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Abstract 

In this paper we describe the algorithm OIrI'CON which has been developed for the 
optimal control of nonlinear stochastic models. It can be applied to obtain approximate 
numerical solutions of control problems where the objective function is quadratic and the 
dynamic system is nonlinear. In addition to the usual additive uncertainty, some or all of 
the parameters of the model may be stochastic variables. The optimal values of the control 
variables are computed in an iterative fashion: First, the time-invariant nonlinear system 
is linearized around a reference path and approximated by a time-varying linear system. 
Second, this new problem is solved by applying Bellman's principle of optimality. The 
resulting feedback equations are used to project expected optimal state and control variables. 
These projections then serve as a new reference path, and the two steps are repeated until 
convergence is reached. The algorithm has been implemented in the statistical programming 
system GAUSS. We derive some mathematical results needed for the algorithm and give 
an overview of the structure of OFFCON. Moreover, we report on some tentative applications 
of OPTCON to two small macroeconometric models for Austria. 

Keywords: Optimal control, stochastic control, dynamic systems, nonlinear systems, 
control algorithm, optimal economic policies. 

1. Introduction 

During the last twenty years it has been increasingly recognized that many 
economic problems can be viewed as involving the optimization of an intertemporal 
objective function by a decision-maker who is constrained by a dynamic system 
subject to various kinds of uncertainties. Such problems arise both on the level of 
the individual firm, necessitating extensions of operations research and management 
science to methods of dynamic optimization under uncertainty [14], as well as on 
the level of policy-making for a national economy [6]. Stochastic optimum control 
theory has proved to provide a powerful methodology to deal with such problems; 
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see, e.g. [11]. Although the basic developments of  stochastic optimum control 
theory started in the mathematics and engineering literature, economists have also 
contributed to the analytical and numerical solution of stochastic dynamic optimization 
problems, such as [1-3,5] .  

Since stochastic optimum control problems are usually rather complex, for 
most models (in particular multivariable ones) only numerical solutions under some 
simplifying assumptions can be obtained for particular values of the parameters. 
Even then, in most cases only approximations to the true optimum solution can be 
found at present. This points to the importance of deriving algorithms for stochastic 
optimum control problems which can be directly applied to given models of the 
firm or the economy. Although several algorithms for the optimum control of  
stochastic dynamic economic systems have already been published, they either 
allow for additive uncertainty only [3], or rule out nonlinear system equations 
[7, 9,13], or have not been implemented for actual calculations [5, ch. 9]. Thus, 
there is a need for further algorithmic developments. 

In the present paper we report on a new algorithm for the optimum control 
of nonlinear dynamic models that allows for additive uncertainty as well as for the 
presence of a stochastic parameter vector in the system equations, to be called 
OPTCON. The plan of the paper is as follows: In section 2 we state a fairly general 
class of optimum control problems to which the algorithm OPTCON can be applied. 
Section 3 introduces some mathematical ingredients and simplifying devices used 
in the algorithm. In section 4 the main theorem upon which the algorithm is based 
is proved, and the structure of OPTCON is summarized. In its present version, 
OPTCON is limited by two simplifications which prevent the solutions obtained to 
be truly optimal: First, computations of approximately optimal policies are obtained 
by applying repeated linearizations to the given nonlinear economic model. Second, 
we exclude any learning about the system parameters. Whereas the first device 
seems inevitable given the inherent complexities and varieties of general nonlinear 
models, the second one may be relaxed in a later stage of research. Section 5 reports 
on some applications of the algorithm performed to ensure its feasibility. Although 
we confine ourselves to a brief discussion of the results for two small macroeconometric 
models for Austria, the scope of problems to be solved by OPTCON is much 
broader and includes models of the firm and non-economic applications as well. 
Finally, section 6 provides some concluding remarks and indicates directions for 
further extensions of algorithmic developments. A GAUSS implementation of  the 
algorithm exists which can be obtained on request from the author mentioned first. 

2. The optimum control problem 

OPTCON can deliver approximate solutions to stochastic optimum control 
problems with a quadratic objective function and a nonlinear multivariable dynamic 
model in discrete time under additive and parameter uncertainties. Thus, we consider 
an intertemporal objective function which is additive in time and can be written as 
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T 

L = ~.~ L t (x t , u t ), (1) 
t=S 

Lt(xt'ut)=E',,ut at ut fit" 

x t denotes an n-dimensional vector of  state variables, summarizing the information 
available about the system, ut denotes an m-dimensional vector of  control variables. 
The n-dimensional vector i t and the m-dimensional vector fit denote the given 
"ideal" levels of  the state and control variables, respectively. S denotes the initial 
and T the terminal period of the finite planning horizon. 

The matrix W t is defined as 

__ w: , ,?  
w, L w y  w u,,), t = s  ..... r ,  ca) 

where W~', W~", W~,  and W~'", are (n × n), (n x m), (m x n), and (m × m) matrices, 
respectively. Furthermore, we require 

W t = a t -  1W, t = S ... . .  T, (4) 

where W is a matrix. Without loss of generality it is assumed that W is symmetric, 
which entails that 

wx"= [w~]  '. (5) 

It is easy to see that with 

w,(::l ,6, 
w;') 

l ( i t  i t  

(2) can equivalently be written as 

t 

w,(X, 1 c, (x,, u, ) = 2 ~,u,) ut 

t 

+ u ,  ~,w~ + 
(8) 

The "quadratic tracking form" (2) of the objective function is very common in 
economic-policy applications of  stochastic control theory. It can be interpreted to 
require deviations of the state variables xt and the control variables ut from their 
"ideal" levels ~t and fit, respectively, to be punished. The "general quadratic form" (8), 
however, simplifies notation and computation. 
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The dynamic system, which may be an econometric model of  an economy or 
of a firm, is assumed to be given by the system of nonlinear difference equations 

X t = f ( X t _ l , X t , U t , O ,  Z t ) + E  t, t = S  . . . . .  T,  (9) 

where 0 denotes a p-dimensional vector of  unknown parameters, z t denotes an 
/-dimensional vector of non-controlled exogenous variables, and et is an n-dimensional 
vector of  additive disturbances. 0 and e,, t = S, = . . ,  T, are assumed to be independent 
random vectors with known expectations (0  for 0, 0,, for et, t = S . . . . .  T) and 
covariance matrices (Z oo for 0, X ~ for et, t = S . . . . .  T) .  f is a vector-valued 
function, where the i-th component of  1'(... ) is denoted by f i ( . . .  ), i = 1 . . . . .  n. 

The assumption of  a first-order system of  difference equations in (9) is not 
really restrictive, as higher-order difference equations can be reduced to systems of  
first-order difference equations by suitably redefining variables as new state variables 
and augmenting the state vector. Also, the assumption of  a quadratic objective 
function, although of  a special form, can be interpreted as a second-order Taylor- 
series approximation to a more general objective function. Thus, the class of  problems 
to be solved by our algorithm OPTCON is rather broad. 

3. Elements  o f  the algorithm 

3.1. LINEARIZATION OF THE SYSTEM EQUATIONS 

In most optimum control problems in economics and operations research the 
system dynamics of  the form (9) is a convenient starting point. Usually the structural 
form of  an econometric model can easily be transformed into this form. For deriving 
a control algorithm, however, the state-space representation from control and systems 
theory is more adequate. The latter does not include xt at the right-hand side of  (9). 
Following [2], it is easy to show how one can eliminate this variable in the course 
of  a linearization of  the system. 

o o o o o 

For known values of  xt_l, ut, O, z t , and t~: we can compute a value x t such 
that 

x t f ( i l_ l ,  ° ° o ° = xt ,  ut,  0 ,  z z) + k t (10) 

by straightforward application of a nonlinear equation-solving method such as the 
well-known Gauss-Seide l  approximation algorithm. Then we can linearize the 
system function f ( . . .  ) around these reference values and get the following 
approximative system equations: 

x t = A t x t _ l + B ~ u t + e t + ~ ,  t = S  . . . . .  T, (11) 

where we have defined the (n x n)-matrix At, the (n × m)-matrix Bt, and the n- 
dimensional vectors ct and ~t, respectively, as 

At = (I  n _ Fx ' )-1Fx,_~, (12) 

Bt = (In - F x , ) - l F u ,  (13) 
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c t = i~ - A t xt-I - Bt fit, (14) 

~t = (In - Fx, )-l  et, (15) 

and I n denotes the (n x n) identity matrix. Here and in the following we require that 
the first and second derivatives of the system function with respect to x t_ l, xt, u~, 
and 0 exist and be continuous, and we use the following notation: 

Fx,_~ denotes an (n x n)-matrix the elements of which are defined by 

( ) 8fi(...), i=I ..... n, (16) 
Fx,_l i,/ = ~Xt-l,j j = 1 . . . . .  n. 

Fx, denotes an (n x n)-matrix the elements of which are defined by 

( ) Ofi  ( . . . )  i = 1 . . . . .  n ,  (17) 
Fx, i,j = Oxt,j  ' j = l . . . . .  n.  

Fu, denotes an (n x m)-matrix the elements of which are defined by 

O f i ( . . . )  i = 1 . . . . .  n ,  (18) 
( r u , ) i , j -  Ou,, j  ' j =  l . . . . .  m .  

F o denotes an (n x p)-matrix the elements of which are defined by 

3 f i  ( . . . )  i = 1 . . . . .  n ,  (19) 
( V o ) i , j  = 3 0 j  ' j = 1 . . . . .  p .  

Here x t _ 1j denotes the jth element of x t _ 1, etc, The above notation has been chosen 
to be in accordance with the usual rules of  matrix calculus. It has to be kept in mind 
that all the matrices and vectors defined above are time-dependent functions of the 
reference path along which they have been evaluated. If this path changes the 

matrices will also change. 
Equation (15) implies for the expectation and the covariance matrix of  ~,  

conditional on the information given at t -  1, that: 

E,_x(~, ) = (I  n - Fx, )-I0 n = 0,,, (20) 

cov,_l (~t, ~, ) = (In - Fx, )-1 Xee [(In - Fx, )-1 ],. (21) 

Thus, we have shown how one can approximate the time-invariant nonlinear system 
f ( . . .  ) by time-varying linear system functions. 

3.2 COMPUTATION OF PARAMETER COVARIANCES 

From the previous definitions it is obvious that the matrices At,B t and the vector 
c~ are functions of the random parameter vector 0 and are, therefore, random themselves. 
Of course, both matrices can be written as collections of their column vectors: 
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A ,  = (at ,  1 . . .  a t ,n) ,  t = S . . . . .  T ,  ( 2 2 )  

Bt  = ( b ,  A • . .  b , ,m) ,  t =  S . . . . .  T.  ( 2 3 )  

Each of  these column vectors as well  as ct are functions of  O. While  in general these 
functions will be nonl inear  it is possible to approximate them by l inear  functions 
and thus to write 

at. i = Dat.~0 

bt, i = Db',J O 

c t = D c ,  O 

where D a'.~ ,D b',i, and D e  ̀

i = l  . . . . .  n, t = S  . . . . .  T, (24) 

j = l  . . . . .  m, t = S  . . . . .  T, (25) 

t = S . . . . .  T, (26) 

denote (n x p ) - m a t d c e s  which are defined as follows: 

3at.,i 3at,li ] 
3:01 . 30p 

3a;,.i 3ai , . i  
301 30p 

i = 1 . . . . .  n, 
t = S . . . . .  T, (27) 

Db<i = 

3bt,lj ... 3bt,lj 
301 bop 

3b;,.... 3b;,.j 
301 30p 

j = t  . . . . .  m, 

' t = S  . . . . .  T ,  
(28) 

[ Oct,, ac,,1 ] 

1 o e' 13c, " 34"  
t =  S . . . . .  T. (29) 

For the sake of  future computation,  we reshape these matrices and group them into 
two matrices and one vector: 

D a, = [vec((Da,.1),),.  a,, , ..., . . , vec ( (D  . ) ), vec((Da ' ." ) ' ) ] ,  

D b, =_ [vec((Db, a ) ')  . . . . .  vec((D b',j ) ' )  . . . . .  vec((D b,,'~ ) ' ) ] ,  

d c, _- [ v e c ( ( n  c, ) ' ) ] .  

(30) 

(31) 

(32) 

In order to compute the matrices introduced above, we have to define second 
derivatives of  the vector-valued system functions with respect to vectors. This is 
somewhat  cumbersome;  here we use a notat ion similar  to that introduced in [8]: 
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Fx,_l,o,Fx,.O and Fu,,O denote ( n . p  × n)-matrices which are defined as follows: 

Fxt_l,o -~ 

OXt-l,lO01 

o? 
OXt-l,lOOp 

Of" 
OXt-l,1001 

~f. 
OXt-l,aOOp 

~ f l  

Oxt-I,nO01 
, , ,  

o? 
OXt-l,nOOp 

• . ,  "_ 

Ox~_I,.OO, 
• . °  " 

Ofn . 
Oxt_l,.OOp 

(33) 

Fx,,o is analogous to Fx,_t.o save that all occurrences of x t. 1 are replaced by x r 

F~,,o = 

Of 1 

Out.lOOa 
I 

~fl 
Out.aOOp 

of. 
Out.lO01 

~f. 
OUt,lOOp 

~ f l  

3U~,r.b Ol 
° * *  *- 

b Ut,mb O p 
• , ,  ), 

~f. 
bu,,,,,301 

, , ,  

Of" 
OUt,rnOO p 

(34) 

We are now in a position to state the following result, which is needed for the 
approximate computation of the covariances and expectations of the parameters of  
the linearized system: 

THEOREM 1 

The matrices introduced above can be evaluated as follows: 

D A' = [(In - F x , )  -1 ®Ip][Fx,.oAt + Fx,_l,o], 

D B' = [ ( I .  - Fx, )-1 ® Ip ][Fx,,oB, + Fu,,o ], 

d ¢, vec[((I _Fx, ) - IFo) ' ] -DA,~t_I -DB,  ° a t . 

(35) 

(36) 

(37) 
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P r o o f  

See appendix 1. 

Thus, we have found a way to compute the linear approximations (24) - (26)  
and can evaluate the covariances of the parameters of the linearized system equations: 

covt-i (at , i ,  at,k ) = D a': covt-1 ( 0, 0) [ D a',k ],, (38) 

covt_ I (at. i , bt, j ) = D a': covt_ 1 (0, 0)[D b''i ]', (39) 

COVt_ 1 (at, i , c t ) = D a'.; covt_ 1 ( 0, 0)[ D e' ]', (40) 

covt_ 1 (bt, q , b~,j ) = D b',q covt_ 1 (0 ,  0)[D b'.j ]', (41) 

covt_ 1 (b t ,  j , c t ) = D b''j covt_ 1 ( 0, O)[D c' ]', (42) 

covt_ 1 (c, ,  c t ) = D c' covt_ 1 (0,  0)[D c' ]', (43) 

for all i , k  = 1 . . . . .  n; j , q  = 1 . . . . .  m. 

3.3. EVALUATION OF SOME EXPECTED VALUES 

In the process of deriving a control algorithm for this model  it becomes 
necessary to evaluate expectations such as E t_I(A:KtBt),  where K t denotes a 
deterministic symmetric (n x n)-matrix. Following [5, appendix B] we evaluate 
E t_ I(A~KtBt) as 

where 

Et-1 (A;K,B,)  = Et-1 (At)KtEt-1 (B,)+Yt AKB , 

I tr[Kt covt-i (b t . l , a t : ) ]  ... tr[K, cov,_l (b,,m, at,1 )]'~ 

[ tr[K, covt-1 (b,,1,a,,n)] tr[Kt cov,_i (b t ,m,a , , . ) ] )  

(44) 

(45) 

This means that Yt AKB is an (n x m)-matrix the element in the i th row and j t h  
column of which is given by the formula 

i = 1 . . . . .  n, 
(46) tr[Kt c o v t _ l ( b t , j , a t , i )  ], j = 1 . . . . .  m.  

If we define the matrices TAKa, Tf l~ ,  yBKS, rAKe, ~ g c  and v t  Kc by their elements 
as 



J. Matulka, R. Neck, O P T C O N  383 

['1"1AKA ]i,j = tr[Kt  Da'" c o v t - l ( 0 ,  0 ) ( D  a''' ) '] ,  

[yBKA ]i,j = tr[Kt  Da''~ covt-1 (0 ,  0 ) ( D  b'.' ) ' ] ,  

[Yt BKB ]i,j = t r [ K t n  b''~ covt_l (0 ,  0)(D b':)'], 

[ v AK* ]i = t r [ K t n  c' covt_l (0 ,  0 ) ( n  a': ) '] ,  

[ otBKc]i = t r [KtD c' covt_l (0 ,  o ) ( n  b', ') '], 

[Dr Kc ] = tr[Kt De' cov t_ l (0 ,  0)(D ~' )'], 

i = 1  . . . . .  n, j = l . . . . .  n, (47)  

i = 1 . . . . .  m , j  = 1 .. . .  n, (48)  

i = 1 . . . . .  m , j  = 1 . . . .  m,  (49)  

i = 1 . . . . .  n, (50)  

i = 1 . . . . .  m, (51) 

(52) 

the expectat ions  E t_l(A~KtAt) ,  E t_ I(BtKtAt),  Et_ I(B~KtBt), E t_ I(A~Ktc,), 
E t_ l (B~tc t ) ,  and Et_ l(c~Ktct), which will be needed later in the derivat ion o f  the 
algorithm, can be evaluated in an analogous way. In the above definit ions we  have 
already substituted the approximations derived in the previous section for the covariances 
of  the parameters  o f  the l inearized system. 

4. Approximat ive  solution of  the stochastic opt imum control p roblem by  O P T C O N  

The key idea of  our algorithm OPTCON is to use Bellman's principle of  optimality: 

JT(X,_l) = min E,_I(Lt(x,  ,u , )  + Jt+l(Xt)), (53) 

where Jj* (x t_  1 ) denotes  the loss which is expected at the end o f  period t - 1 for  the 
remaining periods t . . . . .  T if the optimal pol icy is implemented during these periods. 
Et -  1(') denotes conditional expectation; x k_ i, k = S . . . . .  t, and u k_ l, k = S + 1 . . . . .  t, 
are known  at the time when we have to decide about  u .  

N o w  we are in a posi t ion to state the main result upon which  the algori thm 
O F F C O N  is based:  

THEOREM 2 

J~* (xt_ 1 ) can be expressed as a quadratic function of  x t_ 1: 

J r ( x , - 1 ) = 1  , , X +h:  + h f  -~Xt- lHtXt-1 +Xt-lh t h 7 + 

for all periods t = S . . . . .  T + 1, where 

xu uu -1 Ht = A ~ - A ,  (a, ) A~, 

h ,  = Z :  - Axu : A"")-I 

(54) 

(55) 

(56) 
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1 u t u u  - 1  u h: = ;~, - ~ ( ; t ,  ) ( a ,  ) ~,, , 

h: = ~', . 

h f  = ; 4  

for all t = S . . . . .  T with terminal conditions 

H T +  1 = On× n, 

h~+ l = 0 . ,  

h~+ 1 = 0, 

h~+ I = 0, 

h.F+ 1 = 0, 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

and the auxiliary matrices, vectors and scalar variables are defined as follows: 

K t = W ~  + Ht+ ~ , 

k~ = w~ + h:+~, 

a 7 = r :  KA +Et_ 1 (A,) 'K,Et_I (A,) ,  

af" = ( a~ ) ' ,  

(65) 

(66) 

(67) 

(68) 

a 7 ='rBt KA +Et-1 (B,) 'KtE,- I  (At)  + WtUXE,_l (A,) ,  

A~U =yBKB +Et-i  (B,) 'KtEt-1 (B,) + 2Et-i ( B t ) ' W :  u + W~ u , 

~ = ot AK* + Et-1 (At) 'KtEt-1 (ct) + Et-1 (A~)'k~:, 

~[ = ½tr[Kt cov,_t (/~t, ~, )] + hi+l, 

1 D~Kc 
= ]if+ 1 , ;tf ~- + 

Zt c = ½ Et-1 (c , ) 'KtEt_ 1 (c t ) + Et_ 1 (c t ) 'k  7 + w 7 + hlC+l • 

(69) 

(7o) 

(71) 

o f  Kc + E~-I (Bt) 'K/Et-1 (ct) + . x .x = El-1 (Bt) kl + Wi Et-1 (ct)  + w~ ,  ( 7 2 )  

(73) 

(74) 

(75) 

The optimal policy ut for each period t is given by the feedback rule 

Ut = G t x t -  1 + g .  

where 

G, = - ( A : " )  -~ A T ,  

g, = - (A?")  -~ Z: .  

(76) 

(77) 

(78) 
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Proof 
See appendix 2. 

As can be seen from the derivation, it would be necessary to evaluate several 
conditional expectations such as E t_ 1(At), E t_ I(B,), and E t _ 1(c,) which are themselves 
functions of  the unknown control variables. In order to be able to derive a feasible 
algorithm we introduce the following simplifying assumptions: 

(1) Each occurrence of E t_ 1(') is substituted by Es_l(.) and each occurrence of  
covt-  l(") is substituted by coy s_ 1(") for all t = S + 1 . . . . .  T + 1. Thus, we 
rule out any learning about the parameters of  the model. 

(2) Although At, B t and c t are, in general, nonlinear functions of 0 we will 
compute their expected values by evaluating eqs. (12), (13), and (14) at the 
reference values ~t_l,~t,fl t ,  Es_l(0), z t, and ~t = 0,,, which were true only 
in case of  linear functions. 

It must be admitted that these assumptions amount to a drastical simplification 
of the problem, as they exclude not only "active learning", i.e. exerting influence on 
the control variables in order to obtain more information about the parameters, but 
also "passive learning" in the sense of [5], i.e. using a re-estimated model at later 
periods. Although the latter approach is not formally included within the algorithm 
OPTCON, it can be pursued in a simple way to some extent by repeatedly applying 
OPTCON to successively re-estimated models for t = S + 1 . . . . .  T, and using only 
the respective first-period controls for actual implementation ("open-loop feedback" 
control according to [5]). "Active learning" so far cannot be incorporated into our 
framework; at present we are ignoring the "dual" effect of  control. Apart from the 
linear approximations described in the previous section, this is the main reason why 
we can only expect to arrive at approximations to the "true optimum" of our stochastic 
control problem. Computational simplicity is the main justification for this assumption. 
In the next steps of our research we will gradually introduce various devices of  
leaming along the lines suggested in [5]. Only then will it be possible to tackle the 
question of the losses which are introduced by the restrictions assumed for OPTCON. 
This could be done by running Monte Carlo simulations of specific numerical examples 
under various learning schemes. Apart from the fact that such simulations are 
methodologically somewhat questionable, previous comparisons of this kind seem to 
indicate that the relative performance of algorithms employing different learning 
schemes is problem specific. Therefore one must not expect too much from such 
exercises. Unfortunately, at present we cannot envisage any possibility of  arriving 
at the optimal solution of a fully stochastic problem with learning by analytical or 
numerical methods even for extremely simple problems; hence the question of the 
amount of suboptimality of OPTCON's solutions has to remain open. 

We conclude this section by describing the algorithm OPTCON in a schematic 
way. This can serve as an overview of the way in which it has been implemented 
in the programming system GAUSS. 
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INPUT OF THE ALGORITHM 

system function 

initial values of  state variables 

tentative path of control variables 

path of exogenous variables not subject to control 

expected values of system parameters 

covariance matrix of system parameters 

covariance matrix of system noise 

weighting matrices of objective function 

discount rate of  objective function 

target path for state variables 

target path for control variables 

f ( . . .  ) 
O * 

XS_ 1 m XS_ 1 - - X s _  I 
° T 

( u, ),=s 
(z,)T=s 

Zw. 

W ~', W '~', W"" 

(~,)T=s 
(~,)T=s 

OUTPUT OF THE ALGORITHM 

expected optimal path of  state variables 

expected optimal path of control variables 

expected optimal welfare loss 

* T ( x , ) , = s  
* T 

( u , ) , = s  

DESCRIPTION OF THE ALGORITHM 

(1) Compute a tentative state path: Use the Gauss-Seidel  algorithm, the tentative 
policy path (fit if--s, and the system equation f ( . . .  ) to calculate the tentative 
state path (x,)T=s. 

(2) Nonlinearity loop: Repeat the steps (a) to (e) until convergence is reached 
(i.e., until the optimal control and state variables calculated do not change 
more than a prespecified small number from one iteration to the next) or the 
number of iterations is larger than a prespecified number. 

(a) Initialization for backward recursion. 

H T  + 1 = 0,~ × ,,, ( 7 9 )  

h~ + 1 = o . .  (80)  

h~-+ 1 = 0, (81) 

h~-+ i = 0, (82) 

h~ + ~ = 0. (83)  

(b) Backward recursion: 

Repeat the following steps (i) to (vii) for t = T . . . . .  S. 
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(i) Compute the expected values o f  the parameters o f  the linearized system 
equation: 

At = (I  n _ Fx ' )-1 Fx,_l, (84) 

Bt = ( i  n _ F x  ' ) - l  F u ,  ( 8 5 )  

Ct = :Xt -- At xt-1 - Bt l i t ,  (86) 

•,¢¢ = C°Vs - 1(~/,~, ) = (In - Fx,) -1$ee [(In - Fx,)-l] ', (87) 

where  all derivatives are evaluated at the reference values ~t-l ,  ~t, 
° ~ ° 
ut ,  , z  t , a n d  c t = 0 n .  

(ii) Compute the derivatives o f  the parameters o f  the linearized system with 
respect to 0 : 

D A' = [(I n - Fx,) -1 ® Ip][Fx,,oA t + Fx,_l,o], (88) 

D B, = [ ( I  n - Fx,) -1 @ It,][Fx,,oB t + Fu,,O], (89) 

dc' = v e c [ ( ( I n -  Fx,)-IFo)'] - D A' x t -1-  DBq~/, (90) 

where  all derivatives are evaluated at the same reference values as above. 

(iii) Compute the influence o f  the stochastic parameters: Compute  all the 
matr ices  the cells of  which are defined by 

[ '~ fKA  ]i,j = tr[KtDa"J£'°°(Da':) '],  i = 1 . . . . .  n , j  = 1 . . . . .  n, (91) 

['~t BKA ]i,j ----- tr[KtDa"~£'°°(Db"i)'], i = 1 . . . . .  m , j  = 1 . . . . .  n, (92) 

[ "rBKB ]i,j ---- tr[KtDb"~£'°O(Db'")'], i = 1 . . . . .  m , j  = 1 . . . . .  m, (93) 

[ VtaKc ]i = tr[KtDC' X ° °  (Da'.i )'], i = 1 . . . . .  n, (94) 

[ vt Bgc ]i = tr[Kt De' ~oo  (Db,.;),], i = 1 . . . . .  m, (95) 

[ v~t¢~ ] = t r [K,D c, £oo  (D ~, ), ]. (96) 

(iv) Convert the objective function f rom "quadratic-tracking" to "general 
quadratic" format: 

W~ff = ott-lW~, (97) 

W ~  = a t l W  ~,  (98) 

W t U -  - a t l w  uu, (99) 
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(c) 

w~ = -WtXX'~t - WtXUiit, (100) 

w~ = - W ~ , ,  - WtUUfi,, (101) 

w ~  = 1 ~, ,x ,xx, - .  ~ ,  ux-  I r,,wuua (102) ~-x tvv  t ~ . t + u t W i  Xt  + - ~ u t , ,  t u t .  

(v) Compute the parameters of the function of expected accumulated loss: 

K, = W~' + Ht + 1, (103) 

k t = w7 + h~+ 1, (104) 

A ~  =T AKA + A~KtA t, (105) 

At:'" = (a,~') ", (106) 

At ux : ' r t  BKA h- B~ KtA t + WtUXAt, (107) 

At uu =rt  BKB + BtKtB t + 2B~WtXU + W~ uu, (108) 

t x ~ :  = ot AKc + A[Ktct + A /k , ,  (109) 

~,~' = o f  Kc + B~Ktc, + B[k~ + W~c,  + w~', (110) 

~: = ½tr[K, Xf~ ]+ h:+l , (111) 

1 D~Kc : t f  = r + hPl ,  (112) 

A , f = l  , , x ~-ctK~et +e tk t  +w~ +hL1.  (113) 

(vi) Compute the parameters of the feedback rule: 

G, = - (A?')-~A?:`, (114) 

g , = - ( A ,  ) ~,~. (115) 

(vii) Compute the parameters of the function of minimal expected accumulated 
loss: 

Ht a ~ - a : ` u t a u ' ~ - l a ~  (116) 

h{ = ~,[ - A~ u (a~ ' ) -1  a~ ,  (117) 

f f  = :t7 - ½ (,;t#)' ( aT) -1  a,#, (118) 

hi = ~,:, (119) 

h f  =/1, F. (120) 

Forward projection: 

Repeat  the following steps (i) and (ii) for t = S . . . . .  T. 
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(i) Compute the expected optimal policy: 

u~ * Gtx~ _ 1 + gr (121) 

(ii) Compute the expected optimal state: Use the Gauss-Seidel  algorithm to 
compute x~ such that 

* 

x , = f ( x ~ _  * * ^, 1,Xt ,Ut ,0  zt). (122)  

(d) Set the new tentative paths for the next iteration: 

= ( x , )T - - s ,  

( fit )Y=s * 7" : ( u , ) , = s .  

(e) Compute the expected welfare toss: 

Js  = x~-lHsxs-I  + x~-I + h~-I + h~-I + hsP-1 + h~-a. 

(123) 

(124) 

(125) 

5. Appl icat ions  to small  econometr ic  models  for Austria 

In principle, the algorithm OPTCON can be applied to any discrete-time 
intertemporal optimization problem under stochastic uncertainty, provided that the 
objective can be expressed as (or approximately expressed by) a quadratic function 
and the system dynamics fulfill the assumptions stated for f ( . . .  ). Many examples 
of stochastic optimum control problems of this kind for management and economic 
systems are given in [14]. For instance, in production-inventory problems, the 
control variables may be production and orders and the state variables may be 
inventories; in queueing problems, a control may be the service rate and a state may 
be the length of a waiting line; in maintenance problems, the controls may be 
maintenance and replacement policies and the state may be a machine's productivity; 
in portfolio selection problems, a control variable may be investment and a state 
may be wealth; in quality control problems, the control may be the sampling rate 
and a state may be the number of failures; in advertising problems, the control may 
be advertising expenditures and the state may be sales; etc. In all these cases the 
objective may be defined in terms of expected profits or costs. 

Unfortunately, for management applications frequently necessary data are not 
available outside the respective firm for scientific research. Therefore we choose 
a macroeconomic policy problem to illustrate the applicability of our algorithm 
OPTCON. In this case, the controls are fiscal and monetary policy variables, the 
states are macroeconomic target variables, and the objective may express "social 
welfare" or a policy-maker's (planner's) objectives. We report on some applications 
of OPTCON to two small macroeconometric models of the Austrian economy. The 
primary purpose of  this exercise is to test the algorithm and its implementation in 
the programming system GAUSS. More detailed information about the results of  
these and related control experiments is given in [10] and [12]. 
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5.1. THE MODELS 

We consider two small demand-side macroeconometric models for Austria, 
to be called AUSTRIA1 and AUSTRIA2. AUSTRIA1 is a nonlinear model estimated 
by ordinary least squares, whereas AUSTRIA2 is a linear model estimated by three 
stage least squares. The estimation period has been 1965 to 1988. 

Tables 1 and 2 show the results of the estimations and the identities of the 
models AUSTRIA1 and AUSTRIA2, respectively, together with the statistical 
characteristics of the regressions. Values in brackets below regression coefficients 
denote estimated standard deviations. R E is the coefficient of  determination, R E the 
coefficient of determination adjusted for the degrees of freedom, SE is the estimated 
standard error of the equation, MAPE is the mean absolute percentage error, DW 
is the Durbin-Watson statistic for serial correlation and /9 is the estimated first- 
order autocorrelation coefficient of the residuals. 

The following abbreviations are used for the model variables: 

CR t real private consumption, 

IR t real fixed investment, 

M R  t real imports of goods and services, 

R t nominal rate of interest, 

YR t real gross domestic product at market prices, 

VR t real total aggregate demand, 

PV~ general price level, 

P V %  t rate of inflation, 

T% t net tax rate, 

TR t real net tax receipts, 

GR t real public consumption, 

MI~ nominal stock of money supply M1, 

M 1 R  t real stock of money supply, 

P M  t import price level, 

P M V  t relative price of  imports, 

AR t real autonomous expenditures, 

PY~ domestic price level. 

Model AUSTRIA1 has eight endogenous or state variables (CR t, IR t, M R  t, R t, 
YRt, VRt, PVt, PV%t), three control variables (T%~, GRt, Mlt), and three exogenous 
non-controlled variables (PM~, ARt,  PY~). Model AUSTRIA2 has six endogenous 
variables (CRt, IR~, MR,,  R,, YRt, VR,), three control variables (TRt,  GRt, M1Rt), and 
two exogenous non-controlled variables (pMt, G, ARt).  As can be seen from tables 
1 and 2, the two models have a very similar structure. 
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Table 1 

Model AUSTRIA1. 

1. Private consumption, real 

CR t = 0.3061 
(0.14364) 

CR t _ l  + 0.63312 YRt(1-r~ '~  , 1.81043 (R t - P V % t ) +  5.27457 
(0.13237) (0.74461) (5.904) 

R 2 = 0 . 9 9 6  R 2 = 0 . 9 9 6  SE=5.55399 ¢ 

MAPE=0.99 DW = 1.972 p =  0.01 

2. Fixed investment, real 

IR t = 0.93547 
(0. 03425 ) 

I R t _ l  + 0.2359 ( V R t - V R t _ I ) -  0.42742 
(0. 04793) (0. 59133) 

R 2 = 0 . 9 7 5  R 2 = 0 . 9 7 2  SE=5.40704 

MAPE=2.19 DW = 1.559 p = 0.22 

3. Imports of goods and services, real 

MR t = 0.21599 MRt-1  + 0.28844 
(0.14035) (0.05414) 

(R t - PV% t ) + 8.95606 
(6.18576) 

5. GDP at market prices, real 

YRt = CRt + IRt + GRt + ARt - MRt 

6. Total aggregate demand, real 

VR t = YR t + MR, 

7. Deflator of total demand 

p v  t YR, - .  MR, ~ - -  = -v-~ r x t  + - ~  reat  

8. Rate of inflation 

t ' v % , =  ( ? v ,  - p v , _  OlpV,_ ~ . loo  

R t = 0.792 
(0.1604) 

4. Rate of interest, nominal 

(PM, .100]+ 13.43473 VR t - 0.93284 ~,pv, 
(0.55423) J (69.10811) 

R 2 =0.993 R 2 =0.992 SE=8.66294 

MAPE=2.92 DW = 1.163 p = 0.35 

- 0.01857 (Ml, . lO0)+ 0.00169 YR t + 2.76811 
R t -  1 (0.01755) \ Pv, ) (0.00228) (1.31912) 

R 2 = 0 . 6 1 6  R 2 = 0 . 5 5 8  SE=0.67843 

MAPE=5.64 DW = 1.323 p = 0.32 
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Table 2 

Model AUSTRIA2. 

1. Private consumption, real 

CR t = 0.39064 CRt_ 1 + 0.53807 (YRt-TRt)+ 8.80957 
(0.13749) (0.12351) (5.88465) 

R 2=0 .995  R 2 = 0 . 9 9 5  SE=6.19276 

MAPE = L22 DW = 1.527 p = 0.23 

2. Fixed investment, real 

1R t = 0.97107 I R t _ l +  0.17498 ( V R t - V R t _ I ) -  3.16947 
(0.03786) (0.04955) (1.43829) 

R 2 = 0 . 9 7 4  R 2 = 0 . 9 7 0  SE=5.58826 

MAPE=2.49 DW = 1.723 p =  0.11 

R, + 28.691 
(I0.11194) 

3. Imports of goods and services, real 

MR t = 0.15719 MRt_ 1+ 0.31204 VR t - 0.87247 
(0.12478) (0.04812) (0.49042) 

R 2 =0.993 R 2 =0.992 SE=8.7048 

MAPE = 2.98 DW = 0.977 p = 0.45 

PMV t - 1.56625 
(61.13881) 

4. Rate of interest, nominal 

R t = 0.71444 Rt_ 1 -  0.01967 M1R~ +0.00201 
(0.14261) (0.01546) (0.002) 

R 2=0 .615  R 2 = 0 . 5 5 7  SE=0.68262 

MAPE=5.75 DW = 1.204 p = 0.37 

YR t + 3.29059 
(1.17251) 

5. GDP at market prices, real 

YRI = CRt + IRt + GR t + AR t - MR~ 

6. Total aggregate demand, real 

VR, = YR t + MR, 

5.2 THE OPTIMIZATION EXPERIMENTS 

For the optimum control experiments we have to specify an intertemporal 
objective function of a hypothetical policy-maker. Here we assume the quadratic 
tracking function (1) with (2). The planning horizon for the control experiments has 
been chosen as S = 1971 to T = 1988. For the "ideal" values of  the state and control 
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variables (~t and fit, respectively), we assume for 1970 historical values for all 
variables to be given and postulate growth rates of 3.5% p.a. for the years 1971 to 
1988 for all real variables. In model AUSTRIA1 a growth rate of 2% p.a. is 
considered as "ideal" for the price level P V  t and a constant value of 2 is hence 
assumed as "ideal" rate of inflation P V %  r The rate of interest R t has an "ideal" 
constant value of 7 for all periods. In the model AUSTRIA1 the historical value of 
1970 is used as constant "ideal" value for T %  t, and an "ideal" growth rate of 5.5% 
p.a. from the 1970 historical value is assumed for M 1  r 

We assume a discount factor a = 1. This implies W t = W for all t. AU off- 
diagonal elements of this matrix are set equal to zero, and the main diagonal 
elements get the foUowing weights for the model where the respective variable 
appears: 

variable CR, IR t MR, R t YR t VR t PV t PV%t  T%, TR~ GR t MI, M 1 R  t 

weight 5 5 5 2.5 10 0 5 0 5 5 5 1 1 

Thus real GDP at market prices is regarded as the main objective variable. 
For the model AUSTRIA1, three different control experiments are performed: 

In experiment 1 all parameters of the model are regarded as known with certainty. 
The only stochastic influences considered are the additive error terms in the behavioral 
equations. We assume the covariance matrix of the additive error terms to be a 
diagonal matrix with the squared estimated standard errors of the behavioral equations 
in the main diagonal. 

For experiments 2 and 3, also performed with AUSTRIA1, we tentatively 
introduce stochastic parameters. Here we assume the covariance matrix of the parameters 
to be diagonal and select only some diagonal elements of this matrix to be non-zero. 
In experiment 2 those parameters whose estimates have the lowest t-values are 
regarded as stochastic. These are the coefficient of R t in the investment equation 
and the coefficients of M1 t and Y R  t in the interest rate equation. In experiment 3 
the marginal propensity to consume (the second coefficient in the consumption 
equation) is added to the above ones as fourth stochastic parameter, again taking 
the estimated coefficient and its estimated standard deviation as the first and second 
moments of that parameter, respectively. 

For model AUSTRIA2 two experiments have been run. Experiment 4 is 
analogous to experiment 1 for model AUSTRIA1 in assuming all parameters to be 
known for certain. Here the entire estimated covariance matrix of the behavioral 
equations' additive disturbances is available as the model has been estimated by 
3SLS. Finally, in experiment 5 the stochastic nature of all the parameters of the 
model (the coefficients and the constants) is taken into account by assuming the 
estimated values of the parameters to be their expected values and the covariance 
matrix of the coefficients of the model to be the covariance matrix of the parameters. 

The five optimum control experiments described above were carded out on 
an IBM compatible 12 MHz PC-AT with an 80287 mathematical coprocessor. The 
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running time of the GAUSS program of OPTCON ranged from 5 min 5 sec in 
experiment 4 to 24 min 37 sec in experiment 3. The results will be only briefly 
summarized; see also [12]. 

Figures 1 to 4 show the results of the experiments for one selected control 
variable (GRt) and one state variable (YR~). The time paths denoted as "Historic" 
and "Target" show the historical and the "ideal" values, respectively. In figs. 1 and 
2, approximately optimal values from experiments 1, 2 and 3 are denoted by "Determin", 
"Stoch3" and "Stoch4", respectively. In figs. 3 and 4, approximately optimal values 
from experiments 4 and 5 are denoted by "Determin" and "Stoch", respectively. 

All the experiments indicate that fluctuations of the main objective variables 
can be stabilized to some extent by optimal policies. The optimal values of  the 
control variables, especially those of fiscal policies, exhibit counter-cyclical behavior. 
Optimal values of  most real variables are lower than historical ones until the end 
of the seventies and higher during the eighties, showing that optimal policies in this 
model can to some extent overcome the lower historical growth rates of the period 
after the two oil price shocks. 

Introducing stochastic parameters has the following effects on optimal policies 
for model AUSTRIA1: In experiment 2, the differences to the results of experiment 1 
are minor. On the other hand, for experiment 3 the differences to experiment 1 are 
more pronounced. It seems that optimal fiscal policies become more active (i.e., the 
absolute deviations from the "ideal" values of these variables become larger on 
average) if their effects are uncertain, which is somewhat counterintuitive. 

From the experiments with model AUSTRIA2 we get the following results: 
In experiment 4, the optimal values of most variables appearing in both models are 
rather close to the optimal values from experiment 1, which shows that both models 
embody similar trade-offs. Experiment 5 gives the somewhat surprising result that 
optimal values for all objective variables are very close to those obtained in experiment 
4. Control variables show slightly more active behavior, but in general it seems that 
in this model taking fully account of stochastic parameters does not have a strong 
influence upon the optimal policies. It remains an open question whether this result 
generalizes to models with different kinds of nonlinearities. 

6. Concluding remarks  

In this paper we have presented an algorithm for the optimal control of 
nonlinear dynamic macroeconometric models with stochastic additive error terms 
and stochastic parameters under a quadratic intertemporal objective function. This 
algorithm has been implemented in the programming language GAUSS and applied 
to two small econometric models of the Austrian economy in order to show the 
feasibility of the algorithm. The optimization experiments show that optimal policies 
may lead to a considerable stabilization of the time paths of the main objective 
variables of the models. Several experiments with different kinds of stochastic 
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parameters have demonstrated the influence of parameter uncertainty on optimal 
policies. 

Several directions of further research may be suggested. More optimization 
experiments are required in order to study results under a greater variety of stochastic 
parameter pattems and different economic models. Also, alternative objective functions 
should be applied, and the numerical sensitivity of the optimal policies to the choice 
of the "ideal" values of the objective variables and the elements of the weighting 
matrix in the objective function has to be examined. For the algorithm itself, there 
exist several possible extensions. By adding updating equations for the stochastic 
parameters such as the one used in [9], it could be expanded into a passive-learning 
algorithm in the sense of [5]. Another interesting extension to be considered in the 
future will be the examination of the effects of decentralized policy-making; here 
results of decentralized control theory (dynamic team theory) and dynamic game 
theory will have to be incorporated. 

Appendix 1: Proof of theorem 1 

MacRae [8] defines differentiation of a (p x q)-matrix Y whose elements are 
functions of an (m x n)-matrix X as follows: 

0Y Y ® ~--~, (126) 
b X -  

where ® denotes the Kronecker product, O/0X is a matrix of derivative operators 
the cells of which are defined by 

( 2  / = ..... m, j = l  ..... n, i = 1  "~Ji,j ~Xii,j' (127) 

and premultiplication of a matrix element by a derivative operator is understood to 
denote differentiation. 

In her paper MacRae gives theorems which can be used to evaluate more 
complex expressions. Two of them, the product rule and the inverse rule, are 
repeated here, as we need them for the derivation of theorem 1: 

~y-l~x - - ( Y - l ® I m ) ( o ~ Y ) ( Y - l ® I n  (inverse rule), (128) 

where Y is a non-singular matrix whose elements are functions of the (m x n) 
matrix X, 

OYZox = oxOY (Z ® In) + (Y ®Ira) oxOZ (product rule), (129) 
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where Y and Z are matrices whose elements are functions of the (m x n)-matrix X 
and the product YZ is well-defined. 

Using this matrix differential calculus it is possible to derive the derivatives 
of the parameters of the linearized system equation with respect to 0 as given in 
theorem 1. In order to prove these formulas, it is convenient first to derive an 
intermediate result. Applying the inverse rule we obtain: 

~[(In -Fx ,  )-1] )-1 ~(I  Fx, 
~0 = - [ ( I n  -Fx '  N i p ]  ~ ) ( I  n - F x , )  -1. (130) 

As I n does not depend on 0 this can be simplified to: 

3[(In - Fx, )-11 )-I _ ~  )-1 
30 = - [ ( In  -Fx, ® I p ]  (In -Fx, • (131) 

Now we turn to the derivation of D A'. First we have 

D A' = 3A t 3[( i  n _ Fx ' )-1Fx,_ ~ ] (132) 
30 30 

Straightforward application of the product rule gives: 

OA t 3[(i  n _ Fx ' )-1] Fx,, 3Fx,_l 
30 = -~/i - + [ ( I n - F x , ) - l ® I P ]  30 (133) 

If we insert (131) we can write: 

3At )-1 
3 0  =[( In  -Fx,  ®Ie]Fx, '°(In -Fx')-lFx'-~ 

+ [(1,1 _ Fx ' )-1 ® Ip ]Fx,_~.o. 

If we recall the definition for A, we can further simplify this to 

(134) 

3A t 
O'---0- = [(I.  - Fx, )-1 ®ip][Fx,.oAt + Fx,_l.o ]" (135) 

Next comes the derivation of DB': 

D~ ' = 3B, _- 3[(In - Fx, )-1Fu ' ] 
30 30 

(136) 

Again, we apply the product rule to get: 

3B t 3 [ ( i  n _ Fx ' ) - l ]  F 3Fu' 
3---0- = -~ff u, + [ ( I .  -Vx,)  -1 ® I . ]  30 ' (137) 

which can be further simplified (after insertion for the inverse) to: 
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3Bt 
O0 = [(I,, - Fx, )-1 ® Ip ] [Fx,.oB , + Fu,.o]. (138) 

Finally, we prove the formula for de': 

0el ~xt 3[Atxt-1] D[Btut] (139) 
de' = "~- = DO DO DO 

Applying the product rule twice yields: 

DCt DXt ® I p ) ~ - - D B ' u t  - ( B  t ® I e ) ~ -  ~ . (140) D0 = ~ -- DA'xt-1 -- (At  DUt 

As x~_ 1 and u t do not depend on 0 this can be shortened to: 

Dc~ Dx t 
D0 = ~ - DA'xt-1 - DB'ut" (141) 

X t does depend on 0 via the system function. Using the implicit function theorem 
we can establish this derivative and then state: 

Dct = vec[((In - Fx, )-1Fo),] _ DA, xt_I _ DB, u t ,  (142) 
D0 

where the vectorization is necessary to reshape the first derivatives of  the system 
equation (for which we have used the more common notation) to conform to the 
way derivatives are defined by MacRae. In the above all functions have been 
assumed to be evaluated along the reference path. 

Appendix 2: Proof of theorem 2 

First, we show that 

* • X Jt (xt-1) = {x~-latxt-1 + Xt-lht +ht c +ht s +hF (143) 

for all periods t = S  . . . . .  T +  1. Obviously, this is true for t = T +  1; we do not 
count any losses after the end of  the planning period, hence (60)-(64)  hold by 
definition. As the second step of the induction proof, we now have to show that 
if JT+t(xt) can be expressed as a quadratic function of x ,  then JT(xt_l) will also 
be quadratic in x t_ 1. Thus, we presume that 

* 1 , + htC+l + h~+ 1 + h~l (144) Jt+l ( x t )  = ~x tHt+ lXt  + x~ht+l 

Then, from (8) and (144) we get, using the definitions (65) and (66): 

:i+l(x,)= g u, w:") u, 

' ()  
+ + + + hi+l + hi+l. 

u, [,w~') (145) 
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Substituting the linearized system eq. (11) for x t we have after collection of terms: 

* , t 1 • t WtUXkt  ]•ut G (xt, ut ) + Jt+l (xt) = ½ xt-lAtKtAtxl-1 + ~ xt-1 [BtKIAt + 

+~  ut [BtKtAt + W~At ]xt-1 

1 , , 2 W ~ B t  + W ~ ] u t  + ~ u t  [BtKtBt + 

+Xt-l• [AtKtct" + A[Kt~t + Atkt, x ] 

+u~ [B;Ktc, + B[K,~t + B;k• + WtUXct + W ~ t  + w~ ] 

1 t • x +~ctKtct  + c;K,~, + ½ ~:K,~, + ctk, + ~;k~ 

+w~ + h:+ 1 + ht+ 1 + hPl. (146) 

Next we calculate the function of expected accumulated loss, namely 

Jt (xt-1, ut ) = E,-1 (Li (xt, u, ) + Jr*+1 (xt)). (147) 

If we assume that H t +  1 , h~+ I , htC+l , h t+ l ,  and h~l are non-stochastic or known after 
xt-1 has been realized, then using (20), (21), (44) and the analogous expressions 
listed following (52) in section 3.3, together with (67)-(75), we can see that 

: ! ( X t _ l ~  (A t At u] 2ll 1 + ( x t - I  ~[x t + g~ +)~: + g f .  (148) 
J,(x,_l,u,) u, 7 aT)  u, 

Minimizing this function with respect to u t and assuming At"" to be symmetric and 
positive definite yields the feedback rule (76) with (77) and (78). By substituting 
the feedback rule for u t into Jt(xt_ 1, ut) we can derive J t  (xt-1), the function of 
minimal expected accumulated loss, as 

J7 (Xt-l) = 1 X;_lHtXt_l + X;_lh~ + hi + h: + hr. (149) 

Thus, ithas been proved by induction that Jt(xt_l)  is a quadratic function of xt_ 1 
for all periods t = S . . . . .  T. It can be easily verified that A~ u and hence Ht are 
symmetric which completes the proof of theorem 2. 
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