KINETICS AND SELECTIVITY OF THE OXIDATION OF ALKANES IN $Cl_2 - H_2O$ AND $Cl_2 - Hg^{2+} - H_2O$ SOLUTIONS

E. S. Rudakov, L. K. Volkova and V. P. Tretiakov

Institute of Physical Organic and Carbon Chemistry, Donetsk, USSR

Received May 5, 1982 Accepted July 29, 1982

Relative oxidation rate constants of several normal, iso-, cyclo- and methylcycloalkanes have been measured in $Cl_2 - H_2 O$ and $Cl_2 - Hg^{2+} - H_2 O$ solutions at 343 K. The selectivity of C-H bond dissociation in both systems is the same. HOCl is assumed to be the active species for the two systems.

В растворах $Cl_2 - H_2 O$ и $Cl_2 - Hg^{2*} - H_2 O$ при 343 К измерены относительные константы скорости окисления ряда нормальных, изо-, цикло- и метилциклоалканов; селективность расщепления С-Н связи в обеих системах одинакова. Заключено, что активной частицей в обеих системах является кислота HOCl.

Aqueous chlorine solutions are known to oxidize alkanes (RH) to form chloroalkanes /1/. We have established that the oxidation of RH is enhanced by Hg^{2+} ions being the acceptors of Cl⁻. Active species can be polarized chlorine, e.g. as the adduct $Cl^{\delta^+}-Cl^{\delta^-}$. Hg^{2+} . However, taking into account the concepts on the role of bridged ligands in the oxidation of alkanes /2, 3/, the more probable active species is HOCl formed in the reaction /4/

$$Cl + H_2 O \Rightarrow HOCl + H^+ + Cl^- \tag{1}$$

To establish the structure of reactants, we have studied the oxidation kinetics and selectivity of alkanes of various structures in competing reactions using the syringe-reactor method applied previously to study the reaction of alkanes in aqueous solutions with OH radicals /5/ and also with MnO₄, HMnO₄, SO₄ and other oxidants /3/.

Theree systems have been studied:

I. $Cl_2 - H_2O$ having commensurable concentrations of Cl_2 and HOCl /4/; II. $Cl_2 - Hg^{2+} - H_2O$ in which due to the reaction

$$Cl_2 + Hg^{2+} + H_2O \rightarrow HOCl + H^+ + HgCl^+$$
 (2)

12

357

(1)

RUDAKOV et al.: OXIDATION OF ALKANES

the HOCl concentrations are about twice as high as in I, and Cl_2 is practically absent /4/; H

III. Individual measurements were made in the HOCl-H₂O system; the solutions of HOCl were prepared like in Ref. /6/ and did not contain Cl₂.

The reactions are of the first order with respect to RH and, apparently, HOC1:

$$-\frac{d[R^{i}H]}{dt} = k^{i}[R^{i}H] [HOC1]$$
(3)

The rate ratio for the two substrates R^AH and R^BH being under simultaneous study, permits to eliminate the concentration of reactant and leads to the equation to determine the k^A/k^B ratio:

 $lg [R^{A}H] = (k^{A}/k^{B}) lg [R^{B}H] + const.$ (4)

For the three systems the oxidation selectivity is the same within the experimental accuracy, and the absolute oxidation rates are approximately equal (Table 1).

In the $Cl_2-Hg^{2+}-H_2O$ system the first-order rate constant was slightly higher and the scatter in the kinetic data was lower than in the Cl_2-H_2O solutions. Apparently, these effects can be attributed to the low concentration of Cl_2 in the $Cl_2-Hg^{2+}-H_2O$ system. Consequently, on the one hand, the HOCl concentration and the reaction rate increase, and on the other hand, owing to the absence of a gas bubble in the syringe-reactor, the reproducibility of the results is improved. Since the concentration of Cl_2 in the $Cl_2-Hg^{2+}-H_2O$ system is significantly lower, whereas the reaction rate is higher, it can be concluded that the radical-chain chlorination

$$RH + C\dot{i} \rightarrow \dot{R} + HCl, \quad \dot{H} + Cl_2 \rightarrow RCl + C\dot{i}$$
 (5)

does not take place under our conditions.

The results indicate that in systems I, II and III the immediate reactant is HOC1. Alkaline additions inhibit reactions in the H_2O-Cl_2 system, which permits to conclude that the OC1⁻ anion is much less active in the oxidation of alkanes than the HOC1 acid. According to our data, the MnO_4 anion is approximately 10^3 times less active in the oxidation of alkanes in aqueous solutions than $HMnO_4$.

According to Refs /2, 3/, the oxidation of alkanes in aqueous media by a strong oxidant LMⁿ, where Mⁿ is an electron acceptor and L is a bridged ligand-base, starts with loosening of the C-H bond:

$$RH + LM^n \rightarrow R \dots H \dots LM^n \rightarrow products$$
 (6)

	Table	1
--	-------	---

Oxidation selectivities of alkanes in solutions of $Cl_2 - H_2 O$ and $Cl_2 - Hg^{2+} - H_2 O$ at 343 K

RH	$k/k^{n-C_5H_{12}}$	
	Cl ₂ –H ₂ O	$Cl_2 - Hg^{2+} - H_2 O$
C ₂ H ₆		0.06±0.03
C ₃ H ₈	0.47±0.09	0.42±0.06
$n - C_4 H_{10}$	0.8±0.1	0.71±0.05
$n - C_5 H_{12}$	1.0	1.0
$n - C_6 H_{14}$	1.3±0.1	1.35±0.05
i-C ₄ H ₁₀	1.5±0.3	1.5±0.2
$i-C_5H_{12}^a$	1.9±0.3	1.6±0.2
$c - C_5 H_{10} b$	2.0±0.5	2.0±0.4
$c - C_6 H_{12}$	2.6±0.9	2.5±0.5
$c - C_6 D_{1,2}$	0.9±0.3	0.9±0.2
$c - C_7 H_{14}$	4.9±2.0	4.7±1.2
$CH_3 - c - C_6 H_{1,1} c$	3.9±1.9	3.2±0.9
$c - C_6 H_{1,2} / c - C_5 H_{1,0}$	1.3±0.1	1.25±0.05
$c-C_{5}H_{10}/c-C_{6}D_{12}^{d}$	2.3±0.1	2.35±0.05
$c - C_6 H_{12} / c - C_6 D_{12}$	3.0±0.4	2.9±0.2

^a2-Methylbutane; ^bFor cyclopentane k values are approximately equal to 2×10^{-2} in systems I and III; ^cMethylcyclohexane; ^dIn system III this ratio is 2.4

The ratio of rate constants $c-C_6H_{12}/c-C_5H_{10}$ and the kinetic isotope effect (KIE) $c-C_6H_{12}/c-C_6D_{12}$ can be used as tests for a bridged ligand. Thus, for the OH-bridge, the KIE value lies within 2.8-3.0 and the $c-C_6H_{12}/c-C_5H_{10}$ ratio is between 1.3 and 2.1 /3/. The KIE = 3.0 and $c-C_6H_{12}/c-C_5H_{10} = 1.3$ obtained for the systems examined (Table 1) satisfy these limits. Selectivity data confirm that the immediate reactant in both Cl_2-H_2O and Cl_2-H_2O is HOCl.

All data obtained indicate that the reaction involves a transfer of an H atom (or H^+ and e) to the OH group of reactant and seems to be accompanied by a simultaneous intramolecular attack of the Cl atom on the carbon:

$$RH + OCI \rightarrow R$$

359

12*

RUDAKOV et al.: OXIDATION OF ALKANES

The selectivity to the products, ways of stabilization and the intermediate reaction geometries require further investigation.

EXPERIMENTAL

The oxidation kinetics of alkanes was studied by the syringe-reactor method /7/ in the absence of a gas phase. Gaseous chlorine was introduced into the reactor filled by a solution of H₂SO₄ (1.0 M) or H₂SO₄ (1.2 M), Hg²⁺ (0.05–0.14 M). The gas phase was completely removed by pressing the piston upon saturating the solution (4 cm³, 343 K) by chlorine. The initial concentration of Cl₂ in the solution was about 10^{-2} M. Then 1–3 cm³ solution of two alkanes (R^AH and R^BH) (H₂SO₄ – 1.0 M, RH $\leq 10^{-4}$ M), was introduced into the syringe-reactor. The decrease in [RH] was followed by gas chromatography /5/.

REFERENCES

- 1. L. N. Arzamaskova, A. V. Romanenko, Yu. I. Yermakov: Kinet. Katal., 22, 1438 (1981).
- 2. E. S. Rudakov: Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 3, 161 (1980).
- 3. E. S. Rudakov: Dokl. Akad. Nauk SSSR (in press).
- 4. F. Cotton, J. Wilkinson: Advanced Inorganic Chemistry, p. 430. Mir, Moskva 1969.
- 5. E. S. Rudakov, L. K. Volkova, V. P. Tretiakov, V. V. Zamashchikov: Kinet. Katal., 23, 26 (1982).
- 6. Yu. V. Karyakin, I. I. Angelov: Pure Chemical Substances, p. 202. Khimiya, Moskva 1974.
- 7. V. P. Tretiakov, E. S. Rudakov: in Metal Complex Catalysis (Ed. by K. B. Yatsimirskii), p. 63. Naukova Dumka, Kiev 1977.