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Abstract 

This paper gives a brief list of commonly used direct and indirect efficient methods 
for the numerical solution of optimal control problems. To improve the low accuracy of 
the direct methods and to increase the convergence areas of the indirect methods we 
suggest a hybrid approach. For this a special direct collocation method is presented. In 
a hybrid approach this direct method can be used in combination with multiple shooting. 
Numerical examples illustrate the direct method and the hybrid approach. 

Keywords: Constrained optimal control, nonlinear dynamic systems, multiple shooting, 
direct collocation, nonlinear optimization, hybrid approach, estimates of adjoint variables. 

1. The optimal control problem 

Many  opt imizat ion  problems in aeronautics and astronautics, in industrial  
robot ics  and in economics  can be formulated as opt imal  control  problems.  
The  dynamic  system may be described as a system of  nonlinear differential  equations 

~(t )  = f ( x ( t ) , u ( t ) , t ) ,  to < t < t f ,  (1) 

with t 0, X(to) and some Xk(tf), k e {1 . . . . .  n}, given and tf fixed or free. The n-vector  
funct ion o f  states x(t) is determined by an /-vector  funct ion o f  controls u(t). 

Th e  problem is to find functions u(t) that minimize a functional  o f  Ma y e r  

type 
J [ u ] = ~ ( x ( t f ) , t f )  with O:IR n+l ---->~. (2)  

Also more  general  types o f  functionals are possible. 
For  realistic problems it is important  to include path cons.traints. Most  common  

are constraints  on  the control  variables 

C ( u ( t ) , t )  < O, to < t <- t f ,  (3) 

or  constraints  on the state variables 

S (x ( t ) ,  t) <- O, to <- t < t I ,  
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or more generally 

S ( x ( t ) , u ( t ) , t )  < O, t o < t < t f .  (4) 

In summary we have m constraints g(x ( t ) ,u ( t ) , t )=  ( C , S ) -  (g l  . . . . .  gin). 
For example, in aeronautics we often have position, velocity and mass as 

state variables, angle of attack, thrust and direction of thrust as control variables 
and we wish to minimize the total flight time t for  to maximize the payload. Typical 
constraints are constraints for the thrust, dynamic pressure constraints or constraints 
on the flight path over certain ground domains. 

In economics we may have production rate, amount of capital or number of 
employed people as state variables, gross investments and expenditures for education 
as control variables and our aim is to obtain full employment by stable growth. As 
constraints we must ensure that the living standard does not fall beyond a certain 
limit. 

There are also applications to nonstandard problems (cf. Feichtinger and 
Mehlmann [10]). 

2. The numerical  solution 

For classical problems and some special weakly nonlinear low dimensional 
systems the solution can be obtained analytically from the necessary and sufficient 
conditions of optimality, see e.g. section 5.1. But to obtain a solution of  dynamic 
systems described by strongly nonlinear differential equations, see e.g. section 5.2, 
it is necessary to use numerical methods. For a first survey these methods can be 
classified into two types. 

2.1. NECESSARY CONDITIONS FROM CALCULUS OF VARIATIONS 

The indirect methods are based on the calculus of  variations or the maximum 
principle. Under certain assumptions (see e.g. Bryson and Ho [1], Hestenes [14]) 
the following first order necessary conditions for an optimal trajectory are valid: 
There exist an n-vector function of  adjoint variables ~(t) and an m-vector function 
v(t) ,  such that with the so-called Hamiltonian function 

H = ~Tf+ vTg (5) 

a multi-point boundary value problem in canonical form with piecewise defined 
differential equations results for t o < t < tf: 

~H 
.~ = ~ = f ,  (6) 



O. von Stryk, R. Butirsch, Methods for trajectory optimization 359 

~,= ~H _~T~f_v T~)__g.g 
---~-X = -~X Ox' (7) 

o _ g .  ( 8 )  

The optimal control is determined by minimizing H with respect to u. For example, 
for H nonlinear in u we may use for to < t < tf 

0 H = ~ T b f + v T O g  3u ~ ~ = 0 (9) 

and the Legendre-Clebsch condition ~ZH/~u,~3uk positive semidefinite. We have 
additional (trivial) differential equations for t) and the switching points qi in which 
the constraints become active or inactive. Additional constraints at initial, end and 
interior points may hold. The numerical procedure described in sections 3 and 4 is 
also able to handle optimal singular arcs. However, for the sake of simplicity, this 
case is not discussed here. 

To obtain solutions from these necessary conditions we may use methods 
which are based on the special structure of these necessary conditions, e.g. so-called 
gradient methods (see e.g. Gottlieb [ t 2], Tolle [25], Bryson and Ho [ 1 ], Chernousko 
and Lyubushin [8] and Miele [18]). 

Alternatively, we obtain the controls u(t) from 3H/~u = 0 analytically or 
numerically using Newton's method, and we may use a method for the solution of 
general boundary value problems such as the multiple shooting method (see e.g. 
[2,23]) or a collocation method (see e.g. Dickmanns and Well [9]). 

Contrary to other methods the multiple shooting method has the advantage 
that all kinds of constraints are allowed and very accurate results can be obtained. 
However, a rather good initial approximation of the optimal trajectory is needed and 
a rather large amount of work has to be done by the user to derive the adjoint 
differential equations. Moreover, the user has to know a priori the switching structure 
of the constraints. This can be derived by means of homotopy techniques. For a 
description of useful techniques in conjunction with multiple shooting for the numerical 
solution of  constrained optimal control problems the reader is referred to [3]. 

All in all, the user must have a deep insight into the physical and mathematical 
nature of the optimization problem. 

2.2. DIRECT SOLUTION OF THE OPTIMAL CONTROL PROBLEM 

In direct approaches the optimal control problem is transformed into a nonlinear 

programming problem. 
In a first approach, this can be done with a so-called direct shooting method 

through a parameterization of the controls u(t). For this we choose u(t) from a finite 
dimensional space of control functions and use explicit numerical integration to 
satisfy the differential eqs. (1), see e.g. Williamson [27], Kraft [17], Horn [15], 
Bock and Plitt [5], to cite only a few of the many papers. 
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In a second approach, u(t) and x(t) are chosen from finite dimensional spaces 

u ~ span {/~1 . . . . .  /~p }, U = ~ O~i~t i , O~ i E IR, ( 1 0 )  
i=1 
q 

x ~ span{~l . . . . .  3~q}, X ----- Z ~ j . ~ j ,  ~ j  ~.IR. (11)  
j=l 

Compared with the first approach this has the additional advantage that the 
computationally expensive numerical integration of the differential eqs. (1) can be 
avoided. In common approaches piecewise polynomial approximations are used (cf. 
Renes [22], Kraft [17], Hargraves and Paris [13]). Approximations as finite sums 
of the Chebyshev expansions of x(t) and u(t) are also possible but not easy to handle 
in the presence of path constraints (see e.g. Vlassenbroek and van Dooren [26]). 
The differential eqs. (1) and the path constraints (4) are only satisfied at discrete 
points. The resulting nonlinear program is 

Minimize ~ ( I 0 ,  Y = (a l  . . . . .  ap,fl~ . . . . .  ~q, tf), y ~ IR p +q+l, (12) 

subject to a(Y) = 0, b(Y)  < O. (13) 

The differential equations, initial and end point conditions and path constraints 
enter the constraint functions a and b of the nonlinear program. 

The nonlinear programming problem is solved by using either a penalty 
function method or methods of augmented or modified Lagrangian functions such 
as sequential quadratic programming methods. 

The advantage of the direct approach is that the user does not have to be 
concerned with adjoint variables or switching structures. 

One disadvantage of direct methods is that they produce less accurate solutions 
than indirect methods: By solving numerically several difficult optimal control 
problems from aeronautics, we found that in practice the minimum functional value 
is obtained with relative low accuracy (i.e. errors of about one percent). Increasing 
the dimension of the finite dimensional space does not necessarily yield better 
values for the extremely complicated problems arising from aerodynamics. However, 
this "quantity" of one percent can be a crucial part of the payload in a space flight 
mission (cf. Callies et al. [6], Chudej et al. [7]). 

A second disadvantage is that the discretized optimal control problems have 
sometimes several minima. Applying the direct methods to the discretized problem 
they often end up in one of these "pseudominima". This solution, however, can be 
quite a step away from the true solution satisfying all the necessary conditions from 
variational calculus resulting, e.g., in a 20 percent worse functional value. Examples 
of such problems are reported by Bock et al. [16] and by [24]. 

To overcome these disadvantages it is necessary to combine direct with indirect 
methods. In the following, we present a special direct method used in conjunction 
with multiple shooting. 
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3. A direct method 

The basic ideas of this direct collocation method were outlined by Renes [22], 
Kraft [17], Hargraves and Paris [13]. Several additional practical features are added 
such as selection of  initial values, node selection, node refinement, accuracy check 
and convergence improving features as, for example, scaling of variables, additional 
constraints, special treatment of angles [24]. 

A discretization of the time interval 

t o = t I < t 2 < . . .  < t N = tf (14) 

is chosen. The parameters Y of the nonlinear program are the values of control and 
state variables at the grid points tj, j = 1 . . . . .  N, and the final time tf: 

Y = (u(t l) . . . . .  u(tN), X(t 1) . . . . .  X(tN), tN) E IR N(t + n)+ I (15) 

The controls are chosen as piecewise linear interpolating functions between u(tj) 
and u(tj + 1) for tj <_ t < 5 + I: 

t - -  tj 
Uap p (t) = U(tj ) + tJ+l _ t------~ (U(tj+l) - U(tj )). (16) 

Z61 

o 0 

• ~ j + !  

Fig. 1. Approximation of u(t). 

The states are chosen as continuously differentiable and piecewise cubic functions 
b e t w e e n  x(tj) and x(tj+ l), ~app(S):= f ( x ( s ) , u ( s ) , s ) ,  s = t j , t j+l ,  for tj <_ t <  tj+ l, 

j = l  . . . . .  N - l ,  

~ , . j ¢  t -  tj ~k 

c6 = x( t j ) ,  

c¢ = h iD,  

(17) 

(18) 

(19) 
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0 0 

Fig. 2. Approximation of x(t) and implicit integration scheme. 

ci2 = - 3 x ( t j  ) - 2hj3~ + 3x(tj+l ) - h j~+l ,  (20) 

= 2 x (  tj ) + h s f  j - x( t i+l)  + h s f  (21) 

where 

f j  := f ( x ( t j ) , u ( t j ) , t j ) ,  hj := tj+ 1 - t j .  

The states are piecewise cubic Hermite interpolating functions. Readers who are not 
familiar with this term are referred to common textbooks of  Numerical Analysis, 
such as e.g. [23]. The constraints in the nonlinear programming problem are 

,, the path constraints of  the optimal control problem at the grid points tj: 

g(x(tj), u(tj), tj) < O, j = 1 . . . . .  N, 

* the specified values of the state variables at initial and terminal time, 

* and 

f (Xapp(t) ,Uapp(t) , t ) -Jqpp(t)  = 0 for t = tj +tj+_.________~l j = 1, N - 1 .  (22) , * * . ~  

Further on, the index "app" for approximation will be suppressed. This way of  
discretizing x(t) has the advantage that not only the number of  parameters of  the 
nonlinear program is reduced (because :~(t/), j = 1 . . . . .  N, are not parameters) but 
also the number of constraints is reduced by this implicit integration scheme (because 
the constraints ic( t j )=f(x( t j ) ,u( t j ) , t j ) , j  = 1 . . . . .  N, are fulfilled by the chosen 
approximation). Other ways of  discretizing x(t) do not have this property. For the 
time being, the nonlinear program is solved by using a method based on sequential 
quadratic programming due to Gill et al. [11]. This direct collocation method has 
been successfully applied to difficult constrained optimal control problems such as 
the minimum accumulated heat descent trajectory of  an Apollo capsule with height 
constraint [24]. Convergence was achieved even in the case that no information was 
given about the optimal trajectory. Only information of  the given data was used. 
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Approximations of the minimum functional value and of the state variables with a 
relative error of one percent were achieved and were quite satisfactory. Approximations 
of the optimal control variables, however, were worse compared to the "exact" 
solution (see figs. 4 and 8). Also the disadvantages of direct methods described 
above have been observed. 

4. The hybrid approach 

To overcome the disadvantages of the direct method it would be desirable to 
combine the good convergence prope~ies of the direct method with the reliability 
and accuracy of the multiple shooting method. But the switch between both methods 
is not easy as it is necessary to set up the adjoint differential eqs. (7) and the optimal 
control laws (9). Also a proper choice of the multiple shooting nodes, initial values 
of the adjoint variables ~,(t) and the variables v ( t )  and the switching structure is 
needed in advance. 

As for the combination of the methods, the grid points of the direct method 
yield a good choice for the positions of the multiple shooting nodes. For example, 
in fig. 6 the final distribution of the 25 grid points obtained by the node selection 
and refinement described in [24] is marked by crosses on the time axis. 

As an additional advantage, reliable estimates for the adjoint variables (that 
do not explicitly appear in the direct formulation) can be obtained from the parameters 
and the Lagrangian function of the nonlinear program. 

We assume sufficient differentiability for all functions and (only for the 
purpose of illustration) n = 1, l = 1, m = 0. 

Evaluation of the approximations of u(t)  and x( t )  of the direct method from 
section 3 at the center t i + 1/2 := (tl + ti + 1)/2 of each discretization interval yields 

U(ti+ll2 ) = 1 (Ui + Ui+l ), (23)  

1 (Xi +Xi+l)  + t i+18t i  ( f ( x i , u i , t i ) - - f ( X i + l , U i + l  t i+l)),  (24)  X(ti+lt2 ) = ~ 

_ 3(Xi+l - -Xi)  1 ( f ( x i , u i  t i ) + f ( X i + l , U i + l , t i + l ) )  ' (25)  
"~(ti+l/2) -- 2(ti+l -- t i)  -- -~ 

i = 1  ..... N - I .  

Here the notation 

ui := U(ti) , X i := X(ti),  i = 1 . . . . .  N ,  (26) 

has been used, where u~ and x i are the parameters of the nonlinear program. Furthermore 

the relations 

~u(  ti+l/2 ) - 0 = ~u(  ti-1/2 ) (27) 
~xi ~xi ' 
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OX(ti+ll2) = 1__+ ti+l - t i  Of(xi,ui,tl) (28) 
~x i 2 8 bx ' 

~X( t i - l / 2 )  = 1___ ti -- ti-I ~ f ( x i , u i , t i )  (29)  
Oxi 2 8 Ox " 

O:c(ti+l/2) 3 1 Of(xi,ui,ti) 
= ( 3 0 )  

Ox i 2(ti+ 1 - t  i) 4 Ox ' 

~X( t i - l l 2 )  3 1 Of(xi,ui,tl) = ÷ (31) 
Ox i 2 ( t i - t i_ l )  4 Ox 

are needed. The Lagrangian of  the associated nonlinear program from section 3 is 

N-1 
L(Y ,# )  = qa(XN,tN)- ~_~#j(f(x(tj+l/2),u(tj+l/2)tj+l/2)--2(ti+l/2)), (32) 

j=1 

with # = (/.q . . . . .  ]AN- I) • IRN - I 

A solution of the nonlinear program fulfills the necessary first order conditions 
of  Kuhn and Tucker. In detail, we find among others for i = 2 . . . . .  N -  1 

o = ) 

--].ti(~f(x(ti+l/2)'U(ti+ll2)'ti+ll2) ~JT(fi+I/2 ) 1 
3xi  ~xi  " 

(33) 

Substitution of  (27) - (31)  into (33), the chain rule of  differentiation, and some basic 
calculations lead to 

~L 3 (  #i I-ti-1 1 1 ~f(xi ,ui , t i )  
~ X  i = t i+ 1 - -  t i t i -- ti_ 1 4 ~X (#i-1 + # i )  

1(  ~f(x(ti-ll2)'U(ti-l/2),ti-l/2) Of(x(li+ll2)'U(ti+ll2)'ti+l/2) 1 
- 7  #i-1 bx ~ #i bx 

Of(xi,ui,ti)Iti--ti-1 ti+ ti 1 
4 ~x ---- if--  #i-1 ~ -  #i . (34) 

For convenience, we now suppose an equidistant grid, i.e. 

ti+l - ti = h = tf - to N - 1  ' i = l  . . . . .  N - 1 .  (35) 
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Introducing the abbreviations 

J~ :=  f (x i 'u i ' t i ) ,  J~+l/2 :=  f(x(ti+ll2),U(ti+il2),ti+ll2), (36) 

eq. (34) can be rewritten as 

OL 
= - 3 ( # i  - #i-1) 

Oxi 

43x (/zi-1 q-#i)--'2~i-l~-"-ff~x -- ~i ~X 
i "  

-ff-~- t#i-1 - #i ). (37) 

By using Taylor's theorem 

/ - + o ( h ) , / 2 - - xOZ + O ( h ) ' (38) 

we obtain an adjoint difference equation for #;, valid for i = 2 . . . . .  N -  1, 

OL _ 3 #i  - #i-1 
Oxi 2 h 

3 (#i + # i - 1 ) - ~ +  O(h)  
4 

= 0. (39) 

By keeping t = t i fixed and letting h ---> 0 by increasing the number of grid points 
N---> ,,~, eq. (39) converges to the adjoint differential equation 

12 (ti) = -Id (ti) Of(x( t l  )' u(ti )' ti) 
Ox 

So we use 

(40) 

~t , ( t i+ l l2 )  = O'.(--#i), cr=const.  >0 ,  i = 2  ..... N - l ,  (41) 

as an estimate for ~(t) with a scaling factor or. For all optimal control problems of 
Mayer type, tr can be easily determined by using the additional end point condition 
for 2(ty) from calculus of variations. Relation (41) was used in the examples of 
section 5. 

Obviously, an estimate for the multiplier function v(t) appearing in (5)-(9) 
in the presence of constraints g can also be obtained by this approach. 

The examples show that the switching structure for the constraints on the 
state variables will be approximated in a satisfactory way by a solution of the direct 
method. However, the switching structure of the constraints on the control variables 
will not be approximated as well due to the bad approximation of the control 
variables. At this point, further refinements are required. 

Nevertheless, this hybrid approach has been successfully applied to several 
test examples and new real-life problems with unknown solutions as, for example, 
the maximum range trajectory of a hangglider [4]. 
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5. Numerical examples 

5.1. THE BRACHISTOCHRONE PROBLEM 

As a first example and in order to illustrate the properties of the direct method 
for estimating adjoint variables the well-known classical Brachistochrone problem 
was chosen. Here, the numerical solution from the direct collocation method is 
compared with the exact solution. As for the formulation of the problem the notation 
of Bryson and Ho [1] is used, see section 2.7, problem 6 (the gravity acts in the 
direction of the y-axis): 

Minimize J[O] = tf, 

subject to the differential equations 

(42) 

Jc(t) = ~V~y(t) cos~9(t), g = 9.81, (43) 

~(t) = ~ y ( t )  sin O(t),  0 < t < t f ,  

and the prescribed values at initial and terminal time 

(44) 

x(O) = O, x ( t f )  = 1, (45) 

y(0) = 0, y( t f )  free. (46) 

The control O(t) is the angle of the tangent of the trajectory (x( t), y( t) ). 
The necessary conditions, derived from calculus of variations, can be solved 

analytically; and we obtain for the state and control variables of the optimal trajectory 
in 0 < t <_ tf: 

1 ( cot - sin cot), co=~f-~,  (47) x(  t ) = -y 

y(t)  = 2 s in2 (2  t), (48) 

1 O(t) = ~ ( ~ -  cot), (49) 

and the adjoint variables 

~,x ( t ) = - ~  ~gg , 

;I.y (t) = ~,x COt(2 t ) • 

The final time and minimum functional value is 

t f = ~gg . 

(50) 

(51) 

(52) 
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Fig. 3. The (x(t),- y(t)) trajectory in the plane. 
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Fig. 4. The  optimal  conta'ol O versus time. 
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Fig. 5. The adjoint variable ~ versus time. 

Figures 3 to 5 show the initial trajectory (- - -) of the direct method for 5 equidistant 
grid points, the solution of the direct method ( . . . . .  ) for 10 grid points and the 
analytic solution (-). In the figures there is no visible difference between the 
approximated and the exact state variables x and y. The minimum functional value 
is achieved with an error of 7/1000 percent. Obviously, the singularity of A.y(t) at 
t = 0 affects the quality of the approximation of O(t) in the neighborhood of t = 0. 

It should be noted that due to the singularity of ~( t )  at t = 0, the problem 
cannot be solved by multiple shooting when using this formulation. An additional 
refinement as, e.g., a local finite Taylor series is therefore necessary. 

5.2. THE APOLLO REENTRY PROBLEM 

To illustrate the properties of the hybrid approach we solve another well- 
known but rather difficult problem of finding the minimum accumulated heat descent 
trajectory of an Apollo capsule (cf. [23,24] and Pesch [21]). 

The differential equations of this two dimensional model are for 0 < t < t/: 

~, _ S go sin y 2mP(~)V2CD(U ) (1+ ~)2,  (53) 

= Rs in  y,  (54) 

= l - - ~ c o s y ,  (55) 
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~" = -~m p( ~) vct` (u) + 

dt= CV3~P~ ) , 

vcos 7 go cos 7 (56) 
R ( I + ~ )  v ( l+  ~) 2 '  

(57) 

where the abbreviations 

c o (u) = Coo + Cot ̀ cos u, Coo = 0.88, Cot ̀ = 0.52, (58) 

cL(u)  = ct` o sinu, ct` o = -0.505, (59) 

P ( ~ )  = P o e x p ( - f l R ~ ) ,  Po = 2.3769x10-3, (60) 

S =  50000, go = 3.2172 × 10 -4, R = 209.0352, (61) 
rn  

~ =  1 
0.235 '  c = 2 0 ,  N = 4 ,  (62) 

have been used. The state variables are the velocity v, the normalized height ~, the 
range over ground 5, the flight path angle 7and the accumulated heat q. The control 
variable is the angle of attack u. The final time tf is free. The prescribed values at 
initial and terminal time are 

v(o)  = 0.35, 

~(o)  = 4/R,  

~(o) =o, 
7(0) = -5 .75.  ~/180, 

q(O) = o, 

v( t / )=0 .0165 ,  

~ ( t f )  = 0.75530/R, 

i f ( t / )=  51.6912, 

7( i f)  free, 

q ( t : )  free. 

The functional to be minimized is 

J[u] = q(t/). 

The adjoint differential eqs. (7) from calculus of variations are 

;t, v = - 3 c v  2 ~'-'-~-'A,q fp (~  )'~ + 2--'~p(~)(2 v/t, vco (u) - / t ,  rct, (u))  

~ s i n T ~  cos r (~'~' + go z~ + , ~ ) - - - T - , ~ ,  
-T~(t,--k-- v2(1+ , )  

(63) 

(64) 

(65) 
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~ _ 1 - ~  3 f f ~ - ~  _ 2 ~ R p ( ~ ) ( V 2 A v C o ( U ) _  - -~pKcv ~ lT ,~q  vZrcL(u)) 

 o in, cos,' 'o 
- 2/~v (1 + ~)3 ( 1 + ~ )  2 7(1 + ~ - - - - - - ~  ' 

;/,;. = o, 

)~7¢=1--~R ~r v(l+¢) ~(1+¢)2 ~;L, , 

~q =0 .  

Furthermore, we have the additional conditions 

/~r(tf) = O, /~q(tf) = 1, H(tf)  = O, 

and the optimal control law 

= ( bcL(u) ~H S p ( ~ ) v  )],~, 
bu 2m bu 

Oco u) va,,, ~u )=0.  

(66) 

(67) 

(68) 

(69) 

(70) 

( 7 0  
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Fig. 6. The height of the capsule versus time. 
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Fig. 7. The adjoint variable of the height versus time. 

[oZeg] 
180 .00  

9 0 . 0 0  

0.00 
0 

- 9 0 . 0 0  

- 1 8 0 . 0 0  

i.~.~ .~ 
i 
i 
i 

i 
i 
I 

, I I I 

0 0 200. O0 800. O0 i400. O0 

il A i 
I \  ~ I 

! % / 

\/ \ / ....... 

% .,,- 
",,. ./ 

Fig. 8. The angle of attack versus time. 
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An initial trajectory for the iteration process is generated at nine equidistant 
grid points from the given prescribed values of the state variables at initial and final 
time. The direct collocation method converges in several refinement steps. Additional 
grid points had to be added in order to obtain a 25 grid point solution. 

By an automatic procedure the number and positions of multiple shooting 
nodes and the values of state and adjoint variables are obtained from the solution 
of the direct method. 

From these starting values the multiple shooting method (cf. [2, 19,20,23]) 
converges to a very accurate solution. 

The error in the achieved functional value and the final time of the solution 
of  the direct method compared with the multiple shooting solution was about one 
percent. 

Figures 6 to 8 show the height of the capsule, the adjoint variable of the 
height and the control angle of attack, the initial (- - -) trajectory, the result of the 
direct method ( . . . . .  ) and the solution of the multiple shooting method (-). In 
addition, fig. 6 also shows the initial and final distribution of the grid points of the 
direct method marked by crosses. 

6. Conclusions 

We have demonstrated that a combination of direct and indirect methods is 
a very promising way to obtain the numerical solution of nonlinear optimal control 
problems. 

The switch between both methods in the case of general nonlinear constraints 
on the control and state variables is currently studied. First numerical results are 
encouraging. 

Nevertheless, the solution of a difficult real-life optimal control problem 
cannot be obtained without any insight into the mathematical and physical nature 
of the solution of the optimal control problem. 
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