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Abstract 

Routines callable from FORTa~ and C are described which implement matrix- 
matrix multiplication and transposition for a variety of sparse matrix formats. Conversion 
routines between various formats are provided. 
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1. Introduction 

The routines described here perform matr ix-matr ix  multiplies, transposes 
and format conversions for sparse matrices. There are three formats supported. 
These include the old and new Yale sparse matrix package formats [4 -6 ]  and the 
more efficient one for square matrices advocated by Bank and Smith [1]. In each 
case, only the nonzeros are stored, not the zeros (or as few as possible). 

The principal use of  these routines will probably be in implementing parallel 
computation algorithms. For example, in one variant of  the parallel multigrid [2, 3], 
as the number of  coarse grid problems per level grows, it becomes increasingly 
difficult to generate the coefficient matrices based on grids, as a serial multigrid 
solver does. 

*The algorithms and routines described here were developed while both authors were visiting the Center 
for Applied Mathematics, Department of Mathematics, Purdue University. This research was supported 
in part by the Office of Naval Research, Grant No. N00014-895-1440. 
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In section 2, we describe the sparse matrix formats we support. In section 3, 
we describe the structure of  the package and the calling sequences of each routine. 
We describe the algorithms implemented by the package in section 4. Finally, 
instructions for obtaining a copy of  the code are in section 5. 

The routines described here differ from those in either SPARSKIT (see [9]) 
or the proposed sparse BLAS (see [7,8]). There is some overlap with SPARSKIT, 
but we are more interested in a data format not supported by SPARSKIT. The 
sparse BLAS have interfaces for multiplying a sparse matrix by a dense one, but 
not for multiplying two sparse matrices. Also, our routines are in the public domain 
with no restrictions, while the others are not necessarily so. 

2. Sparse matrix formats 

In this section, we define the three methods for storing a sparse matrix M. 
Let M = D + L + U, where D is the main diagonal part of  M, L is the strictly lower 
triangular part of M, and U is the strictly upper triangular part of M. We define the 
number of  nonzeros of  M as NZ(M). 

The old Yale sparse matrix format [5,6] requires three vectors: 

IA: [IA ] l e n g t h N + l  

JA" I Ja ] l eng th  NZ(M) 
or NZ(D + U) 

A :  I M ] length NZ(M) 
or NZ(D + U) 

M is stored in row form. If M is symmetric, the elements of  L do not have to be 
stored in A. The first element of row I is A(IA(1)). The length of row I is determined 
by IA(I + 1) - IA(I), which is why IA requires N + 1 elements instead of  the obvious 
N elements. The column indices of  M are stored in the JA vector. For element A(J), 
its column index is JA(J). The elements in a row may be stored in any order. 

The new Yale sparse matrix format [4] requires two vectors: 

I I I IJA : IA length N + 1 + NZ(M- D) 
or N + I + N Z ( U )  

A" ID I 0 [ L a n d U  [ lengthNZ(M) 
or NZ(D + U) 

M is still stored in row form. T h e / A - J A  vectors of the old format are combined 
into a single vector, sometimes referred to as an IJA vector. As before, the first 
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element of  row I is A(IJA(I)). In this case, the main diagonal of M is separated out 
from the nonzeros of L and U. The diagonal for row I is in A(1). There is a zero 
after D so that the JA and L[U parts of  the IJA and A vectors are aligned properly. 
Technically, the rows of A should be stored in ascending column order. However, 
this is not enforced. 

The Bank-Smi th  sparse matrix format [1] requires M to be a square matrix 
with a symmetric (or nearly so) zero structure. It requires two vectors: 

IJA "1 IA ] JA ] length N + I + N Z ( U )  

a "  ]D l 0  [ U  T ] L  I length N + I +  NZ(M-D) 
or N + I + N Z ( U )  

While M is stored strictly in row form, in a real sense it is stored in both column 
and row form. Since we assume that M has a symmetric zero structure (or L and 
U are padded by a small number of zeros), we need only store the row indices for 
U (when U is stored in column form). These are also the column indices for L (when 
L is stored in row form). However, we store the transpose of U in row form instead 
of U. If M is symmetric, the elements of  L do not have to be stored in A. The first 
element of  column I of U is A(IA(1)). The length of  column I is determined by 
IA(I + 1) - IA(1), which is why IA requires N + 1 elements instead of the obvious 
N elements. The row indices of U are stored in the JA vector. For element A(J), 
its row index is JA(J). The elements in a column must be stored in ascending row 
order. We define LSHIFT to be 0 i f M  is symmetric and IA(N+ 1 ) -  IA(1) i f M  is 
nonsymmetric. The first element of L is A(IA(1)+ LSHIFT). L is stored in row 
format. The column index of  an element A(IA(I) + J + LSHIFT) is JA(IA(1) + J). 

For all three sparse matrix formats, we can assume there are three vectors IA, 
JA, and A which describe M. Except for the old Yale sparse matrix format, the 
vectors IA and JA are really the same vector IJA. We also need a variable DIAGA 
which is one if the diagonal is separated from the rest of  the nonzeros and zero 
otherwise. Last, we need a variable SYMA which is one i fM is stored in a symmetric 
manner and zero otherwise. 

3. Calling sequences 

In this section, we describe the five routines which comprise the package. 
These include two routines to multiply matrices, a routine for the transpose of a 
matrix, and two routines to convert between various sparse matrix formats. 

For each routine in this section, the calling sequence assumes distinct IA and 
JA vectors for each matrix. Suppose a matrix is actually stored using an IJA vector. 
Then the routine should be called with IJA as an argument twice, once for each 1A 
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and JA. The IJA vector should not be subscripted to point to either of  the IA or JA 
parts; the routines will do this automatically. 

We multiply two sparse matrices, resulting in a third: 

C=AB.  

Matrix-matrix multiplication is performed in two steps. These routines only support 
the Yale sparse matrix formats. First, the nonzero structure of the resulting matrix 
is determined symbolically in SYMBMM; 

subroutine SYMBMM (N, M, L, IA, JA, DIAGA, IB, JB, DIAGB, 
IC, JC, DIAGC, INDEX) 

integer N, M, L, IA(*), JA(*), DIAGA, 
IB( * ), JB( * ), DIAGB, IC ( * ), JC ( * ), DIAGC, 
INDEX(*) 

The number of rows and columns of the matrices are 

matrix rows columns 

A N M 
B M L 

C N L 

INDEX is a scratch vector of length max{L, M, N}. It is used to store linked lists. 
The output of SYMBMM is IC and JC. They are dependent on the value of DIAGC. 

Once the nonzero structure for C is known, the numerical matr ix-matr ix 
multiply is computed in NUMBMM: 

subroutine NUMBMM 

integer 

real 

(N, M, L, IA, JA, DIAGA, A, IB, JB, DIAGB, B, 
IC, JC, DIAGC, C, TEMP) 

N, M, L, IA(*), JA(*), DIAGA, 
IB( * ), JB(*), DIAGB, IC(*), JC( * ), DIAGC, 
A(*), B(*), C(*) 

TEMP is a scratch vector of length max{L, M, N}. It is used to store partial sums. 
We may also compute the transpose of a matrix, resulting in a second: 

B = A  T. 

We do this operation in TRANSP: 
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subroutine TRANSP 

integer 

real 

(N, M, IA, JA, DIAGA, A, IB, JB, MOVE) 
IC, JC, DIAGC, C, TEMP) 

N, M, IA(*), JA(*), DIAGA, 
IB(*), JB(*), MOVE 
A(*), B(*) 

The number of  rows and columns of  the matrices are 

matrix rows columns 

A N M 

B M N 

We assume that B will use the same diagonal storage method that is used for A. We 
do not actually move the elements of  A and B unless MOVE is one. 

Finally, we have two routines for converting between one of  the Yale formats 
and the B a n k - S m i t h  format. This makes sense only when the matrices are square. 
The routine YTOBS will convert a Yale format sparse matrix into the B a n k - S m i t h  
format: 

subroutine YTOBS (N, IA, JA, DIAGA, SYMA, A, IB, JB, B, MOVE) 

integer 

real 

N, IA(*), JA(*), DIAGA, SYMA, 
IB(*), JB(*), MOVE 
A(*), B(*) 

By definition, DIAGB must be one. Hence, we do not need it as an argument. We 
determine whether or not B should be stored in a symmetric or nonsymmetric 
manner from SYMA. We do not actually move the elements of  A into B unless 
MOVE is one. 

The routine BSTOY will convert a Bank-Smi th  format sparse matrix into one 
of  the Yale formats: 

subroutine BSTOY (N, IA, JA, SYMA, A, IB, JB, B, DIAGB, B, MOVE) 

integer 

real 

N, IA(*), JA(*), SYMA, 
IB(*), JB(*), DIAGB, MOVE 
A(*), B(*) 

We determine which o f  the two formats by the value of  DIAGB. We determine 
whether or not B should be stored in a symmetric or nonsymmetric manner from 
SYMA. We do not actually move the elements of  A into B unless MOVE is one. 
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4. Algorithms 

In this section, we describe the algorithm for S Y M B M M ,  N U M B M M ,  and 
TRANSP.  We use a metalanguage rather than real code. One of  the facets of  these 
algorithms is their ability to work well with matrices in a variety of  formats. 

4.1. SYMBMM 

Initialization consists of  setting up the first row pointer and clearing all of  
the links (contained in INDEX):  

1. do i E ( 1  . . . . .  m a x { l , m , n } }  { 

2. indexi = 0 

3. } 
4. if  (diagc = = O) { 

5. icl = 1 

6. ) 
7. else { 

8. icl = n + 2  
9. } 

I N D E X  is used to store links. If an entry in I N D E X  is nonzero, it is a pointer 
to the next column with a nonzero. The links are determined as they are found, and 
are unordered. 

The main loop consists of  three components: initialization, a long loop that 
merges row lists, and code to copy the links into the J C  vector. The initialization 
part is as follows: 

10. do i E { 1  . . . . .  n} { 
11. istart = - 1 

12. length = 0 

The start column (istart) is reset and the number of  column entries for the ith row 
is assumed empty. The loop to merge row lists is as follows: 

13. do j j  E { iai . . . .  , iai + 1 } { 

14. if ( j j  = = iai+ l) { 
15. if (diaga = = 0 or 

i > min{m,  n}) { 
16. next j j  
17. } 
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18. j = i  

19. } 
20. else { 
21. j = ja j j  

22. } 
23. if ( indexj  = = 0 & d iagb = = 1 & 

j < min{l, m)} { 
24. indexy = is tart  

25. is tart  = j 

26. length = length + 1 

27. } 
28. do k E {ibj . . . . .  iO j+ l -  1} { 
29. if (indexjbk = = O) { 

30. indexjbk = is tart  

31. i s tar t  = jbk 

32. length = length + 1 

33. } 
34. } (end of k loop) 
35. } (end of j j  loop) 

Lines 14-22 determine if the j j  loop has to execute an "extra" iteration when A is 
stored in the new Yale sparse matrix format. Lines 23-27  add co lumnj  to the linked 
list. Lines 2 8 - 3 4  determine the intersection of this row i with the nonzeros in column 
j of B. Finally, we copy the links into the J C  vector as the column indices: 

36. if (d iagc = = 1 & indexi ~ O) { 

37. length = length - 1 

38. } 
39. i c i+  I = ici + length 

40. do j ~ {icl . . . . .  ici+l - 1} { 
41. if (diagc = = 1 & is tart  = = i) { 

42. i s tart  = indexiaa,t 

43. indexi = 0 

44. } 
45. jc j  = is tart  

46. i s tart  = indexisu~rt 

47. indexjq = 0 

48. } (end of  j loop) 
49. indexi = 0 

50. } (end of i loop) 
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Lines 36 -38  remove the diagonal element from the row if C is stored in the new 
Yale sparse matrix format. Note that in lines 43 and 47, the nonzero links are 
cleared. Due to the small number of  links (with respect to N), it would be extremely 
inefficient to clear the entire vector. The resulting vectors IC and J C  contain the 
nonzero structure of  C = AB. 

4.2. NUMBMM 

Initialization consists o f  clearing all o f  the partial sums: 

1. do i e { 1  . . . . .  m a x { l , m , n } }  { 

2. tempi = 0 

3. } 

The main loop forms the partial sums and then copies the completed sums 
into the correct locations in the sparse matrix structure: 

. 

5. 
6. 
7. 

, 

9. 
10. 

11. 
12. 
13. 

14. 

15. 
16. 
17. 
18. 
19. 

20. 
21. 
22. 

23. 
24. 

25. 

26. 
27. 

do i e { 1  . . . . .  n} { 

do j j  e { iai . . . . .  iai + 1} { 
if ( j j =  = iai+l) { 

if (diaga = = 0 or 

i > min{m,  n}) { 
next  j j  
} 

j = i  

ajj = a i 
} 

else  { 
j=jai~ 
a j j=  a~i 
} 

if  ( d iagb=  = 1 & j < m i n { 1 ,  m } )  { 

temp i = tempj + ajj  * b i 
} 

do k E { ib i . . . .  ibi + l - 1 } { 

tempjbk = tempib k + ajj * bk 
} (end of  k loop) 

} (end of  j j  loop) 
if  (diagc = = 1 & i < rain{l, n}) { 

ei = tempi 

tempi = 0 
} 
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28. do j E {ici . . . . .  ici+l - 1} { 
29. cj = tempjcj 

30. t e m p &  = 0 

31. } (end of  j loop) 
32. } (end of  i loop) 

Lines 6 - 1 6  determine if the j j  loop has to execute an "extra" iteration when A is 
stored in the new Yale sparse matrix format. Lines 2 0 - 2 2  accumulate the product  
for row j ,  and store it in lines 28 -31 .  Lines 1 7 - 1 9  and 2 4 - 2 7  deal with special 
cases when a matrix is stored in the new Yale sparse matrix format. The  resulting 
vector C contains the numerical  product  AB.  

4.3. TRANSP 

We begin by constructing IB.  This requires setting up the first row pointer  
and counting indices for each column: 

1. do i E { 1  . . . . .  m + l }  { 
2. ibi = 0 

3. } 
4. if  (move  = = 1) { 
5. do i ~ { 1  . . . . .  r e + l }  { 

6. bi = 0 

7. } 
8. } 
9. if (d iaga  = = 1) { 
10. ibi = m + 2 

11. } 
12. else { 

13. ibl  = 1 

14. } 

15. d o i E { 1  . . . . .  n} { 

16. do j E { iai . . . . .  iai+ l - I } 

17. ibjay+ l = ibjai+ l + 1 

18. } 
19. } 

20. do i E { 1  . . . . .  m} { 

21. ibi + l = ibi + ibi + l 

22. } 
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Lines 1 -3  clear lB.  If  we are constructing B at the same time, then lines 4 - 8  clear 
the main diagonal of  B. Lines 9 - 1 4  determine where the rows of  B are stored. Lines 
15-18  count the number of  indices in each column and lines 2 0 - 2 2  convert this 
information into row pointers. 

Next, we construct JB: 

23. do i ~ { 1  . . . . .  n} { 

24. do j E { iai . . . . .  iai+ 1 - 1 } { 
25. j j  = jaj  

26. jbib~ = i 
27. if (move  = = 1)} 

28. bibjj = aj 
29. } 

30. ibjy = ibyj + 1 
31. } 
32. } 

Lines 2 3 - 3 2  put i as a column index into row J A ( j )  in the first possible position 
(pointed to by I B ( j j ) )  and increments the pointer. If we are constructing B at the 
same time, then lines 2 7 - 2 9  do the copy. 

Finally, we have to restore IB:  

33. 
34. 
35. 
36. 
37. 

38. 

39. 
40. 

41. 
42. 

43. 
44. 

45. 
46. 
47. 

d o i ~ { m , m - I  . . . . .  2} { 

ibi = ibi_ 1 
} 

if (diaga = = 1) { 
if (move  = = 1) { 

else { 

j = rain(n, m)  

do i ~ { 1 , j }  { 

bi = ai 
} 

} 
ibl = m + 2 
) 

i b l = l  
) 

Lines 34, 43, and 46 do the real work in restoring IB.  Lines 3 6 - 4 2  finish copying 
the main diagonal of  A when it is stored in the new Yale sparse matrix format. 
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5. FORTRAN source code 

The FORTRAN source code for this package is freely available from Netlib as 
the file linalg/smmp.shar. 
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