
Advances in Computational Mathematics 1(1993)127-137 127

Sparse matrix multiplication package (SMMP)*

Randolph E. Bank

Department of Mathematics C012, University of California at San Diego,
P.O. Box 109, LaJolla, CA 92093, USA

and

Craig C. Douglas

Mathematical Sciences Department, IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

and Department of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, CT 06520, USA

Received 26 May 1992

Abstract

Routines callable from FORTa~ and C are described which implement matrix-
matrix multiplication and transposition for a variety of sparse matrix formats. Conversion
routines between various formats are provided.

Keywords: Sparse matrices, matrix multiplication, transposition, numerical linear algebra.
Subject classification AMS(MOS): Numerical analysis: numerical linear algebra.

1. Introduction

The routines described here perform matr ix-matr ix multiplies, transposes
and format conversions for sparse matrices. There are three formats supported.
These include the old and new Yale sparse matrix package formats [4 -6] and the
more efficient one for square matrices advocated by Bank and Smith [1]. In each
case, only the nonzeros are stored, not the zeros (or as few as possible).

The principal use of these routines will probably be in implementing parallel
computation algorithms. For example, in one variant of the parallel multigrid [2, 3],
as the number of coarse grid problems per level grows, it becomes increasingly
difficult to generate the coefficient matrices based on grids, as a serial multigrid
solver does.

*The algorithms and routines described here were developed while both authors were visiting the Center
for Applied Mathematics, Department of Mathematics, Purdue University. This research was supported
in part by the Office of Naval Research, Grant No. N00014-895-1440.

© J.C. Baltzer AG, Science Publishers

128 R.E. Bank, C.C. Douglas, Sparse matrix multiplication package

In section 2, we describe the sparse matrix formats we support. In section 3,
we describe the structure of the package and the calling sequences of each routine.
We describe the algorithms implemented by the package in section 4. Finally,
instructions for obtaining a copy of the code are in section 5.

The routines described here differ from those in either SPARSKIT (see [9])
or the proposed sparse BLAS (see [7,8]). There is some overlap with SPARSKIT,
but we are more interested in a data format not supported by SPARSKIT. The
sparse BLAS have interfaces for multiplying a sparse matrix by a dense one, but
not for multiplying two sparse matrices. Also, our routines are in the public domain
with no restrictions, while the others are not necessarily so.

2. Sparse matrix formats

In this section, we define the three methods for storing a sparse matrix M.
Let M = D + L + U, where D is the main diagonal part of M, L is the strictly lower
triangular part of M, and U is the strictly upper triangular part of M. We define the
number of nonzeros of M as NZ(M).

The old Yale sparse matrix format [5,6] requires three vectors:

IA: [IA] l e n g t h N + l

JA" I Ja] l eng th NZ(M)
or NZ(D + U)

A : I M] length NZ(M)
or NZ(D + U)

M is stored in row form. If M is symmetric, the elements of L do not have to be
stored in A. The first element of row I is A(IA(1)). The length of row I is determined
by IA(I + 1) - IA(I), which is why IA requires N + 1 elements instead of the obvious
N elements. The column indices of M are stored in the JA vector. For element A(J),
its column index is JA(J). The elements in a row may be stored in any order.

The new Yale sparse matrix format [4] requires two vectors:

I I I IJA : IA length N + 1 + NZ(M- D)
or N + I + N Z (U)

A" ID I 0 [L a n d U [lengthNZ(M)
or NZ(D + U)

M is still stored in row form. T h e / A - J A vectors of the old format are combined
into a single vector, sometimes referred to as an IJA vector. As before, the first

R.E. Bank, C.C. Douglas, Sparse matrix multiplication package 129

element of row I is A(IJA(I)). In this case, the main diagonal of M is separated out
from the nonzeros of L and U. The diagonal for row I is in A(1). There is a zero
after D so that the JA and L[U parts of the IJA and A vectors are aligned properly.
Technically, the rows of A should be stored in ascending column order. However,
this is not enforced.

The Bank-Smi th sparse matrix format [1] requires M to be a square matrix
with a symmetric (or nearly so) zero structure. It requires two vectors:

IJA "1 IA] JA] length N + I + N Z (U)

a "]D l 0 [U T] L I length N + I + NZ(M-D)
or N + I + N Z (U)

While M is stored strictly in row form, in a real sense it is stored in both column
and row form. Since we assume that M has a symmetric zero structure (or L and
U are padded by a small number of zeros), we need only store the row indices for
U (when U is stored in column form). These are also the column indices for L (when
L is stored in row form). However, we store the transpose of U in row form instead
of U. If M is symmetric, the elements of L do not have to be stored in A. The first
element of column I of U is A(IA(1)). The length of column I is determined by
IA(I + 1) - IA(1), which is why IA requires N + 1 elements instead of the obvious
N elements. The row indices of U are stored in the JA vector. For element A(J),
its row index is JA(J). The elements in a column must be stored in ascending row
order. We define LSHIFT to be 0 i f M is symmetric and IA(N+ 1) - IA(1) i f M is
nonsymmetric. The first element of L is A(IA(1)+ LSHIFT). L is stored in row
format. The column index of an element A(IA(I) + J + LSHIFT) is JA(IA(1) + J).

For all three sparse matrix formats, we can assume there are three vectors IA,
JA, and A which describe M. Except for the old Yale sparse matrix format, the
vectors IA and JA are really the same vector IJA. We also need a variable DIAGA
which is one if the diagonal is separated from the rest of the nonzeros and zero
otherwise. Last, we need a variable SYMA which is one i fM is stored in a symmetric
manner and zero otherwise.

3. Calling sequences

In this section, we describe the five routines which comprise the package.
These include two routines to multiply matrices, a routine for the transpose of a
matrix, and two routines to convert between various sparse matrix formats.

For each routine in this section, the calling sequence assumes distinct IA and
JA vectors for each matrix. Suppose a matrix is actually stored using an IJA vector.
Then the routine should be called with IJA as an argument twice, once for each 1A

130 R.E. Bank, C.C. Douglas, Sparse matrix multiplication package

and JA. The IJA vector should not be subscripted to point to either of the IA or JA
parts; the routines will do this automatically.

We multiply two sparse matrices, resulting in a third:

C=AB.

Matrix-matrix multiplication is performed in two steps. These routines only support
the Yale sparse matrix formats. First, the nonzero structure of the resulting matrix
is determined symbolically in SYMBMM;

subroutine SYMBMM (N, M, L, IA, JA, DIAGA, IB, JB, DIAGB,
IC, JC, DIAGC, INDEX)

integer N, M, L, IA(*), JA(*), DIAGA,
IB(*), JB(*), DIAGB, IC (*), JC (*), DIAGC,
INDEX(*)

The number of rows and columns of the matrices are

matrix rows columns

A N M
B M L

C N L

INDEX is a scratch vector of length max{L, M, N}. It is used to store linked lists.
The output of SYMBMM is IC and JC. They are dependent on the value of DIAGC.

Once the nonzero structure for C is known, the numerical matr ix-matr ix
multiply is computed in NUMBMM:

subroutine NUMBMM

integer

real

(N, M, L, IA, JA, DIAGA, A, IB, JB, DIAGB, B,
IC, JC, DIAGC, C, TEMP)

N, M, L, IA(*), JA(*), DIAGA,
IB(*), JB(*), DIAGB, IC(*), JC(*), DIAGC,
A(*), B(*), C(*)

TEMP is a scratch vector of length max{L, M, N}. It is used to store partial sums.
We may also compute the transpose of a matrix, resulting in a second:

B = A T.

We do this operation in TRANSP:

R.E. Bank, C.C. Douglas, Sparse matrix multiplication package 131

subroutine TRANSP

integer

real

(N, M, IA, JA, DIAGA, A, IB, JB, MOVE)
IC, JC, DIAGC, C, TEMP)

N, M, IA(*), JA(*), DIAGA,
IB(*), JB(*), MOVE
A(*), B(*)

The number of rows and columns of the matrices are

matrix rows columns

A N M

B M N

We assume that B will use the same diagonal storage method that is used for A. We
do not actually move the elements of A and B unless MOVE is one.

Finally, we have two routines for converting between one of the Yale formats
and the B a n k - S m i t h format. This makes sense only when the matrices are square.
The routine YTOBS will convert a Yale format sparse matrix into the B a n k - S m i t h
format:

subroutine YTOBS (N, IA, JA, DIAGA, SYMA, A, IB, JB, B, MOVE)

integer

real

N, IA(*), JA(*), DIAGA, SYMA,
IB(*), JB(*), MOVE
A(*), B(*)

By definition, DIAGB must be one. Hence, we do not need it as an argument. We
determine whether or not B should be stored in a symmetric or nonsymmetric
manner from SYMA. We do not actually move the elements of A into B unless
MOVE is one.

The routine BSTOY will convert a Bank-Smi th format sparse matrix into one
of the Yale formats:

subroutine BSTOY (N, IA, JA, SYMA, A, IB, JB, B, DIAGB, B, MOVE)

integer

real

N, IA(*), JA(*), SYMA,
IB(*), JB(*), DIAGB, MOVE
A(*), B(*)

We determine which o f the two formats by the value of DIAGB. We determine
whether or not B should be stored in a symmetric or nonsymmetric manner from
SYMA. We do not actually move the elements of A into B unless MOVE is one.

132 R.E. Bank, C.C. Douglas, Sparse matrix multiplication package

4. Algorithms

In this section, we describe the algorithm for S Y M B M M , N U M B M M , and
TRANSP. We use a metalanguage rather than real code. One of the facets of these
algorithms is their ability to work well with matrices in a variety of formats.

4.1. SYMBMM

Initialization consists of setting up the first row pointer and clearing all of
the links (contained in INDEX):

1. do i E (1 m a x { l , m , n } } {

2. indexi = 0

3. }
4. if (diagc = = O) {

5. icl = 1

6.)
7. else {

8. icl = n + 2
9. }

I N D E X is used to store links. If an entry in I N D E X is nonzero, it is a pointer
to the next column with a nonzero. The links are determined as they are found, and
are unordered.

The main loop consists of three components: initialization, a long loop that
merges row lists, and code to copy the links into the J C vector. The initialization
part is as follows:

10. do i E { 1 n} {
11. istart = - 1

12. length = 0

The start column (istart) is reset and the number of column entries for the ith row
is assumed empty. The loop to merge row lists is as follows:

13. do j j E { iai , iai + 1 } {

14. if (j j = = iai+ l) {
15. if (diaga = = 0 or

i > min{m, n}) {
16. next j j
17. }

R.E. Bank, C.C. Douglas, Sparse matrix multiplication package 133

18. j = i

19. }
20. else {
21. j = ja j j

22. }
23. if (indexj = = 0 & d iagb = = 1 &

j < min{l, m)} {
24. indexy = is tart

25. is tart = j

26. length = length + 1

27. }
28. do k E {ibj iO j+ l - 1} {
29. if (indexjbk = = O) {

30. indexjbk = is tart

31. i s tar t = jbk

32. length = length + 1

33. }
34. } (end of k loop)
35. } (end of j j loop)

Lines 14-22 determine if the j j loop has to execute an "extra" iteration when A is
stored in the new Yale sparse matrix format. Lines 23-27 add co lumnj to the linked
list. Lines 2 8 - 3 4 determine the intersection of this row i with the nonzeros in column
j of B. Finally, we copy the links into the J C vector as the column indices:

36. if (d iagc = = 1 & indexi ~ O) {

37. length = length - 1

38. }
39. i c i+ I = ici + length

40. do j ~ {icl ici+l - 1} {
41. if (diagc = = 1 & is tart = = i) {

42. i s tart = indexiaa,t

43. indexi = 0

44. }
45. jc j = is tart

46. i s tart = indexisu~rt

47. indexjq = 0

48. } (end of j loop)
49. indexi = 0

50. } (end of i loop)

134 R.E. Bank, C.C. Douglas, Sparse matrix multiplication package

Lines 36 -38 remove the diagonal element from the row if C is stored in the new
Yale sparse matrix format. Note that in lines 43 and 47, the nonzero links are
cleared. Due to the small number of links (with respect to N), it would be extremely
inefficient to clear the entire vector. The resulting vectors IC and J C contain the
nonzero structure of C = AB.

4.2. NUMBMM

Initialization consists o f clearing all o f the partial sums:

1. do i e { 1 m a x { l , m , n } } {

2. tempi = 0

3. }

The main loop forms the partial sums and then copies the completed sums
into the correct locations in the sparse matrix structure:

.

5.
6.
7.

,

9.
10.

11.
12.
13.

14.

15.
16.
17.
18.
19.

20.
21.
22.

23.
24.

25.

26.
27.

do i e { 1 n} {

do j j e { iai iai + 1} {
if (j j = = iai+l) {

if (diaga = = 0 or

i > min{m, n}) {
next j j
}

j = i

ajj = a i
}

else {
j=jai~
a j j= a~i
}

if (d iagb= = 1 & j < m i n { 1 , m }) {

temp i = tempj + ajj * b i
}

do k E { ib i ibi + l - 1 } {

tempjbk = tempib k + ajj * bk
} (end of k loop)

} (end of j j loop)
if (diagc = = 1 & i < rain{l, n}) {

ei = tempi

tempi = 0
}

R.E. Bank, C.C. Douglas, Sparse matrix multiplication package 135

28. do j E {ici ici+l - 1} {
29. cj = tempjcj

30. t e m p & = 0

31. } (end of j loop)
32. } (end of i loop)

Lines 6 - 1 6 determine if the j j loop has to execute an "extra" iteration when A is
stored in the new Yale sparse matrix format. Lines 2 0 - 2 2 accumulate the product
for row j , and store it in lines 28 -31 . Lines 1 7 - 1 9 and 2 4 - 2 7 deal with special
cases when a matrix is stored in the new Yale sparse matrix format. The resulting
vector C contains the numerical product AB.

4.3. TRANSP

We begin by constructing IB. This requires setting up the first row pointer
and counting indices for each column:

1. do i E { 1 m + l } {
2. ibi = 0

3. }
4. if (move = = 1) {
5. do i ~ { 1 r e + l } {

6. bi = 0

7. }
8. }
9. if (d iaga = = 1) {
10. ibi = m + 2

11. }
12. else {

13. ibl = 1

14. }

15. d o i E { 1 n} {

16. do j E { iai iai+ l - I }

17. ibjay+ l = ibjai+ l + 1

18. }
19. }

20. do i E { 1 m} {

21. ibi + l = ibi + ibi + l

22. }

136 R.E. Bank, C.C. Douglas, Sparse matrix multiplication package

Lines 1 -3 clear lB. If we are constructing B at the same time, then lines 4 - 8 clear
the main diagonal of B. Lines 9 - 1 4 determine where the rows of B are stored. Lines
15-18 count the number of indices in each column and lines 2 0 - 2 2 convert this
information into row pointers.

Next, we construct JB:

23. do i ~ { 1 n} {

24. do j E { iai iai+ 1 - 1 } {
25. j j = jaj

26. jbib~ = i
27. if (move = = 1)}

28. bibjj = aj
29. }

30. ibjy = ibyj + 1
31. }
32. }

Lines 2 3 - 3 2 put i as a column index into row J A (j) in the first possible position
(pointed to by I B (j j)) and increments the pointer. If we are constructing B at the
same time, then lines 2 7 - 2 9 do the copy.

Finally, we have to restore IB:

33.
34.
35.
36.
37.

38.

39.
40.

41.
42.

43.
44.

45.
46.
47.

d o i ~ { m , m - I 2} {

ibi = ibi_ 1
}

if (diaga = = 1) {
if (move = = 1) {

else {

j = rain(n, m)

do i ~ { 1 , j } {

bi = ai
}

}
ibl = m + 2
)

i b l = l
)

Lines 34, 43, and 46 do the real work in restoring IB. Lines 3 6 - 4 2 finish copying
the main diagonal of A when it is stored in the new Yale sparse matrix format.

R.E. Bank, C.C. Douglas, Sparse matrix multiplication package 137

5. FORTRAN source code

The FORTRAN source code for this package is freely available from Netlib as
the file linalg/smmp.shar.

References

[1] R.E. Bank and R.K. Smith, General sparse elimination requires no permanent integer storage, SIAM
J. Sci. Stat. Comp. 8(1987)574-584.

[2] C.C. Douglas and W.L. Miranker, Constructive interference in parallel algorithms, SIAM J. Numer.
Anal 25(1988)376-398.

[3] C.C. Douglas and B.F. Smith, Using symmetries and anfisymmetries to analyze a parallel multigrid
algorithm: The elliptic boundary value case, SIAM J. Numer. Anal. 26(1989)1439-1461.

[4] S.C. Eisenstat, H.C. Elman, M.H. Schultz and A.H. Sherman, The (new) Yale sparse mau'ix package,
in: Elliptic Problem Solvers II, ed. G. Birkoff and A. Schienstadt (Academic Press, New York, 1984)
pp. 45-52.

[5] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, Yale sparse matrix package I: The
symmetric codes, Int. J. Numer. Meth. Eng. 18(1982)1145-1151.

[6] S.C. Eisenstat, M.C. Gursky, M.H. Schultz and A.H. Sherman, Yale sparse matrix package II: The
nonsymmetric codes, Research Report 114, Department of Computer Science, Yale University, New
Haven, CT (1977).

[71 I. Duff, M. Marrone and G. Radicati, A proposal for user level sparse BLAS, in preparation.
[8] M.A. Heroux, Proposal for a sparse BLAS toolkit, in preparation.
[9] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations, preliminary version (1990).

Available by anonymous ftp from riacs.odu.

