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POLLUTION CONTROL: A DIFFERENTIAL GAME APPROACH 
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Abstract 

Transnational pollution is formulated as a differential game between two sovereign 
governments. The symmetric open loop Nash equilibrium is shown to yield more polIution 
than in a cooperative solution. A model of Stackelberg leadership in pollution control 
is also investigated. The possibility of limit cycles is illustrated, using bifurcation 
theory. 
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1. Introduction 

Theoretical models of pollution control in an intertemporal setting have typically 
focussed on the case of a single country. Recent concerns over the greenhouse 
effect and the depletion of the ozone layer indicate that for many types of environmental 
problems it is necessary to formulate models from an international perspective. This 
paper is a modest step in this direction. 

The paper compares the fully cooperative solution with the alternative non- 
cooperative equilibria. The open loop Nash equilibrium is considered first because 
analytically this is the most tractable formulation. It is shown that the resulting 
steady state stock of pollution is larger than it would be in a fully cooperative 
solution, that the steady state is stable and that convergence is monotonic. More 
interesting patterns emerge when one country is the Stackelberg leader and the other 
is the follower. It is assumed that the leader is able to commit itself to a given path 
of emission of  waste, and that it announces its policy prior to the follower's choice 
of emission path. In this model, convergence to a steady state may be non-monotonic: 
spiralling is possible. Furthermore, there exist parameter values such that the optimal 
path is a closed orbit or converges to a closed orbit. This result is obtained using 
bifurcation theory and the explicit formula for the calculation of  roots of  a control 
system with two state variables. 
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2. The basic model 

There are two countries, indexed by i = I, 2. Each country has a fixed endowment 
of factors of production and produces a consumption good whose output is denoted 
by Qi. The production of  this good emits an amount Ei of pollutants. The magnitude 
of Ei depends on the extent to which factors of production (capital and labor) are 
applied to emission control activities. This diversion of real resources would of 
course reduce the output of the consumption good. Following Forster [6,7], we 
represent the consumption emission trade-off by the reduced form function 

Qi = Fi(Ei), (1) 

where Fi(Ei) is strictly concave and F/ '(0)> 0. 
The stock of pollution at any time t is denoted by P(t). We assume that the 

two countries "contribute" to the same stock of pollution. For simplicity, the evolution 
of stock P(t) is represented by the following linear equation: 

dP 
dt E l(t) + E 2 (t) - kP(t), (2) 

where k > 0 is a constant rate of  decay. (For non-constant decay rates, see 
Forster [7].) 

Pollution is a "public bad" because of its adverse affects on health, quality 
of life, and also production. We assume that these adverse effects can be represented 
by having P as an argument of the instantaneous social welfare function W/, with 
negative derivative: 

Wi = Wi(Qi, P), (3) 

°~W/ < O. (4) 
aP 

In each country, aggregate social welfare is taken to be the integral of the 
discounted flow of instantaneous social welfare: 

V/= i exp (-rit)Wi(Qi(t), P(t))dt, (5) 
0 

where ri > 0 is the rate of discount. 
For tractability, the function Wi is often assumed to take the separable form: 

Wi(Qi, P) = Ui(Qi) - Di(P), (6) 
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where Ui(Qi) may be thought of as the utility of consumption, and Di(P) as the 
"disutility" caused by pollution. Following standard practice, we take it that Ui is 
strictly concave and increasing in ai,  and that Di is convex and increasing in P. The 
possibility that D i is linear is not ruled out. 

Given that each country would want to have the highest possible aggregate 
social welfare V~, what is the course of action that each should take? The answer 
depends on the extent to which the two countries can cooperate. If the two countries 
have the same rate of discount r (i.e. rl = r2), it would seem natural that a fully 
cooperative solution would involve the maximization of the sum (or some weighted 
average) of V1 and V2. The solution for this is standard. There would be a common 
"shadow price" q, of the stock of pollution, which would serve to guide the optimal 
policy. This shadow price would be negative, and at each instant the marginal rate 
of trade-off between consumption and environmental control (the derivative Fi'(Ei) ) 
must be equated with the absolute value of the shadow price expressed in terms of  
the consumption good: 

Fi, ( Ei( t) ) _ - q (  t) (7) 
U[ (Oi)" 

Furthermore, q(t) must change over time; its rate of change would follow the 
equation 

/ '/¢'1 
-___7_~ = (r + k )q + D{ (P) + D6 ( P). (8) 
dt 

There would exist an optimal steady state stock of pollution, P ,  and a corresponding 
steady state shadow q* such that 

_q, = D{ (P*)+D6 (P*) 
r + k (9) 

and the optimal steady state emission rates would be E~ and E*2, where 

and 

))Fi(Ei ) = (10) Ui( Fi ( Ei - q 

E~ + E~ = kP*. (11) 

Equations (9) and (10) give the rule for the optimal long run supply of a 
"public bad": 

(E? ))F, '(E? ) = (P*) + 06 (P*) (12) 
r+k 
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In economic terms, eq. (12) states that the marginal contribution of waste emission 
to the utility of consumption must be equated to the sum of the marginal costs of 
pollution, measured in present value. This rule is the intertemporal counterpart of 
the familiar Lindahl-Samuelson rule for the optimal provision of a public good. 

The fully cooperative outcome is unlikely to be achievable in the real world, 
because of the costs of coordination. Equation (12) is best thought of as a benchmark 
against which other altemative outcomes can be compared. Two of these alternatives 
will be considered in this paper. Firstly, one can compute the open loop 
Nash equilibrium, in which each country forecasts the entire time path of emission 
of its neighbour, and optimizes with respect to its own emission rates. Secondly, 
one can study the open loop Stackelberg equilibrium: the home country (country 1) 
knows that the foreign country will react to its time path of emission El(t) ,  and is 
able to pre-commit itself to any particular path E~(t); its problem is to find the best 
path. The open loop Stackelberg solution yields a higher level of welfare to the 
home country, as compared with the open loop Nash solution: This is because the 
latter solution is a feasible choice for the home country. 

3. The open loop Nash equilibrium 

Suppose country i believes that country j will follow a given time path Ej (t), 
regardless of what E i (t) might be. Country i's problem is then to choose E i (t) that 
maximizes the integral of its discounted flow of social welfare, as specified by (5) 
and (6). The solution of country i's problem may be denoted as 

ei(.)  = ¢i{e  (.); Po}. (13) 

Following Basar and Olsder [3], we define an open loop Nash equilibrium as a pair 
of time paths {E~(.); E~(.)} such that 

= '1 P0} 
and 

(14) 

EN(") = ~b2{eN('); P0}. (15) 

To determine the properties of an open loop Nash equilibrium of our pollution 
game, we first set up country i's Hamiltonian function associated with the control 
problem (5): 

Hi = Ui(Fi(Ei)) - Di(P ) + q i(E1 +E2  - k P ). (16) 

The Maximum Principle yields: 

Ui'F[ = - q i ,  (17) 
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dql = (r  i + k)qi  + D~(P), (18) 
dt 

d P =  E I + E  2_kP .  (19) 
dt 

To these, we add the transversality condition: 

lim e x p ( - r i t ) q i ( t ) P ( t  ) = 0. (20) 
l----> o o  

For simplicity of notation, let us define 

lt~(Ei) = Ui(Fi(Ei)).  (21) 

Equation (17) becomes 

v [ (  EI)  = - qi. (22) 

From (22) and (18) we obtain the differential equation 

dEi _ (ri + k ) ~ ( E I ) - D ~ ( P )  (23) 
dt q,~' (ei) 

From (23), with i = 1, 2, and (19), we have three differential equations in Ea, E2 and 
P. These and the boundary conditions 

P(O) = Po, (24) 

lim e x p ( - r i t ) ~ ' i ( E i ) P ( t )  = 0 (25) 
l - - - -~oo 

determine the open loop Nash equilibrium. 
We now verify that the steady state equilibrium (E N, pN) has the saddle-point 

property. The Jacobian matrix is given by 

J = -O{ ' l  ~,~" rl + k 

- D U  V~' o r2 + k 

From this, trace J > 0 and det J < 0. Therefore, 
implying saddle-point stability. 

(26) 

there exists a negative eigenvalue, 
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Consider the special case in which the two countries are identical. The symmetric 
Nash equilibrium yields the steady state solution (E~, E2 N, prq), where E~ = E~ and 
e N = 

v[(EN) = D{ ((2/k)E~) 
r + k (27) 

Equation (27) may be compared with its counterpart of the fully cooperative solution, 
i.e. eq. (12) which is reproduced below for the symmetric case 

~ ( E * )  = r + k  (28) 

Since V~ is decreasing in E1 and D~ is increasing in E l, we conclude that the steady 
state emission in the open loop Nash equilibrium is higher than that of the fully 
cooperative solution (which is, of course, essentially the one-player case). 

4 .  T h e  o p e n  l o o p  S t a c k e l b e r g  e q u i l i b r i u m  

In the preceding section, it was assumed that each country behaved as if it 
must choose the whole time path Ei(t) at the beginning of the game. An open loop 
Nash equilibrium is a pair of time paths of emission rates such that, given one 
country's time path, the other country's time path is optimal from its own point of 
view. If each country believes that at no stage would its neighbour deviate from its 
chosen time path, then clearly there is no incentive for it to deviate either. The open 
loop Nash equilibrium is thus time-consistent (though in general it is not subgame 
perfect). We now study a different kind of solution, called the open loop Stackelberg 
solution, which has the potential of being time-inconsistent, and which is therefore 
credible only if the "leader" can pre-commit itself to the plan it announces at the 
outset. 

Assume that the home country (country 1) is the "leader". It knows that for 
any time path El(t) that it commits itself to, country 2 would find the time paths 
E2(t) and q2(t) that satisfy eqs. (17) to (20), with i = 2. The home country could of 
course commit itself to the open loop Nash equilibrium path E~(t), in which case 
country 2 would choose E~(t) and would be back to the previous section. However, 
the home country can do better. From (17), we know that E 2 is a function of q2: 

E 2 = ( 1/t~)-I (-q2) = Z(q2). (29) 

Since 

Ipr~l(E2)dE 2 = - d q  2 (30) 

dz -1 
- -  - - -  > 0. ( 3 1 )  
dq2 tK~'(E2) 
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Equation (31) implies that when q2 becomes less negative (i.e. closer to zero), the 
foreign country will allow a higher rate of emission. So country 1 can indirectly 
control country 2's emission by suggesting a time path of shadow price q2(t). This 
suggestion would be accepted by country 2 if q2(t) satisfies the following differential 
equations: 

dq2 = (r 2 + k)q2 + D6(P), 
dt 

(32a) 

and 

dP 
B dt Z(q2)+El( t ) -kP '  (32b) 

lim exp(-rzt)q 2(t)P(t)  = O. (32c) 
t . . - ) o o  

Conditions (32a) to (32c), regarded as conditions on the time path of q2, may be 
terms of "the incentive compatibility conditions" of principal-agent problem. If 
country 1 can suggest a time path q2(t) and project the time path El(t) and P(t) such 
that conditions (32a) to (32c) are satisfied, country 2's optimization problem is 
solved. Country l's problem then is to choose the best path El(t) and indirectly q2(t). 
This is an optimal control problem involving two state variables, P(t) and q2(t). 
Note that while q2(t) is a co-state variable in country 2's problem, it is a state 
variable in country l's problem. 

Country 1 seeks El(t), q2(t) and P(t) that maximize V1, subject to (32). Let 
O and ~' be country l's co-state variables associated with the state variables P and 
q2. The Hamiltonian of  country l's optimal control problem is: 

H = ll tI(E1)-DI(P)+O[E l + Z ( q 2 ) - k P ] +  y[(k+r2)q2 + D~(P)]. 

The necessary conditons are 

= - O ,  ( 3 3 )  

dP 
= E 1 +Z(q2) -kP ,  (34) 

dt 

dq2 = (k + r2)q2 + D~(P), (35) 
dt 

dO 
= (r 1 + k )O +  D~(P)- ?'D~(P), (36) 

dt 

dT = (r~ - r 2 - k ) T -  OZ'(q2). (37) 
dt 
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From (33), E1 is a function of  O alone. We may also write 

With 

E l =  G(O), (38) 

1 
G'(O) = - - -  > 0, (39) 

substituting (38) into (36), we obtain from (34) to (36) four autonomous differential 
equations. To characterize the equilibrium of this system, we first note that at the 
equilibrium 

V[(r 1 - r 2 - k)(r 1 + k)  - Z'D~'] = - D{Z ' ,  (40) 

O -  (rl - r2  -k)~' (41) 
Z t 

kP  = G(O) + Z(q2), (42) 

- D ~ ( P )  
q2 = (43) 

r2 + k  

Thus, the equilibrium stock of pollution must satisfy the following equation 

Z DE ( - F ) - ~ r i - - ~  --L--~rl rE + k j - kP  = O . (44) 

Let f~(P) denote the left-hand side of (44). If f2(0) > 0 and O(P) tends to minus 
infinity as P tends to infinity, then (44) has a solution P* > 0. Sufficient conditions 
for this are: 

O~(O) = O{(O) = 0, (45a) 

Z(0) > 0, G(0) > 0, (45b) 

lim G ( O ) =  lim Z ( q 2 ) = 0 ,  (45c) 
~ - - - ~ -  oo q 2 - - - ~ -  0o 

rl - r :  - k < 0. (45d) 

Condition (45a) says that when the stock of pollution is zero, the detrimental 
effects of  a small increase in pollution are negligible. Condition (45b) is plausible: 
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when the shadow price of the "public bad" is zero, emissions are positive. Conditions 
(45c) and (45d) are also easily interpretable. 

If f~'(P) < 0 then the steady state pollution stock P* is unique. Differentiating 
the left-hand side of (44) with respect to P, and bearing in mind (45d) and the 
properties of G, Z, D 1 and D 2, we see that a sufficient condition for uniqueness is: 

Z'D~'" Z"(O~)Z < O. (46) 
rz +k 

Assuming uniqueness, can we determine whether the level P* of  this problem 
is higher than p N  the steady state pollution level in an open loop Nash equilibrium? 
As the present level of generality, it does not seem possible to obtain an unambiguous 
answer. Let us consider the special case where the two countries have identical 
preferences and technologies, with 

igi(Ei ) = AE i _ _~Eil 2, (47) 

S 
Di(P ) = 2" p2, (47b) 

r 1 = r 2 (= r). (47c) 

It is then easy to show, using (26) and (44), that 

pN = A (48a) 
( k / 2 ) + ( s / r + k )  

and 

p .  = A (48b) 

+ ) 2 k + 1 s + r + k - ( s / k )  

Therefore, P* > pN in this case. We now show that in this more polluted environment 
country 1 (the leader) emits more waste, and country 2 emits less, as compared with 
their steady state emission levels in the open loop Nash equilibrium. In order to see 
this, note that in a steady state 

E2 = A + q2 = A - [sP/(r+k)]. 

Therefore, as P* > pS, we must have E 2 < E2 N, as is clear from the above equation. 
Finally, since kpN= 2E~ = 2E~ and kP*= E*I+ E*2, E] must exeed E N (recall that 
p .  > pN and E~ < E2N). 
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It remains to investigate the stability properties of  the equilibrium P*. Consider 
the system of  eqs. (34) to (37), with E1 = G(@). Linearizing this system at the steady 
state, we obtain a Jacobian matrix with the following pattern 

,=I A 

where B and C are symmetric matrices. This pattern is common to all optimal 
control problems. In our problem, 

h e " 

m r l - a  

n - b  r 1 - h  

(49) 

where 

aP aP 
a =-~-~ = - k ,  b = 3q 2 = Z ' ,  

ap ap 
d = - ~ - ~ = G ,  e = ~--~ = 0, 

042 = DL g=-&-- 342 = k + 
h = - ~ 2  r2, 

0¢2 ae rm'~" 
~ = --a-/- = o, j = - a F  = ~ ' -  , 

ae aS,_ ez". m = ~ = O, n = aq 2 

Let 

w = rla + rih - a 2 -  h 2 -  2bg - 2em - d j  - ni. (50) 

As is shown in Dockner [4] and also in appendix 1 of Kemp et al. [9], the four roots 
of  matrix j are 

r 1 + [rl 2 _ w + 1 Al/21112 
/~'1,2,3,4 = 2 -- L 4 2 - ~- J , (51) 
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where 

A - w 2 -  4 detJ.  (52) 

It follows that there are two positive real roots and two negative real roots if and 
only i f  the following conditions are satisfied: 

A > 0, (53a) 

w < 0, (53b) 

d e t J  > 0. (53c) 

Consider the plane (w, det J), where w is measured along the horizontal axis and 
de t J  along the vertical axis. Conditions (53a) to (53c) define a unique region $1 of  
this plane in which we have two positive real roots and two negative real roots. 
Consider next the region above the parabola de t J  = (w/2) 2. In this region A is 
negative, and we have four complex roots. Kemp et al. showed that the real parts 
of these complex roots may vanish only along the curve defined by* 

de t J  = (w/2) 2 + r2(w]2), w > O, (54) 

The curve depicted by (54), where w > 0, is called the bifurcation locus. 
Since the roots are continuous in w and detJ,  it follows from the above 

observations that in the sets $2 and $3 defined below, we have four complex roots, 
two with negative real parts and two with positive real parts: 

$2 = {(w, detJ): w _< 0 and de tJ  > (w/2)2}, 

$3 = {(w, det J): w > 0 and de tJ  > (w/2) 2 + r2(w/2)}.  

It follows that a sufficient condition for the steady state to have two roots with 
negative real parts (or two negative real roots) is that both det J and (-w) are positive. 
Now 

- w  = r 2 + 2kr  2 + 2k 2 - rlr 2 + 2D~'Z" + G'D "1 - 

Therefore, (-w) is positive provided that 

r l <  r2+ k 

and 

D~" < O .  

D~Z'G'D~'" 
( 5 5 )  

Z'D~'- (rl  - rE - k ) ( r l  + ~ )  

(56a) 

(56b) 

*In Doekner [4], it was stated in part (iv) of theorem 2 that pure imaginary roots are not possible if 
r I > 0. Professor Dockner has acknowledged in private correspondence that part (iv) of theorem 2 is 
incorrect. 
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The expression for de t J  is slightly more complicated: 

det J = (k 2 + kr 2 + Z'D~') [Z'D~" - (r 1 - r z - k)(r 1 + k)] 

+ G'(r 2 +k-rl){O{'(k+r2) + ),[(Z"/Z')(D~') 2 -(k+r2)O~"]}.  (57) 

If we assume (56a) and (56b), then de t J  is positive provided that the expression 
inside the last square brackets is positive. This would be the case if Z were linear. 

We conclude that under certain mild restrictions, the steady state is stable in 
the sense that convergence can be assured by suitable choices of  initial values of 
q2 and O. It is possible, however, to find parameter values at which bifurcation 
takes place, so that there exists an optimal path that perpetually orbits around the 
steady state. This holds only if: 

w > 0 (58a) 

and 

d e t J  = (w/2) 2 + r21(w/2). (58b) 

(See Kemp et al. [9] for a proof.) Therefore, bifurcation is possible in this model 
only if D~" > 0 or rl > r2 + k or both. In particular i f  D 2 is quadratic and rl = r2 
then there is no bifurcation. 

Let us construct an example where there are bifurcations. From Kemp et al. 
we know that for a pair of  pure imaginary roots, we only need to find an angle fl 
and a triplet (rl, w, detJ) such that the following equations are satisfied simultaneously: 

cos/3 = (r I / 2 ) [ ( r  1/2)  4 - w(r l / 2 )  2 + detJ ]  -It4 (59a) 
2 

c o s t  = [(r 1 /2)  2 - (w/2)][(r  1/2)  4 - w(r 1 /2)  2 + de tJ ]  -112 . (59b) 

Each of  the following values does the trick: 

zc 1.25),  ( f l , r l ,w ,de tJ )  = ( - ~ - ; ~ ,  1; 

( f l , r l ,w ,de tJ )=(~-~- ;  1; 1.50; 1.3125). 

Thus, if we set 

r I = 1 ;  r2=0 .6 ;  

D~(P*) = 1.0648, 

k = 0 . 6 ;  Z ' = l ;  G ' = I ;  D~=I ;  D{'=0, 

D~"(P*) = 6.6880, 

then (61) is satisfied. These values imply 

(60) 

(61) 

O* = -0.1444, T* = 0.7221. 



N.V. Long, Pollution control 295 

Furthermore, if  we assume the following explicit functional form 

D2(P ) = 1.1147 p3, 

then 
p* * 

= 0.1592, q2 = -0.0726. 

We have therefore constructed an example of bifurcation, with the home country's 
disutility function DI(P) being linear and the foreign country's D2(P) being cubic, 
and r I > r2. The steady state pair (q2, P*) is surrounded by an orbit. 

The conditions that lead to limit cycles in this model can be related to a result 
in Brock and Sheinkman [2]. Let ~, = (O, ?9 and x = (P, q2). Then Brock and Sheinkman 
state that if trace Hzx is negative, then limit cycles can be ruled out globally. In our 
model, 

trace (Hzx) = r2 > 0. 

Thus, the trace condition is violated. 

5. Concluding remarks 

In this paper we have studied the possible outcome of a pollution game between 
two neighbouring countries. In section 3, both countries move simultaneously and the 
moves are chosen at the outset. The Stackelberg equilibrium was considered in 
section 4, where a variety of  possible outcomes was displayed. Cyclical behaviour 
was shown to be possible. Both models require the ability of  the government to make 
credible commitment. When such commitment is not possible, the appropriate equilibrium 
concept would be Markov perfect equilibrium, as in Fershtman and Kamien [5]. 

Our approach has relied on certain symmetry between the two countries. It 
would be interesting to explore the implications of a relaxation of  this symmetry. 
For example, in the case of global warming, some countries may gain from global 
atmospheric pollution. Another extension of the model would be to allow for investment 
in production capacity and pollution control technology. 

Finally, we have restricted our analysis to local properties of  steady states. 
It would seem desirable to investigate the global dynamics of  the system. 
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