 1945, Chernikov [I, 2] had isolated a very interesting class of groups, name- 

ly the p -groups of type V =S~(~) , where 5 is a complete Abelian group, ~ is an element 

of order p , with a finite center ~V) ; here, as usual, (~ is the cyclic subgroup with gen- 

erator ~. As it turned out, because of their properties, these groups are close to the 

Frobenius groups and to the dihedral 2-groups. Thus, for example, all cyclic subgroups of 

the form (~, ~£ ~ , conjugate in V with (~) and the quotients of the upper central series 

of the group V are finite elementary Abelian groups. In the investigation of groups with 

various finiteness conditions, in certain situations it is necessary to distinguish as a spe- 

cial case the question of the imbedding of a subgroup of type ~ into the group. This cir- 

cumstance has compelled the author to look at the group V from the point of view of its 

characterization regarding imbeddability in a sufficiently large class of groups. However, 

the investigation, started in this direction, has exceeded the purpose set initially by the 

author in connection with the mentioned characterization and has led to the necessity of in- 

troducing a new class of groups, the so-called ~p -groups (see definition in Sec. 2). In 

the present paper we have obtained the characterization of Mp -groups with ~ -finite handles 

in the class of groups without involution (the fundamental theorem in Sec. 2). As an applica- 

tion of this theorem we give only one result (the theorem in Sec. 7), but this does not ex- 

haust by far the possibilities of the application of the fundamental theorem to abstract 

group theory and beyond. 

The case when the group contains involution is not considered here (except for a remark 

in Sec. 6) since it requires a special approach, based on the characterization of Lie-type 

groups in the class of (periodic) groups. 

The notations used in the paper are standard [3, 4]. 

i. Known Results, Definitions, Auxiliary Propositions 

I. Merzlyakov's Theorem. The group ~ of outer automorphisms of an arbitrary 

Chernikov group ~ is almost torsion-free ([5]; see also [6, p. 458]). From here it follows, 

in particular, that the orders of the periodic subgroups of the group 0~ ~ are finite and 

bounded in their totality by the index of the maximal normal torsion-free subgroup [5, 6] 

(their finiteness has been established in [7]). 

2. If an Abelian ~ -group ~ has an automorphism of order ~ with a finite centralizer 

in ~, then ~ is a Chernikov group [8, 9]. 

3. Felt--Thompson Theorem. A finite group of odd order is solvable [I0]. 

4. Burnside's Theorem. Let ~ be a finite grQup of the form ~=bAA where 5 is an 

elementary Abelian ~-group, A is an elementary Abelian p-group of order and ~ ~ p . 
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Then there exists in A a nontrivial element % such that C~(%~N 5~ 4 [ii]. 

5. Let G be a finite group of the form G =" ~,A A, where ~ is a p'-group, and A is 

an elementary Abellan p-group of order p~. Then ~ ~- gr(O~(%~l%~ A ~ ~. 

The proof follows from Frattini's lemma and from Proposition 4. 

6. Let ~ be a finite solvable group and let ~ be the Fitting radical. Then CG(Z.~ 

i [3]. 
7. Podufalov's Lemma. Let G be a finite group of the form ~=~ >~q>, {0~I) , where 

is a {p~'-group and Cd(5)<.S, Q is a ~-group, .~., and eL is an element of order p ~ ~- 

If S A (CL~ is a Frobenius group with complementary factor (0v~, then ~>'[0~-~-~ ~ [0b~ [12]. 

8. Frattini's Lenuna. Let ~ be a finite group; let / be a normal subgroup in ~, and 

let ~) be a Sylow p-subgroup in ~. Then ~ = N~P~L [3, Lemma 17.1.8]. 
9. If a finite p-subgroup [p~ ~, has a unique subgroup of order ~, then it is a 

cyclic group [13]. 

i0. A Chernikov ~-group is a ~A-group and the normalizer condition is satisfied in 

it [3, 14]. 

ii. Let ~ be a p-group of the form ~-~-P>,A, where ~ is an infinite complete Abeli- 

an group and ~ is an elementary Abelian group of order ~z Then in A there exists an ele- 

ment ~ ~ ~ such that ~ ~+u~ is infinite [15, 16]. 

12. Let G be a p-group of the form ~-= P >,(0~, where ~ is an infinite complete Abeli. 

an group and C5 is an element of order P with finite C~(Cb~ . Then the following assertions 

hold : 

i) ~(G~ is an elementary Abelian group, ~.~G] C p ; 

2) all the elements of the form ~'0J or 0~b[~6 ~ are conjugate with Cb with the aid 

of elements from O [16]. 

13. Let ~- be a group; let ' be a complete Abelian ~-group, and /. ~ ~, and let 0v 

be an element of order ~? from ~ with finite L '~ ~.[Cb~ Then 
b- 

I) ~.~0.~ '~, -~= ~CL~L~// , where ~=~//.~ 

2) if ~;( is a finite (~-invariant subgroup in /. , then in N~/K =T the centralizer 
L~ 

= ~Cr[k0j]]/~ , where ~ is an elementary Abelian subgroup in / / m 

Proof. The assertions i) and 2) follow from Proposition 12. 

14. Dietzmann's L~mma. A finite invariant set of elements of finite order from an 

arbitrary group generates a finite normal subgroup [14, 17]. 

15. Let ~ be a group; let ~ be a proper subgroup in it; let C~ be an element of prime 

order p > e in G , and assume that for each ~E G" ~gr(Cb,0u~ there exists a Frobenius group 

with complement ~0~). Then ~ = - ~ ,  where ~A[~) is a Frobenius group with kernel 

[18] (see also [19]). 

16. A group ~ is said to be a Frobenius group with complement ~ and kernel F if 

G---F>-~,, ~#=~L]~ ~, and ~C%,~=~ for any ~6 ~ ~ ~ . 

17. Let '~ be an infinite complete Abelian p-group satisfying the minlmality condition. 

We introduce the parameter ,~Lp = ~n~(G~ = rr~0uZ ~! : 'S is a Sylow ~-subgroup in A~hi~] 
By Proposition i, ~p is a finite number and ~= = ~)'~ . The number Frbp is called the p- 

torsion parameter. 
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18. Let ~ be an infinite complete Abelian p -group, satisfying the minimality condition 

and let ~ = & ~ ~ . Then 

~p~G'~ >. r~p<A~, m~p(5], (l) 

Proof. Obviously, A~t(A~ ~ At~t(5] is imbedded in A~,~(~]. From here we obtain the 

inequality (1). 

19. Let ~ be an infinite p-group, being a holomorphic extension of a complete Abelian 

group ~ satisfying the minimality condition, with the aid of some group of automorphisms A : 

If ~(~],~p(B) contains elements of order pZ , then ~] is an infinite group. 

Proof. Obviously, ~ -~- ~(~] C ~ . We shall prove the theorem by induction on the rank 

~p = [p(~] . Let ~ be some element of order p from ~[A]. By Virtue of Proposition 12, 

= ~ n ~] is an infinite group. Let ~ be its complete part. Obviously, ~ is an A- 

invarlant subgroup. Since A is a group of automorphisms of the subgroup ~, we have ~+~ 

and, consequently, their ranks [p(~l, tp[5] satisfy the inequality ~p(Vl < ~p(~]. If 

C_(A] > ~ , then the assertion of the proposition holds. Let ~ ¢ ~[A~ . Obviously, in 

G/V an element from V induces an almost regular automorphism in ~/V. From here, in view 

of Proposition 12, ~(~/V ~ (C ~]] is an elementary Abelian group. But then Z P < ~ , and 

since ~=~X ~ I , it follows, by Proposition 18, that ~p[V] < rrbp[~] and thus, ~rrbp(~]~ 
r. pz. 

~bp[~. From here T =  ~p<v~ < V and T contains elements of order By the induc- 

tion hypothesis, the intersection ~ ~ ~A~ is infinite. The proposition is proved. 

20. Let ~ be an infinite Chernikov p-group, and let ~ be its complete part. If 

5 ~(%(&~-p(s) has elements of order p~ , then 7v(~ is infinite. 

Proof. The quotient group ~/C~] is isomorphic to the group of the automorphisms of 

the group 5 , which leaves fixed the subgroup of ~ containing elements of order pz. By 

Proposition 19, ~(~ is an infinite group. The proposition is proved. 

21. An element ~ of the group ~ is said to be almost regular if C~) is a finite 

group. 

22. Let C , • be elements in the group ~ . The element 6 is said to be O~-real if 

= gr(6,~] is a Frobenius group with kernel containing the element ~ and with complement 

(~ . If V is a finite group, then V ~-gr(0J,0~ ~ [18, 19]. 

23. A group ~ is said to be ~-biprimitively finite if, for any finite subgroup ~ in 

the quotient group NC_~I/~ , any two elements of prime order ~ generate a finite subgroup. 

24. Gorchakov's Lemma. Let ~ be a locally finite group with Abelian Sylow p-subgroups 

relative to some p. Then 0[(~ ~ ~(~ is a p'-group [20]. 

25. Thompson's Theorem. The kernel of a finite Frobenius group is a nilpotent group 

[22, 11]. 
26. Let ~ be a group; let p be a finite p-subgroup of ~, and let V be a locally 

finite normal p'-subgroup of ~ . Then in ~ = ~/~ one has the relations 
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27. If a locally finite ~-group ~ has an element of order ~ with a Chernikov central- 

izer, then ~ is a Chernikov group [8]. 

28. Let ~ be a finite D -solvable group, ~ ,  ~=O#(~), and ~ ~ If ~ does 

not have sections of type ~(~,5~ , then every Abelian normal divisor from the Sylow p-sub- 

group of the group ~ is contained in $ . 

The proof of the proposition is given in [21, pp. 93-94]. 

U 

2. ~p-Groups, Examples, Fundamental Result 

Definition. Let ~ be a group; let ~ be its infinite normal complete Abelian p -sub- 

group satisfying the minimality condition; let ~ be an element of order ~; and assume that 

the following conditions hold: 

a) the locally finite P-subgroups of ~)~/~ are finite; 

b) if some complete Abelian P-subgroup ~ of the group ~ is contained in the set 

gr (~,~#), then C~ B. 

(0~) are called the kernel and the handle, respectively, of the ~p-group ~. 

group ~ the handle [0~) can be of the following types: 

I) in ~0~ the locally finite P-subgroups are finite; p' 
2) in ~0~ the locally finite -subgroups are finite; 

The group ~ from the definition is said to be an ~p -group, while the subgroups 5 , 

In an Mp - 

3) in ~0~ the locally finite subgroups are finite. 

In accordance with the mentioned demarcations relative to the handle of an ~p-group ~, 

a handle of type i) will be said to be P -finite, one of type 2) will be called ~ -finite, 

and one of type 3) will be said to be finite. 

Examples of ~p -groups (with finite handles): 

Example 1. Every Chernikov group having an infinite p -subgroup and an almost regular 

element of order P is an ~p -group. 

Example 2, A holomorphic extension of a group from Example i with the aid of any group 

of outer automorphlsms. 

Example 3. Every holomorphic extension of an infinite Chernikov p -group with the aid 

of a group of outer automorphisms is an ~p -group. 

The assertion in Example i is obvious, while the assertions of Examples 2 and 3 follow 

from Proposition i. 

Example 4. If ~ is an Mp -group with a finite handle ~0J~ , then C~ may have infin- 

ite P-subgroups. For example, it is sufficient to take a direct product of a group from 

Examples i and 2 and of a free periodic Novikov--Adyan group [23]. 

Example 5. One can give an example of an Mp-group ~ with handle (~) in which for 

some element ~ the subgroup gr {a~)~/~ is an infinite periodic group. For example, let 

be a P -group of type P = ~A~), where ~ is a comp]et~ Abelian group, ~ = p , ~ is 

finite, ~ is a free Novikov--Adyan group of period P and T ~-~ A [S~ We consider the 

group M = ~ ~ and in it the subgroup ~ = ~ x V~ A(~, where 0J---CS. Obviously, ~ is 
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an Mp -group with handle (0J~ and kernel ~ . Making use of the properties of the Novikov-- 

Adyan group [23], one can easily find in V and element ~ such that [0J, Cbt~/~ will be 

an infinite periodic group. 

Example 6. The kernel of an Mp-group need not coincide with the maximal complete 

Abe!ian p-subgroup of the group. Indeed, let ~ = ~mT , where H = P ~[~ , ~ is an in- 

finite complete Abelian ~-group, ~C~ ~- Q , ~H[~ is finite, ~ is a free product of a quasi- 

cyclic p-group S and of a cyclic group [%~ of order p. Obviously, ~ is an ~p -group 

with kernel P and finite handle [~I' and ~ is imbedded in the maximal complete Abelian p- 

subgroup ~ m ~ + ~ • 

In this paper we shall prove the following: 

Fundamental Theorem. Let ~ be a group without involutions, and let ~ be its infinite 

complete Abelian P-subgroup, satisfying the conditions: 

i) ~ = ~[~ is an ~p-group with kernel ~ and P-finite handle (0~ ; 

2) for every ~6 ~ ~ the subgroup (CD, OJ %) is finite; , 

3) I~[Cb~', ~ ~[CD~I < oo and ~%~OA contains all the ~-elements of finite order 

from £~0~ ; 

4) if Q is a finite (0~) -invariant ~-subgroup from ~ satisfying ~ ~ C~0J~ + 4 and 

~ ~ , then N~[~I ~ ~ . 

Then 5 ~ ~. 

We show on examples the existence of groups in which condition 4) is automatically sat- 

isfied, while each of the conditions 1)-3) is independent from the remaining ones. 

Example 7. Let H be the group from Example I without involution, and let m be some 

nontrivial group of involutions. In the periodic (according to S. I. Adyan) product ~---- 

~ ~ , for the subgroup H and its almost regular element 0~ of order p the conditions 

i) and 3) hold, while condition 2) is not satisfied and ~ is not an ~p -group with handle 

[0U~ (regarding the abstract properties of periodic products, see [24]). 

Example 8. Let ~=[O)%V , where ~ is a P-group of type ~ = ~ 2~ [0J~ , ~ is a com- 

plete Abelian group, and 0J, ~ are elements of order P . Obviously, N~] and ~51 satisfy 

the conditions I) and 2), I~6~2): ~&(~)N~(~)I=oo and ~ is not an ~p-group. 

Example 9. Let ~ be a locally finite Frobenius group with complementary factor ~ , a 

quasicyclic P-group, and let 0~ be some element of order P in ~. Conditions 2) and 3) 

hold for N ¢[~ = ~ and the element 0J, but B is not an M e -group with a P-finite handle. 

The proof of the fundamental theorem is given in Sets. 3-6, where one assumes that the 

theorem does not hold, i.e., ~ ~g We consider the set ~ of triples of type ~,V, ~) 

where ~ is a group without involutions, ~T[V~ is an /~p-group with kernel A r and with a 

-finite handle [~I , satisfying the conditions 2)-4) of the theorem, and ~k;')~. In the 

set ~ we consider the subset ~ of triples i~,~,~l with the least rank ~- ~[~ of the 

kernel ~ . In view of condition i) of the theorem and Proposition 2, ~e is a finite number. 

But then ~%p ~ ~%~ <~i : S is a Sylow ~-subgroup of A~[~ } is also a finite num- 

ber (Proposition i). 
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3. Subgroups of the Second Kind and Type (.) 

LEMMA 1. Let (~,~,0~) be a triple in ~ . Then the following assertions hold: 

I) (~,0U~6 ~ for each ~e ~ ; 

2) ~[~ = ~ , where H = ~ :  

3) if ~ is an ~0~-invariant finite subgroup in ~ and N~ ~ ~ , then ~N~[S), 

4) if S is an (0~ -invariant infinite subgroup from 5, then N~B~ ~ ~; 

5) if P is a maximal, locally finite ~0~-invariant P-subgroup from ~ , then ~/~ is 

a finite group; 

6) (~,~,0jk~ E ~ for any ~E~ and, in particular, in view of Proposition 12, 

[~,~, %0u~6 ~ for any ~6 ~ ; 

7) if ~ is a finite, (0~)-invariant ~-subgroup in ~ , ~)~ ~ and ~ ~  is in- 

finite, then ~< C~P~ and ~N~P~,B,0J~,(~P~'[0J~,~,0J~ ~. 

Proof. The statements i) and 6) are obvious. The statements 3) and 4) follow from 

Proposition 13, the assumptions of the theorem, and the definition of the set ~ . We prove 

5). We assume that ~= PI~ is an infinite group. By Proposition 13, C~[~ = £p[0J~515, 

where ~-~-0J~ and, therefore, ~ I  < 0o By Proposition 27, ~ is a Chernikov group; 

let V be its complete part. By Proposition 12, ~ <]a~ gri~,~ and we have obtained a 

contradiction with the definition of an ~p -group [see condition b)]. Consequently, ~ is 

a finite group and statement 5) is proved. If we had ~ + ~ , then in N~k~ there 

would exist an element • such that ~'~ B , ~z < ~ , and ~ is an ~0J -invariant subgroup 

in ~ , while ~i~ is an infinite group. But then we would obtain a contradiction with the 

assertion 5) of the lemma, which has already been proved. Consequently, ~= N&[~ and as- 

sertion 2) is proved. We prove 7). Let H4 = C~P~ [0.~N~ and let ~ be the complete part 

of the intersection ~ ~ C&(P~. As above, one can easily show that NIH1n C LP~'t~I = H 
and the triple (~P~'(O~, ~4' (0~)I satisfies the conditions of the theorem and ~[~4~ ~. 

If we would have 6~(54~ < 6p, then in view of the definition of ~ we would obtain ~4 4 

~ .  (0u~ and, by statement 4) of the lemma, we would have C~-~ H since C~(~) 

[P~ and ~ ¢~P~ <~ ~e~ ~ ~  making use of statement 5) and Theorem 1 8 . 1 . 2  of 
C~ q • ' 

[3], we can see that N~PI~H in spite of the conditions of the l~mma. Consequently, 

~[~4~ = ~ and ~I "~- B . But then, obviously, ~N~P~, ~,oJ~ ~ ~,~C~PI.(0J),~,0jI~ . 

Statement 7) is proved and thus the proof of the lemma is concluded. 

Definition i. A finite, nontriv]al, ~)-invariant subgroup ~ in ~ is said to be a 

subgroup of the second kind if N~ ~ ~ ; otherwise it is said to be of the first kind. 
p' 

LEMMA 2. Let ~ be a finite, (0~)-invariant -subgroup of the group ~. Then 

Proof. Let L be the nilpotent radical of the subgroup ~ ~ 4 • Since ~ is a solvable 

group (Proposition 3), we have /.~. By eemma I, (~,~,~b~[~&~ is a triple-counterexample 

If for some ~54~ ~ we would have ~ ~(%40~) + ~ , then,, making use of condition 3) of the 

theorem and of the normalizer condition in nilpotent groups (Theorem 16.2.2 in [3]), as well 

as of the automorphic admissibility of /~ in K , we would prove that ~-~ H, and in this 
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case the assertion of the lemma is obvious. Let ~%0J~ ~ /. = ~ for some ~ ~ . Then, on 

the basis of Proposition 4 and of the representability of the subgroup gr ~L,~,~I in the 

form /. )% R ~ (C5) , we obtain ~ ~/,~ From here and from Proposition 6 there follows 

that ~ /, ~ ~ )~ ~ and ~ < ~ . The lamas is proved. 
, p' LEMMA 3. Let K be a finite, nontrivial ~-invariant -subgroup from ~ and let 

T =  N~(K1 ~ H . 
Then the following assertions hold: 

i) if ~, is the nilpotent radical of the subgroup ~, then /. A (0~) is a Frobenius 

group and in ~I~ the Sylow primary subgroups are cyclic and (~ ~ (0w~//,) = ~/~, ~ (0~L]; 

2) if L ~ K, then there exists an ~) -invariant Sylow ~-subgroup m of the group K 

such that P~ L ~ -7"= KA/7- (P~and N T(P)~/, L ~ H. 

Proof. The fact that /, >~ (0~ is a Frobenius group has been established in the proof 

of Lemma 2. From here, in view of Propositions 6 and 7, we obtain 

... KIC,(o L . 

We prove statement 2). Let /- + ~ and let P be a Sylow ~-subgroup in K , P ~ /. , 

and ~b ~ N~[~. From statement i) it follows that Q ~ ~0~ + 4 . From here, making use 

of the normalizer condition in P [3, Theorem 16.2.2], as well as of condition 4) of the 

theorem, we obtain NT[P~ < H It remains to show that L ~ H . Indeed, by Frattini's 

lemma (Proposition 8), we have T ~-~NT[P~ while, by statement i), ~-----L~K~0J) , where 

~K[0J~ H [condition 3) of the theorem]. From here, if /, < H , then K~ N , and, since, 

according to what has been proved above we have NT(~ < ~ , we would obtain T < ~ , con- 

tradicting the assumption of the lemma. Consequently, L ~ ~ , 

We assume that P--Q/.//, is a noncyclic group. In this case, on the basis of Proposi- 

tion 9 we conclude that ~ has an elementary Abelian subgroup V of order ~z . According 

to what has been proved above, V ~ (0J/,~ . Since /, ~-/~4 ~ ~' where ~4 is a Sylow ~-sub- 

group in /. , it follows that L~ is a V-invariant subgroup. By Proposition 5, ~,4 = 

gr(t4~l ~ V~ . Consequently, 0/ ~I= S ~[~) , where ~ is the ~-preimage of the 

element ~ in ~ . Obviously, ~6 ~(0u~ From here, by condition 4) of the theorem, 555< 

But then /'4 < H and thus, also /' < ~ , which contradicts the relation /. ~ ~ , 

proved earlier. Consequently, ~ is a cyclic group and the lemma is completely proved. 

LEMMA 4. Let ~ be a finite P-subgroup in ~ and let ~bE ~ . If ~ = ~ ~ Q+4 

and N~[~ ~ <~I , then ~ has subgroups of the second kind. 

Proof. Let ~-PN H . Obviously, ~e~4~ and in N~" H there exists an 

element C • Then, /, =~[~ ~[~ + 4 [3, Theorem 16.2.3]. By virtue of the automorphic 

admissibility of ~(~) in ~ , we have /'4 = /C ~ ~(~I and, in addition, L 4~ ~¢= ~ < 

H¢=H. If ~(L4~ ~ H4 , then, obviously, ~(L~ ¢ H and, in this case, /, is a subgroup 

of the second kind. Let C ( < H But then [/,,~< ~(L4~ < H 4 We select in /, 

an element ~ + 4 and let ~I ~ (0~, We consider the subgroup 8f ~ . By Proposition Ii, 

in ~ there exists a nonidentity element ~b such that ~u~ ~ ~4 is an infinite group. If 

%=~, where ~(~ ~ ~, then, by virtue of temma 1 and condition 3) of the theorem, the 

intersection H ~C~%~ ~ ~ is infinite. But then we obtain a contradiction with condition 
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i) of the theorem and with Lemma 1. Consequently, %e [~I ~ ~ • If CC(%~ ~ ~ , then ~%~ 

is a subgroup of the second kind. Let ~ % ~  In this case, ~I ~ H and since ~4 is 

an (0~!-invariant complete Abelian P-subgroup and ~0~ is finite, it follows, by Proposi- 

tion 12, that ~i<~ gr ~0J, 0J~) . From here and from Lemma i [see its statement 5)] it fol- 

lows that ~¢----~=~ and ~6 N~--~ , which is not possible. The obtained contradiction 

proves the lemma. 

Definition 2. A finite, nontrivial, (~)-invariant P-subgroup ~ in H is said to be 

a subgroup of type (,m) if ~G~ ~ H. 

LEMM 5. Let ~ be a subgroup of type (~) and assume that ~I:N(~f~H~0. Then 

has a subgroup of the second kind. 

Proof. Since ~P is a Chernikov ~-group, we have N~N ~-- ~I * ~ (Proposition i0). 

From the conditions of the lemma it follows that the centralizer ~I in ~ ~-N~P~ has a fin- 

ite index in ~4 and by Dietzmann's lemma (Proposition 14), the closure of ~ in ~4 is 

finite. Consequently, in ~ there exists a finite normal subgroup ~4 , containing the 

subgroup gr (~4~. Let ~ be an (~I -invariant Sylow p-subgroup in ~ and let ~I ~ ~ " 

If ~(0J)~ , then, by Lemma 4, ~ has a subgroup of the second kind. Let $~H and, con- 

sequently, ~ 4 ~ . From here, on the basis of Proposition 28, we conclude that ~I ~ 

Consequently, ~2 = NG~ ~ ~ and 0JE ~£ Again by Lemma 4, we obtain that P ~ ~, 

Let ~%= ~ ~. By virtue of Proposition i0, ~ ~ and thus ~ + ~4 and ~i ~ ~ . 

As far as the pair (~£, ~I is concerned, we proceed in the same way as for (~i~4) Repeat- 

ing these arguments, we construct in H a strictly increasing chain of finite, (~-invari- 

ant p-subgroups 

• ' • ~ • • - (2) 
= 

From Lemma 1 it follows that . ..... are bounded in their totality. From 

here it follows at once that for sufficiently large ~ the subgroup ~ has a nontrivial sub- 

group, normal in ~+~ , i.e., a subgroup of the second kind. If, however, the chain (2) has 

a finite number of terms, then from the method of its construction there follows the exist- 

ence of a subgroup of the second kind. The lemma is proved. 

LEMMA 6. If H does not have subgroups of the second kind, then the following state- 

ments hold : 

i) every finite ~-subgroup, containing the element 0~, is contained in ~ ; 

2) if P is a subgroup of type (.) , G-4=~ , ~1=HnC~ C- ==~4]~, HI--~I/~D,~=C~P, 

3) i f  p i s  a subgroup of  type ( ~ )  , then ~ P ~ - 4 ;  

and 

Proof. Let S be finite ~-subgroup of the group ~, containing the element 0~. We 

assume that $4 = ~ [~ ~ ~ ~ In this case, N~S4~ ~ ~ [3, Theorem 16.2.2]. Since 0JG 

and I~0~: ~I<=o [condition 3) of the theorem], it follows, obviously, that IN~'. 
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~SI~ CO and, by Lemma 5, H has subgroups of the second kind, in spite of the assump- 

tions of the lemma. Consequently, S< H and statement l) is proved. If we would have 

~#~ ~ H~ , then the complete preimage ~Z of the subgroup [~ in ~ would be a subgroup 

of type {m) , containing the element ~. Reasoning regarding the subgroup ~Z in the same 

way as regarding ~ , we would obtain a contradiction with the conditions of the lemma. Con- 

sequently, ~}~ ~ H~ and statement 2) is proved. Statement 3) is proved in a similar 

manner. Since 0J~ ~ H , we have ~H~ 4. The subgroup ~4 ~ is a locally finite p - 

group, containing the element 0J. By statement I) we have ~-I ~ and, in view of Lemma i, 

we have ~ u ~ 4  = ~; thus, ~ E H . The lemma is proved. 

LEMMA 7. The subgroup H contains a subgroup of the second kind. 

Proof. We assume that the lemma does not hold. First we show that H has subgroups 

of type (~) . We consider the subgroup & =gr~0~(L~ ~0~p 0P~(L~ ~= , 6 ~ k ~ • By condition 2) of the 

theorem it is finite and, by Lemma 6, ~ # ~ ; thus, & H . If 4 , then in 

view of the solvability of L~ (Proposition 3) we have (f.~) ~. Since ~E 6~,we have 

that 0p[L~'(~) is a finite p -subgroup, containing the element Cb and, in view of the as- 

sumption regarding the absence in ~ of subgroups of the second kind and by Lemma 6, we have 

0p(£~ ~ H . But then 0~(L.~ is a subgroup of type (~. 

~et ~- = 0p,~ ~ ~ ~  By~Frattini's lemma, L =F N (q), where Q is a Sylow ~-sub- 
, • 

group in uon(~ and 0~6 N,[%~. If N, (~ ~ ~ , then Qis a subgroup of type (,). Let 

N. [~ • ; also in this case, ~ ~ H • 'We assume that the element OJ is contained in H . 

some elementary Abelian p-subgroup ~ of order pZ from £~. We consider the subgroup 

~ ~ ~ . By Proposition~ 5, ~.~ <. l~.gr (~JS]I S, _~ ~), and since ~ ~ H , it follows that 

some element ~ we have ~)~H, ~6~<~ (Lemma 6). Consequently, [~ is a for 

subgroup of type (~). It remains to consider the case when the Sylow p -subgroup from ~@ 

has a unique subgroup of order p and, in view of the condition p+ ~ and Proposition 9, 

it is cyclic. On the basis of Lemma 3, the solvability of ~ and the fact that it is gen- 

erated by two elements of order ~, we conclude that ~-~-~ '0j~ is a Frobenius group with 

complement (~I • By Proposition 15, ~= ~AN~[~, where '~A[~is a Frobenius group. But 

then ~ ~ ~ =4 and thus, BA(~=4, and, in view of the representability of ~ in the 

form ~ k ~.~[~ , it would follow from here that in ~/~ the subgroup [~ ~[~I~ ~/ ~ is 

equal to ~F~ ~ (~I • However, this is not possible since ~ k (~/~ ~-- ~(~ is not 

an Abellan group. All the considered cases have confirmed the presence of subgroups of type 

H in (~). 

In view of the assumption regarding the absence in ~ of subgroups of the second kind 

and by Lemma 6, every subgroup of type (~) intersects ~ at the identity. From here and 

from Lemma ! there follows that, in ~ , there exists some subgroup ~ of type (~) , not con- 

tained in any larger subgroup of type (m). 

We introduce the notations 
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 =SP/P, o P. 

In view of Proposition i0, S + ~ and, by what has been proved above, S + { Further- 

more, ~G ~-1 . Indeed, if ~ ~ 5 , then ~'~-%~ , where ~v~, ~P , and ~=~-~OJ- By 

Proposition 12, the elements ~ and 0J are conjugate through some element ~ ~" ~-4~-----C[ • 

But then the subgroup ~ would obviously be a subgroup of type (,) and 0J ~ P~ . From 

here and from Lemma 5 it would fo]low that H has subgroups of the second kind, in spite of 

the assumption. Consequently, ~ ~ ~ . Since S ~ H~ , it follows by Lemma 6 and Theorem 

16.2.12 of [3] that the inequality ~!H~ ~ H~ would mean that ~ has a subgroup P~ >i ~_~ 

of type (*) and this would contradict the assumption that P ~ ~ ~_ ~ . Consequently, N=-(H ~ = 

H I . Then by Lemma 6, C~(~l ~ ~ . Making use of the same considerations that have been 

applied at the beginning of the proof of the len~a and taking into account that ~ has been 

chosen as a subgroup of type (,) of maximal order, it is easy to show that the subgroups of 

the form ~C gr (~,_ ~), where ~ ~ ~ ", H~ , are Frobenius groups with complement (~I • 

By Proposition 15, ~ = ~ ~ ~,~L,)j , where_ ~ ~(~l_is a Frobenius group. 

Let t be an element of order P from S ; let t ~ and let ~ be the preimage of 

i in ~. We consider the subgroup ~ ~ ~ where ~ = ~) ~ (0~. Since the elements O~ and 

0~ are conjugate in ~ ~(0~ (Proposition 12), it follows that the groups ~ -----g~t,~), 

and ~_ has t~he form ~-- ~\~ , are finite [condition 2) of the theorem and Lemma i] 

~ ~, where ~ is an elementary Abelian p-group of order ¢ and ~ ~ ~ ~. By Lena l, 

thee cyclic subgroups of the form (0~L~ , ~ S , are handles of ~p -groups H and," there- 

fore, a subgroup of the form ~ ~(~, ~ , is also a Frobenius group with complement ~ 

From here it follows that ~ = ~ and, thus, t,~ @ ~ . By virtue of Lemmas 2 and 6, ~ 

sub" ~ C~_~]-- and ~ H ' - ~  . Obviously, t h e  complete preimage of the subgroup ~] in ~ i s  a 

group of type (~), having a nontrivial intersection with ~. The obtained contradiction con- 

cludes the proof of the lemma. 

4. Selection of a More Convenient Counterexample 

Let ~ be a subgroup of the second kind from the lower layer of ~ and of the largest 

order in the set of all such subgroups. By Lemma 7, ~ ~ and, by Lemma I, (TJ~, ~I~, 

0J~ E ~ , where T~ --- ~ .  By Lemma 7, there exists in T~/~ a subgroup ~ of the 

second kind. If Y~ is the complete preimage of ~ in T~ , then ~ is a subgroup of the 

second kind in T~ . If T = ~T(~4~ , then (T21~, ~I~/, 0~] ~ ~ (Lemma i). Regarding 

this triple, we proceed in the same way as before. Repeating these reasonings, we construct 

a strictly increasing chain of subgroups of the second kind 

Y < ¥4 < •' .... (3) 

To this there will correspond a decreasing chain of subgroups T >I ~°o. ~ T~,o. such that 

In the chain (3), starting with a certain index rb, the subgroup ~ ~p , where ~l~p is the 
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parameter introduced in Proposition 18, has elements of order pz . Without loss of generality, 

we shall assume that already ~p~has such elements. 

Let E ~-07~ , V=gr(E,~ . By Proposition 12, V----~(~. 

LEMMA 8. Let Q he a subgroup of type (.) and Q < E . Then 5 < %V(Q). 

Proof. Since ~4< Cv(~) and ~ has elements of order pZ it follows, by Proposition 

20, that ~V(Q~ ~ is an infinite group. From here, Lemma i, and the definition of a sub- 

group of type (~) , there follows the assertion of the lemma. 

In view of Lemmas i, 7, 8, V has a subgroup ~ of type (.) in E such that ~ ~ ~ and 

if ~4 is a subgroup of type (.) in E and K~4 ' then ~ 4 = ( ~  ~4~' ~, 

Obviously, (Cv(~ ~(~), 5,~) ~ ~, and each subgroup of type (.) from £V(K~, containing 

~(~ , is a subgroup of the group 5~(K) . Therefore, in the sequel we shall assume that 

is an Abelian group. 

We set 

ql ,, B =sv, = E tK, o,v,. 

We shall need the following: 

Remark. If $ is finite [~]-invariant ~-subgroup from ~ E I H 4, 

then 5 < ~ 

The proof of this assertion follows from the definition of the subgroup K and from 

Lemma 8. 

LEMMA 9. The triple (~,~, ~4~ lies in ~ ; moreover, any subgroup of type (.) from 

H~ E 4 belongs to ~ and C,G(Oj4) < H 4. 

Proof. If ~G;041~ ~ H4 , then, in view of the remark and Lemma i, the assertion of the 

le~%ma holds .  Let CCT~0J4~ $ ' ~ .  We set ~ ~-~&; , (.O~')i"l' ,, ~4 = ~c,~Cb4~ . Obviously, I%: X,I < O0 

i = ~ n % 1 +  t , and I%" ¢,Z~L~l < oo . Consequent ly ,  by Dietzmann's  lemma (see  Sec. 1 ) ,  

the closure ~ of the subgroup /'4 in ~4 is finite. In view of the selection of the sub- 

group ~ and Proposition 26, in the complete preimage of the subgroup 0~ in ~/~ , any of 

its p'-subgroupscentralizes the element ~. From here and from condition 4) of the theorem, 

~I But 0~(~ <~ ~ and thus ~ < H4 in spite of the as- there follows that ~ ~0P(5)I 

sumption. Consequently, 0~(5)~-4 and S is a finite (~4~-invariant p-subgroup from E~ and 

L~ < S If P =~4~5 , then, in view of the normalization_ condition in ~ [3, Theorem 

16.2.2], we have N~[P~ $H4 and, according to the remark, P < ~ and L1= ~) . If, however, 

=~ , then by similar considerations, /,4 = S and N~!/.4~ ~ H4, 

~t ~ %Z " Obviously, ~ 9 ~ZI~Z: X,I < OO ~ ~//, [~ W., where /, is the complete prejudge 
' --J Z 

of E z in % . If regarding the triple ( ' H Z ~Z) and the pair (~,,~Z~ we reason in 

the same way as in the consideration of the triple k~,~1,0J~ and the pair (~,~, then we 

can show that ~ ~ % . Returning to the complete preimages in ~ , we obtain %=- 
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N~(~E~ i .  Repeating these arguments, we construct a strictly increasing chain of (O~-in- 

variant finite subgroups of the group 

such that 

=/,0 < g~< gz< . . .  z .  L~< ... (4) 

By Proposition 13, the complete preimage of the subgroups ~ in ~ are contained in 

~ and, since l~i: ~41 ~ OO , where ~1=~G~0v~ ~ ~4' it follows that, without loss of 

generality, one can assume that each subgroup ~ ~ = ~.~ ~ contains an element ~---- 

~/z~ , where ~E2, ~/~KX~----~t(~21), ~is some element, independent of the index /g, 

from ~ \)(I ' /~=I'2~ .... 

By the definition of the subgroups ~a we have 

4 ,  = = . ~ , :z = , / , Z ,  .... 

Since gr(d~,~_ I~ < 2 and B is an Abelian group, it follows that 

If Z is the union of the chain (4), then from (5) and from the inclusions Z ~  , fI={,~ ..o, 

there follows that ~ •~</~: . Consequently, in ~fl~ ~ there exists an infinite C~1)- 

invariant subgroup ~. From here, passing to the preimages in the group ~ and making use of 

Lemma i, it is easy to show that 2~--2 and ~ E~! in spite of the ass=ption. The ob- 

tained contradiction concludes the proof of the lemma. 

In the following lemma we record a more suitable selection for a counterexample. 

LEMMA i0. If the theorem does not hold, then there exists a group ~ without involution 

possessing an infinite, complete, Abelian ~-subgroup ~ and an element d~ of order ~, such 

that the following statements hold: 

l) (£Aa)~; 

3) if P i~ a subgroup of type C,,> from ~), ~hen P<S and (N~CP), B,a)E.~'. 

C a/p , op) z ; 
4) if R is a finite ((2) -invariant subgroup of the second kind and R ~ T , where 

is a finite subgroup from ~ and ~/~ is a ~t-group, then ~ ) ;  

5) if ~ is a finite subgroup from ~, then the intersection ~ (~) ~ ~ is infinite; 

6) C~ (a) < N .  

Proof. The statements 1)-3) and 6) have been proved above (see Sec. 4). We prove 4). 

In fact, the group ~ is a section of the group ~! , introduced above. If S and ~ are the 

complete preimages of the groups R and T, respectively, in V! , then $ is an Abelian 

Sylow ~-subgroup in ~ and, in view of the definition of the subgroup Y and the conditions 

y<yf~<~ , the lower layer of the subgroup $ is contained in Z(~ . But then, ac- 
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cording to Proposition 24, ~--S x ~! , where ~ is a n'-group. Obviously, from here there 

follows the validity of the statement 4). Statement 5) follows from the definition of the 

group ~ and from Propositions 20 and 24. The lemma is proved. 

5. Structure of Subgroups of Type ~=gr(~21~2#),~\U 

By condition 2) of the fundamental theorem, the subgroups L$ are finite and solvable 

(Proposition 3). In the sequel, in the consideration of the subgroups L$ one assumes that 

~ e G"H. 

LEMMA ii. For ~ the following statements hold: 

i) if P is a finitep-subgroup of the group & and ~z~P , then P<H~ 

2) if ~Z~H , then 92~ and ~(~) ~H. 

Proof. By Lemma i0, ~=~ /k {~), where ~ <E and ~=~nm if (a)#/7 , then 

4~/ [statement 6) of epmma I0 and Theorem 16.2.3 of [3]]. We assume that ~P2 ~" 

Since ~ is an (=)-invariant subgroup and ~=/~ I~)O~ ~/ [3, Theorem 16.2.2], it 

follows that ~ is a subgroup of type (,) and, by eemma i0, 4 =~ Again by een~na i0, 

[~G(4)/~2 ' ~/~2 '(g~>t ~ and in the subgroup ~A(~2) , where ~ = ~/~, the inter- 

section ~-(Q~)f]~ ----~. is different from ~ (Theorem 16.2.3 from [3]). From here and 
~ __ 

from Lemma i0 it follows that ~4<(~ O~&(~2))/~ 2. Returning to the complete preimages, we 

obtain that ~7 <~ , where ~ is the complete preimage of ~ in ~ and % ~  , which 

contradicts the definition of the subgroup ~ . Consequently, ~<~ and statement i) is 

proved• As far as statement 2) is concerned, in fact, it has already been proved (see the 

corresponding assertion from Lemma 6). 

LEMMA 12. Let ~ be a Sylow p-subgroup of the group ~ , containing the element LZ. 

Then : 

i) ~ = ~ppI~) is the kernel of the Frobenius groups ~ ~(~) and ~ )% ~Q~; 

2) __ ~_ __~'=/Z" 9 /~ D and ,~ < // 

3) ~,/Z7 - - / ~ # = ~ n ~ )  iS an elementary Abelian group of order ~p2 

Proof. Since ~ ~ H , by Lemma Ii we have ~¢ ~/ and ~ ~ /~ and, as mentioned 

above, ~ is a finite solvable group. From here and from Lermna 2 there follows statement 4). 

We show that the case ~9 < ~ is not possible. Let ~ be an ~a) -invariant Sylow p-sub- 

group of the group 0, "(~ ) By eemma Ii, ~ <~ From here, in view of ~. ~// , we 
• obtaln 0p~ IL~) ~ . Then, ~ =  0. ,  (~_) /~  (~,) (Frattini s lemma; see Sec. i )  and 

L / "  , ~ ~o;= ~ ~. 
~/I • Consequently, /~/~ (4~J ~{,/'/ 
By Lemma i0 we have ~ :- ~7/'~ E ~' /~/Z., I~l and, therefore, ~, is a subgroup of type (~) 

for ~,~/ and, by Lemma i0, ~ • If we would have ~ = ~  , then on the basis of 

Lemma i0 [see statement 5) in it] and the definition of the subgroups ~ (~9) we would con- 

clude that ~--- ~)(~). Since, according to what has been proved above, Oot.~(~n) </4, 
rr _# 

we would also have ~ (c I/ , which is not possible. Consequently, ~,~ ~ and IV : 011=p. 
a, o ,n taro. in v,ew the weob ain 

which, as mentioned above, leads to a contradiction with the assumption ~ ~ ~ . 
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Consequently, S '~'/~/ " We show that S ~ .  By Lemma 2, S ~  (~) ~ . 

Let ~ be a Sylow ((2) -invariant p -subgroup from ~L~ ~)(l ~ --- ~ . By eemma ii, ~ < 

and since ~ ~ ~/ , it follows that ~ is a subgroup of type ~.~) for ~/ . By Lemma I0, 

~<~ But ~ < ~ and thus ~---~ . From here and from the Abelian property of the 

group ~ there follows that ~ is a Sylow subgroup in ~ (~J 

By Lemma 2, ~_~ (W)=~z (~)X ~ and since ~ I~) is automorphically admisslble 

We introduce the notations: 

w o e, 5,     oo,,onoo o  S  nE. X ° ooon - 
dry Abelian subgroup of the group ~ (~) . We consider separately two cases. 

l) t X l z p  2 . By Proposition 5, 

The complete preimage of any cyclic subgroup (~) , g~EX ~, is an [~-invariant p-subgroup 

of the group ~ and, as follows from Lemma i0 and the condition ~ ~ S~ , it is not a sub- 

group of type (~). But then, obviously, from (6) we obtain ~ ~H , in spite of the above- 

proved relation ~ ~H. Consequently, one has the second case: 

2) IXt~p If  X-----' , then S~ = ~ and, obviously,~=~A(~. Making use of 

Lemma 3 [see statement i) in it] and taking into account that the group Z~ is generated by 

two elements of order ~ , it is easy to show that it has the Frobenius property with kernel 

Obviously, from here it follows that ~ A (~)and ~ j~(~ are Frobenius groups with 

kernel ~ . 

Let IXl=~. We consider in ~ the subgroup A=I~)~ (~, where (~)=X . We show 

that ~(ZI~n). Obviously, ~EZ(~)- If C~.(A~ ~, then, in view of the nilpotency 

of the group ~ in ~ ~) ~(~), there exists an element ~ such that ~ =~Z . From 

here we obtain that all elements of the form ~P , F~ <~ , are conjugate with ~. If 

is the nilpotent radical of the subgroup ~q , then, in view of Lemma 3 and the condition 

~ , the subgroups ~ ~ and ~ ~ (~, ~EL~, are Frobenius groups. By Proposi- 

tion 4, in A there exists an elemen~t C#/ such that ~ ( o J n ~  / , where ~-- ~ / ~  . 

If for some ~! we would have C E gr (~Z/~t) , then, obviously, the subgroups ~A~j would 

not be Frobenius groups for each ~ , in spite of what has been proved above. Consequent- 

ly, O~(~) and, moreover, ~ <~((~) . However, the last inclusion would contradict the 

condition ~ ~ ~ since the complete prejudge of the subgroup (~) in ~ would be a subgroup 

of type (~) , not belonging to ~, in spite of Lemma i0. Consequently, ~ (~=~ and 

(ZE~ (~2 " But then ~ is a cyclic group (Proposition 9) and, obviously, ~--S ~ ~' 

where ~. is an elementary Abelian group of order ~g. From here, from Lemma 3, and- from" the 

fact that the group ~ is generated by the elements ~,~ , there follows that ~)~ (a), 

~(~J are Frobenius groups with complementary sets (=) , (Q.~) . All the statements of 

the lemma are proved. 
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LEMMA 13. Let A be a subgroup of type A=(z),~(6g), where ~ is an element of order p 

from ~ ,~=Z~ZZ . If C~(J) ~ H, then the intersection C~ (d) (] B is finite. 

Proof. We assume that ~(~)~ ~ is infinite. By Lemma l, (~&(~),$,~Z) E ~ where S 

is the complete part of the intersection C~(~)~ ~ But then ~ < C~(~) . on the other 

hand, by Lemma I0 [see statement 5) in it], ~ I~ ~') is infinite. Consequently, J~--~f] 

%(~)~]~&(~) is infinite, and ~<C&(G). which is not possible. The obtained contradiction 

proves the lemma. 

LEMMA 14. Let d be the element from Lemma 13, and let ~=~(]~G (~) Then ~ 

Qcs>. 
Proof. Let ~----C~(d), V=rnt/, X=#r(R). Assume f i r s t  that 17-" X i <  °°. By Dietz- 

mann's lemma (see Sec. i), the closure U of the subgroup ~ in T is finite. Since U is 

generated by some subgroups, conjugate with ~ in ~, on the basis of Lemmas i and 2 we con- 

elude that ~ (~)<Z (U) . From here it follows that if ~ is a Sylow p-subgroup of the 

group @~ (U) , then ~<2 U~ T. Obviously, U < ~ and, in view of eemma ii, we have 

<~ By Lemma i0 [see statement 3) in it] we have ~ <~ and ~=~, From here and 

from the definition of the subgroup U there follows that ~=~. But then ,~ ~ X Now 

it is clear that if F~<~ , where ~ is a finite subgroup of the group ~ and 7-< A]~(Y), 

then /~ ~ CG (c(). 

We assume that ~ ~ X. Then one can assume that AIr (~,J<~X for each nontrivial (a)- 

invariant subgroup ~# of the group ~. Indeed, this can be easily proved taking into ac- 

count the beginning of the proof, the second statement of Proposition 13, and the fourth 

statement of Lemma I0. 

Now we consider the situation in ~(~)/(d) , For the sake of the simplicity of the 

reasoning, we preserve the same notations. By Lemma ii, CT(~ ) < ~. First we probe that 

~EX~6X (~6T) The implication 6g~V==~EV<~X is true by virtue of Lemma Ii. We 

assume that ~T-X and ~Z{~. We consider the subgroup ~=gr (Q,61~) • Since V~<X 

a~d , by condition 2) of the theorem, the Kroup L~ is finite. Taking into 

account that T = %(d)/ (d)  , with the aid of Lemma 12 we obtain that Z~----(O/~,(Z~)X 8:)A(~2), 
where 8~R. For some element ~6~ we have d~6S~)%(a) and, by Lemma Ii, ~----~ • 

From here, ~--Z~ "¢ . But V~X and ~-fEX and, therefore, ~EX, in spite of the assump- 

tion. Thus, if g~e~-X, then Z ~ .  If for some element ~T~,X we would have $g ~/, 

then, in view of the above-made remark regarding the nontrivia] (~) -invariant subgroups 

from ~, we would obtain Z c <~2. (Sg) ~-<~ , which is not possible. Consequently, for any 

g~T\X the group ~ is a FrobenJus ~roup with complement (a) - By Proposition 15, T ~- 

~" A~ r (61) , where ~A(~) is a Frobenius group with complement (~Z) 

Since ~< ~r(O~) and the elements ~Z and ~Z for ~£~ are conjugate in ~ (more exact- 

]y, some of their preimages ~n ~&(d)), it follows that the subgroups ~=gr (Z~Z,~Z~) are 

finite for ~E~,X~ . Let S be some element from ~ and ]et ~ be some element from 

~x~(]~ r By Lemmas I and 12, ~ =gr ($~,(2~)=(@,,(~) ~ )  A (S~) , where R~<~ 

and R~-7~/ According to what has been proved above we have X and thus, W~ 

But, as mentioned above, ~r (~)~<X and, sinc~ ~ W< ~r(R~)~X (this can be seen from the 
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above-indicated structure of the subgroup ~ ), we obtain a contradiction with the relation 

~ X • The lemma is proved. 

LEMMA 15. For each ~E~\~ , the group ~, has the form ~= (~p! (~) x 7~ ) ~ (6Z), 
where ~ is a subgroup from ~. 

Proof. We assume that for some C~"~ the subgroup LC does not have the form in- 

dicated in the lemma. By Lemma 12, ~&~ ~C and in ~C/~C the Sylow ~-subgroup is an 

elementary Abelian subgroup of order ~2. By Lemma ]0, (14/G(Rc)/Rc, ~/Rc,(2/~C)~ and, 

therefore, without loss of ~ener~l~ty, we c~,n a:~:~ume that already ~C =~AA , where 

Furthermore, A <~, F ~ /'/ , and F is ni L : , o t e n t  a s  the kernel of a Frobenius group (Prop- 

osition 25). From here, making use of Proposition 4 and of the normalizer condition in 

[3, Theorem 16.2.2], we prove the existence in A ,~f an element ~ / such that ~&{~)fl~ 

Obviously, ~1=~f1~& (~)~/, By virtue of eemmas 13 and 14, ~! is a finite group and 

~G(~) ( C ~ ( ~  I) By Lemma i0, 

, 

and in ~=~(~I)/~ all the conditions of Lemmas 13 and 14 regarding the element d~ 1 are 

preserved, i.e., ~/~ =~/~I~]Cw(~)~.~ and ~2/~I is a finite group; moreover, ~/(~I) ~ 

~/~, By Lemma 14, ~Z/~4~~) and.since ~(~)~/~! < ~(~! ) , we have 

(~) < ~ (~z) where ~ is the complete preimage of the subgroup ~z/~! in ~. Regarding 

the quotient group I~(~2)/R 2 we proceed as before. Repeating these reasonings, we construct 

in ~ a strictly increasing chain of finite {(2) -invariant subgroups 

R, < R , < . . .  < . . .  <7) 

such that C~ (~)<~& ( ~ ) ,  /?=/.2, . . .  i f  ~ is the union of the chain (7), then CG(~ ) < 
(~) But then, by Lemma i, ~(~)~ and, consequently, ~(~) < ~ , in spite of the 

assumption. The lemma is proved. 

6. Conclusion of the Proof of the Fundamental Theorem 

LEMMA 16. Let ~ be an ~-real element from ~ . Then, without loss of generality, 

one can assume that the subgroups ~ =gr /~, a~C), ~E~, are finite Frobenius groups with 

complement (~). 

Proof. By Lemma 15, 

where Op/(~)X (a) is a Frobenius group with complement (~) and S~ <~ • We show that 

b~/~/G(S~.) Since ~ ~ ~CZ) is a Sylow ~-subgroup of the group ~, it follows, by eemma 

I0, that ~ ~ and in ~pt(~) there exists an element C such that a~c'L ~ , where 

~ES~ ~ ~ . By Proposition 12, for some element ~E~ we have ~=a ~ and ~¢-~ (7( 

From here, ~&'~'/-YE~(d)<~ (Lemma i0)or ~=~C, ~-/~=~-Z~ C . Since ~'~{E~, 

~@~, C6 C~ (~) and ~ is an Abelian group, we have ~'ISEC~ (%) and, in addition, 

aEl~&(S~) . From here we obtain that a,Z'~E~&(~) But then 
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(Proposition 22). Consequently, dE A/6. (S#). 
Thus, we have proved that if in the set of the subgroups of type ~ , ~6~ , there 

exists at least one subgroup which is not a Frobenius group, then ~ has a subgroup S I of 

the second kind, normalized by the element ~ , i.e., ~E~&(S) = ~;. The triple I~, ~,/Sf, 

~$I# lies in ~ (Lemma i0), where gf= ~I/$I . Applying to this triple reasonings sim- 

ilar to the previous ones, we show that either in ~; all the subgroups are of the type ~ = 

gr (~,~t~) , where ~E~/~ ,~=a~l, ~=~I, is a Frobenius group with complement (~--) , or 

~/~1 has a subgroup ~2/~! ~ S! of the second kind, normalized by the element ~, where ~2 

is the complete preimage ~/~7 in ~, Reasoning in this manner, we construct a strictly 

increasing chain of subgroups of the second kind 

$t < ~Z < ' ' ' ~  ~ < ' ' '  (8) 
SO that &~G (2it)' /Z=/,2, ... If the chain (8) would not terminate at a finite index, 

then its union S would be infinite and ~6~ IS) • But then by Lemma 1 we would obtain 

dE/~ (S) ~ H , which is not possible. Consequently, the chain (8) terminates at the fin- 

ite index /Z and for the triple (A/~ (S/z)/Slz , ~/~jz,a~ ) £.~" the assertion of the lemma 
holds. The lemma is proved. 

In the sequel we assume that for the triple ~,~,a)~ ~ the assertion of Lemma 16 

holds, i.e., for some ~-real element d6~x~ and any element {£~ , the subgroups 

~ s gr (O,a ~) are finite Frobenius groups with complement (~Z). 

LEMMA 17. Let ~ be an element in 2. Then ~= ~, where ~ ~ (gl) ~ ~ , ~ is an 

cz-real element in E'~. 

Proof. By Lames 16, Z~ = gr (~,~ff) is a Frobenius group with complement (~2) : Z~ = 

)% (a) In view of Proposition 16 and Lemma i0, there exists in ~# an element C such 

that ~Z~"= = . From here we obtain that ~C-{=Z6~ {a) < /7/ (Lerm~a I0) and ~d=~, 

and since ~g, CE~ , we have ~£m . 

We consider the equality 

a~dcz = a r e a .  (9) 

Obviously, at ~Z#E// and ~ , ~ are conjugate in /{ (Proposition 12). The elements ~5 

and ~ are also conjugate in ~ since they are contained in the Frobenius group (d?,ff) 

with complement ~2) and kernel containing the element ~ (Proposition 16). In addition, 

~a¢// and, in view of condition 2) of the fundamental theorem and of Lena 15, 

~= gr (02J, ff(2) -~ ~ ~(da), 

where ~=Op,(~) ~ 5 and S <~. 

From (9) it is clear that ~ L  Since ~Z~/ and ~.Ce[ , we have, obviously, 

aZC~ ~ From here and from LZ~.Ca~ there fo]lows that ~Z~4~ eL ~-~ But all the 

elements from ~ "-~ are conjugate with some elements from {~2) # . In this case, by condi- 

tion 2) of the theorem, the subgroup Z=gr(a,aZC~2) is finite and Z ~  , while gr (O, ~C) ----- 
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. But then ~gr(~,~5--gr(~,~¢~ =gr(~,C) (Proposition 22) and ~eZ. Since ~e~, 

making use of Lemma 15 regarding Z, we obtain that ~E ~ . The lemma is proved. 

We proceed directly to the proof of the fundamental theorem. If the theorem were not 

true, then all the preceding lemmas were true and, in particular, by virtue of Lemmas 16 and 

17, E"-~) would contain an a-real element ~ such that 

where ~ e~ C~ (a), C~ iS an ~-real element from ~'-~. We multiply Eq. (i0) on 

the right by the element = and we consider the subgroup ~=gr(~=, ~a) . From (i0) it 

is clear that ~I~E~ and X~ =gr(~/~)~=). Since (~,~)=~X (=) is a Frobenius group 

with kernel ]~ and ~E ~ , it follows that ~ and ~a are conjugate through some element 

from ~ (Proposition 16): ~2~=~ The triple ( ~  ~D) lies in ~ and all the pre- 

ceding lemmas hold for it (Lemma i). We show that ~<~, where ~ = ~gr~a,a~). 
g~g 

We assume that for some element L/E~ one has the relation Xg ~ ~ since the sub- 

group X~z is generated by two elements ~, ~ , conjugate with certain elements from (~)~ 

by condition 2) of the theorem, and in view of the assumption that ~a~//~ , the group Xg 

has the form 

s.,) 
where S U < ~ (Le=a 15). But ~'LZ ~X~z O~ and, therefore, Z~'~S~/ and, in addition, 

X~ = gr ~Zu/~, ~a) From here it follows that X~ is a finite ~-group, containing the 

element ~a and, by Lemma ii, ~ <~/~ , in spite of the assumption. Consequently, 

~gE gr(Cta,~a ) <//a~ forany o~E,~. (ll) 

In view of Proposition 12, [~#I~ and, therefore, ~P~X~ < ~ . But ~ and from 

(Ii) there follows that ~,= ~r/. On the basis of the last inclusion and the definition of 

an ~p-group, we conclude that ~ __~d and ~E~ G (~)=~ . But then ~ , in spite 

of the assumption. The obtained contradiction concludes the proof of the theorem. 

COROLLARY. Let ~ be a group without involution; let ~ be an infinite complete Abelian 

-subgroup; let ~ be an element of order ~ of the group ~ ; let ~ be a subgroup from 

~f]~(~)of, finite index in ~4{~). assume that the triple (~,~/~(~))~) satisfies the 

conditions 2)-4) of the fundamental theorem; and let ~/----/~(~) be an /~-group with kernel 

and handle (~) . Then ~(~)~ 

Proof. We denote 7"=N~{V),H~=]-I~7- . It is easy to show that ~ is an ~-group with 

handle (~) and kernel ~, while /~)'4 and, in view of Propositions 12 and 13, the 

triple ~7/V, hl~/V)~V) satisfies, obviously, all the conditions of the fundamental theorem. 

But then T/~ = ~/~ and ~'--~ The corollary is proved. 

We note that condition 2) in the fundamental theorem can be relaxed to the following 

one: the subgroups gr ~,=~),~ ~',~, are finite if ~ is nonempty and any finite 

subgroup, containing gr ~,~), is a ~-solvable group (~=,~ having no sections of type 

~ ~) . Such a group ~ may have involutions. As a matter of fact, taking into account this 
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remark, we have characterized the ~ -groups with ~-finite handles (~m~) in the class of 

all infinite groups. 

7. An Application of the Fundamental Theorem 

LEMMA 18. Let ~ be a group and let ~ be an almost regular element of prime order 

in ~, satisfying the condition: 

aU the subgroups gr (a, a O ,  ~E  &, are fimte. (12) 

Then one of  the  fo l lowing  s t a t emen t s  ho lds :  

i) the Sylow~-subgroups in ~, containing the element ~Z, are finite and conjugate 

among themselves, and the number of such subgroups, is finite; 

2) ~ has an infinite, {a) -invariant, complete, Abelian ~-subgroup. 

Proof. Let 

~,~2,''',~ ,''" (13) 

be an infinite sequence of distinct finite ~-subgroups and let ~E~, ~=~ .... Since 

~& (~) is finite and Z(~)~(a),~=~ .... it follows that the sequence (13) has an in- 

finite subsequence 

such that 

~I= Z(~I)---~(~2)="°=~(~&'~)---"' and Z 7 ~ /, 

We consider GI=~ ~ (Zl). In g1=~/~ the number of subgroups of type P~z/Z I is 

infinite, ~ ~ ~_&~/Z! and, obviously, C~, (=~) is finite and, therefore, as shown above, 

there exists in ~ a flnite ~-subgroup ~Z~ such that L2Z IE ~ (~) and the number 

of finite ~-subgroups containing the element =~! is infinite. If '~, ~ are the com- 

plete preimages of the subgroups ~ (Z2)' Z--~ in ~ then ~=NG ~ ~ Z2). Regarding ~z/Z2 

we proceed similarly to the previous case. Reasoning in this way, we construct a strictly 

increasing chain of finite ~-subgroups 

z, , 

which does not terminate at a finite index and ~ 6 ~& (Za), /I={,2, .... If Z is the union 

of the chain (14), then ~ is an infinite, locally finite /~-subgroup and =E ~& (Z). Ob- 

viously, ~ = ~" (~) is also an infinite, locally finite group. From here, based on Proposi- 

tion 27 and on the finiteness of the centralizer ~ {~) , it is easy to show that ~ has an 

infinite, (a)-invariant, complete, Abelian subgroup. 

Assume now that ~ does not have an infinite set of finite ~-subgroups, containing the 

element ~. We show that, in this case, the assertion i) of the lemma holds. We assume that 

some Sylow ~-subgroup ~ from ~, containing the element &5, is infinite. Since ~$(~) is 

finite and ~ is infinite, it follows that the set of elements of the form ~ , ~£ ~ , is 

infinite. But then the set of finite ~-subgroups of the form (O,O ~) .~$ , is infinite 
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[condition (12)], in spite of the assumption regarding the finiteness of the set of such sub- 

groups. Consequently, the Sylow p-subgroups containing the element ~ are finite, and their 

number is finite. Let ~ be the set of such subgroups, and assume that for some pair ~ 

R~ ~ , the subgroups "S and ~ are not conjugate in ~ and, from all the subgroups from 

, not conjugate with S in G, the intersection ~=SnR has the largest order for R. 

We consider V=~/G~. Since aE'~ , it follows that V is a finite group. We denote 

~nV, /~I=~NV In view of the normalizer condition in ~ and ~ [3, Theorem 16.2.2], 

we have ~ ,~I ~ , and ~=~iO~ If ~2,R2 are Svlow ~-subgroups from V and 

~ 2  , ~1 ~2, then, by Sylow's theorem, S 2 and R2 are conjugate in V , i.e., for 

some element ~ V  we have ~Z=~ . But then ~ K  ~1 < / ~  and ] ~ : ~  . By virtue of 

the definition of the subgroup ~ , we obtain Z=~ since Z ~ ¢ > ~  and S~=~,~ . 
t 

On the other hand, ~ < ~  <~ = ~ and ~ .  Consequently, ~ ~ ~ ~f > =~ and, 

again, in view of the definition of the subgroup ~, we obtain that ~@= ~ , which contra- 

dicts the assumption on the nonconjugacy of ~ and ~ in ~ . The obtained contradiction 

means that the subgroups from ~ are conjugate in ~. The lemma is proved. 

THEOREM. Let ~ be a group without involution; let a be an element of prime order~ 

in ~ with centralizer ~(a) , which is a finite ~-subgroup satisfying condition (12). 

Then ~ has a complete, Abelian, normal ~-subgroup ~ such that, in ~/~ , the Sylow ~- 

subgroups containing the element ~ are finite and conjugate and their number is finite. 

Proof. If in ~ every Sylow p -subgroup, containing ~, is finite, then, in view of 

Lemma 18, the assertion of the theorem holds and, in this case, ~=/. Assume that the ele- 

ment ~ is contained in an infinite ~-subgroup. By Lemma 18, ~ has an infinite, (~) -in- 

variant, complete, Abelian ~-subgroup. By Zorn's lemma, in the set of such subgroups we 

select as ~ a maximal subgroup and we consider ~=~G (~) " Since a6~ , it follows that 

condition (12) holds in H=~/~ (for the element ~=~) and, in view of Proposition 13, 

the centralizer ~(~) is finite. If ~ would have an infinite, (a) -invariant, complete, 

Abelian ~-subgroup V , then, in view of Proposition 27 and Theorem 21.1.4 of [3], its com- 

plete preimage ~ in ~ would be an (Q) -invariant, complete, Abelian ~-subgroup such that 

~V and ~ V , but this is not possible in view of the selection of ~ as a maximal (a] 

in variant, complete, Abelian ~-subgroup. Consequently, statement i) of Lemma 18 holds for 

and the element ~. From here and from the finiteness of the centralizer ~G(~) there 

follows, obviously, that the triple (~,(~)) satisfies the conditions of the fundamental 

theorem and, by this theorem, ~ ~ Th~ theorem is proved. 

Example I0. In the last theorem, condition (12) is essential. Indeed, this can easily 

be seen in the example of the free product of an infinite Chernikov ~-group, possessing an 

almost regular element of order ~(~#2~ , and some nontrivial periodic group without in- 

volution. If, however, one takes the periodic product of the mentioned groups, then we ob- 

tain an example of a periodic group without involution in which all the conditions of the 

theorem hold with the exception of condition (12), while the assertion of the theorem does 

not hold for such a group. 
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