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A D D I T I O N A L  I N T E G R A L S  OF THE G E N E R A L I Z E D  Q U A N T U M  
C A L O G E R O - M O S E R  P R O B L E M  

O. A. Chalykh I 

We consider the quantum integrable Calogero-Moser problem and its generalizations connected with the 
Coxeter groups. For special values of the co.upling constants, this system acquires additional integrals and 
becomes algebraically integrable. We give an effective description of additional integrals to this quantum 
problem. 

Let us consider the quantum Hamiltonian of the Calogero--Moser problem, 

H = - A  + Z 2m(m + 1)(xi - ;T i )  - 2 ,  (1) 
i<j 

which describes a one-dimensional system of n point-like, pairwise-interacting particles with the interaction 
potential u(x) = m(rn + 1)x -2, m being an arbitrary parameter. It is well known [1, 2] that this system, 
together with its classical analog, is integrable, i.e., it possesses n independent involutive integrals of motion. 
In the quantum case, this means that  there exist differential operators L1, . . .  ,Ln, Li = Li (x,O/Ox), 
z = (x t , . . .  ,xn), such that [Li, H] = 0 and [Li, Lj] = 0 for all i , j .  The operators Li can be found 
explicitly [3], namely, 

L1 = 01 + . . .  + On, 

L2 = ~ ( O i O j  + m ( m  + 1 ) ( x i -  xj) -~) = I(L~ - H), 
2 i<j 

L 3 =  Z 0 i 0 j 0 k + . . . ,  
i < 3 < k  

. , . 

Ln = 01. . .  On + . . .  , (2) 

where Oi = O/Oxi and the points denote terms of lower orders. Note that all Li are symmetric in x t , . . .  , xn. 
It was shown in [4] that at integer values of the parameter m, problem (1) possesses additional quantum 

integrals that are not symmetric in x l , . .  •, xn and, hence, cannot be expressed via the integrals L 1 , . . . ,  Ln. 
Following the terminology of [5, 4], operator (1) at some integer m is an algebraically integrable Schrhdinger 
operator. Let us formulate this result more accurately. 

For a given natural m, consider the ring of polynomials f of n variables k l , . . .  , kn, for which 

the difference f -  s i j f  is divisible by (ki - -  kj) 2rn (3) 

for all i < j. Here the operator sij acts on f ( k l , . . .  , kn) by permutation of the variables ki and kj. 

T h e o r e m  1 [4]. For each m E N, there exists a function rp(k, x) 
tions (3) w.r.t, variables k, of the form 

¢ = P(k ,  x) exp(klzl + . . .  + knzn), (4) 

(k, x 6 R n) that satisfies condi- 
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where P is a polynomial in k (depending on z) with the highest term being r~i<j(ki - tcj) rn. Then, for 

each polynomial f(k) satisfying conditions (3), there exists a differential operator L! (x, O/Ox) such that 
L I e  = f(k)!h. 

As the function f ,  one can choose the elementary symmetric polynomial of k l , . . .  , k,~; then the cor- 
responding operators L! coincide with the above-mentioned L1, . . .  , L, .  If f = I~i<j(ki - kj) 2m+1, then 
the corresponding operator L! is an antisymmetric operator that commutes with every Li since they have 
a common eigenfunction (4). Moreover, as the function f ,  we can choose an arbitrary polynomial that is 
divisible by 1-L<j(ki - kj) 2m. Therefore, problem (1) has many additional integrals for the integer m. In 
the present paper, our purpose is to construct these integrals more explicitly, in comparison with [4, 6], for 
problem (1) and its generalizations. 

From the very beginning, we consider a more general situation. A given a set of hyperplanes in R ", 
such that the group generated by mirror reflections w.r.t, these planes is a finite group W, is, in this case, 
called a Coxeter group (see [7]). We call all of the hyperplanes that correspond to all possible reflections 
from W mirrors of the group W. For each mirror, we choose the vector perpendicular to it and let R+ be 
the set of these normal vectors. To each (~ E R+, we ascribe an integer multiplicity ma such that ma = ma, 
if the corresponding mirrors can be transformed into each other by some transformation from W. 

T h e o r e m  2 [4]. 1. For any Coxeter group W and given W-invariant integer multiplicities m~ >_ 0, 
there exists a unique function ¢(k,  x) of form (4), which has the polynomial 

P(k, x) = Y I  (el, k)m° + terms of lower orders 
aE R+ 

and satisfies the following condition: 

for any a E R+, ¢ - s a c  is divisible by (a, k) 2"~°. (5) 

Here (sa¢)(k,x) = ¢(sc, k,x) and sa is the reflection corresponding to a E R+. Then any function ¢(k,x) 
of form (4) that satisfies condition (5) can be obtained from ~b( k, x) by applying some differential operator 
over the x variable. 

2. For any polynomial f(k) that satisfies condition (5), there exists a differential operator Ll(x,  O/Ox) 
such that L I e  = f (k )¢ .  All of these operators are mutually commuting. 

In the particular case where the group W acts in R. '~ by permutations of coordinates, Theorem 2 
coincides with Theorem 1. Note that we can always take W-invariant polynomials as f ,  for instance, 
f(k) = - k  2. Then a simple calculation shows that the operator H = L_k~ reads as follows: 

H = - A +  ~ m~(ma + l ) (a ,a)(a ,x)  -2, 
aER+ 

(6) 

i.e., it coincides with the generalization of Hamiltonian (1) to the case of an arbitrary Coxeter group 
proposed by Olshanetsky and Perelomov [3]. 

Let the subset R~_ of the set of normal vectors R+ be chosen in such a way that unification of all 
hyperplanes corresponding to the normal vectors is a set of mirrors for some Coxeter group W' C W and 
the W~-invariant multiplicities are given for a E R~_. Then the following Hamiltonian corresponds to the 
subgroup W~: 

H' = - A  + ~ m~(m~ + 1) ( a , a ) ( a ,x )  -2. (7) 
aER~. 
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Theorem 3. There exists a differential operator D(x,  O/Dx) that intertwines.opera~rs (6)-a~d (7): 

H o D =  D o H t  (8) 

P roof .  Consider the functions ¢ and ¢ '  corresponding to the given W, ma and W', m"  in accordance 
' _< ma, then, in accordance with Theorem 2. Since the function ¢ obviously satisfies condition (5) for any rn a 

with Theorem 2, it can be obtained from ~b ' by applying an appropriate differential operator. Let D(x, O/Ox) 
be the differential operator that transforms ¢ '  into ~b. Then, 

(H o D)¢ '  = H e  = - k 2 ¢  = - k 2 D ¢  ' = D(H '¢ ' ) .  

Thus, the operators H o D  and D o l l '  coincide when acting on ¢ '(k,  x) for all k and, therefore, are identical. 

The main result of the present paper is the following statement. 

Theorem 4. Let W' C W be a Coxeter subgroup of the Coxeter group W, R'+ 6 R+ be the normal 
' < rnc,. Furthermore, let ' be chosen such that rn a vectors to its mirrors, and W'-invariant multiplicities m a 

L} be a quantum integral of problem (7) that corresponds to some polynomial f satisfying condition (5) 
for l l m a, ~ 6 R+. Then the operator 

L = D o L ~ l o D  * (9) 

is a quantum integral to problem (6), where D is the intertwining operator from (8) and D* is the operator 
formally conjugate to D, i.e., 

f a  (Du)vdz=  fR  u(D'v) dx 

for any (finite) [unctions u(x), v(x). 

Proof .  Since operators (6) and (7) are self-adjoint, let us conjugate both sides of relation (8), 

D* o H = H' o D*. 

Hence, for operator (9), we have 

L o H =  Do L'IOD* o H ' =  D o L ' I o H '  oD* = D o H '  o L } o D *  = H o D o L ' I o D *  = H o L ,  

i.e., L commutes with Hamiltonian (6). 
Let us prove that L commutes with each integral Lg of problem (6). For this, consider the commutator 

I = [L, Lg]. This operator is, again, an integral of motion, i.e., it commutes with Hamiltonian (6). However, 
one can easily show that operators L and Lg have constant coefficients at x = oo (similar to operator (6), 
which is equal to - A  as x --~ co). This follows from the procedure of finding the C-function and the 
integrals Lf described in [4]. As a consequence, their commutator I is equal to zero at infinity and, thus. 
it vanishes identically by virtue of the following lemma. 

L e m m a  [8]. If the commutator of a differential operator I with the Laplace operator in P~ is of an 
order not exceeding the order of I, then the coefficients of its higher powers are polynomials. 

Thus, [L, Lg] = 0. Q.E.D. 

To illustrate Theorem 4, let us consider some examples. 
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E x a m p l e  1. Type At. Here R+ consists of a single vector a with multiplicity ma = m. If we 
identify c~ with the unity in R l, then the corresponding function ¢(k,  x) (k, x E R)  should satisfy the 
condition 

¢ (k ,x )  - ¢ ( - k , x )  is divisible by k 2"~ 

and have the following form [6]: 

¢(k ,  x) = D(ekX), D = D(x ,  d /dx)  = (d /dx  - re~x) o . . .  o (d /dx  - l / x ) .  

Thus, the operator 

A = D o  d / d x o  D*, 

where D* = ( -1 )m(d /dx  + l / x )  o . . .  o (d /dx  + m / x )  is an operator of order 2m + 1 that  commutes with 
L = - d 2 / d x  2 + m(rn + 1)x -2. This means that L is a doubly degenerate finite-gap operator (see [9]). 

E x a m p l e  2. Type A2. R+ = ( e l - e 2 , e 2 - e 3 ,  e t - e 3 }  C R 3, ma = 1. The corresponding C-function, 
which was found in [6], is 

¢ (k ,x )  = [D o (012 - 2 /X12) ] e  k:z:, 

where the operator D looks as follows: 

(10) 

and 0~j  = O/O:r,~ - O / O x i ,  x 0 = z ~  - x j .  

Setting R~_ = R+ with m~ - 0, we find that operator (7) is the Laplace operator - A  in R 3. From 
Theorem 4, for any operator Lo with constant coefficients, the operator L of the form 

- -  O D *  L = D o  012 x12 x12 

is a quantum integral of the Calogero-Moser problem (1) for the case of three particles with m = 1. Then L 
reads as 

L 2 2 2  = ~91369236912L 0 + lower terms. 

E x a m p l e  3. R+ and ma are the same'as in the previous example, but R'+ = { e l  --  e2}  with ms' = 1. 
Then ¢'(k,  x) = (kt2 - 2/x12)e kz and ¢(k,  x) = D¢' (k ,  x) ,  where D is given by formula (10). Therefore~ 
in accordance with Theorem 4, the operator L = D o L0 o D* is a quantum integral of the three-particle 
Calogero-Moser problem (1) with m -- 1 if L0 is an integral of motion for the problem with the Hamiltonian 
H0 = - A  + 2(xl - x2) -2. Choosing L0 equal to unity and 03, we obtain the following quantum integrals 
of problem (1) with m = 1 for the case n = 3: 

L1 = D o D* = (013023) 2 + lower terms, 

L2 = D o 03 O D* = (013023)203 + lower terms. 

One can analogously obtain integrals with the higher symbols 

(a~2a23)2, (a12a~3) 2, (0~2023)202, (a12a13)2a~. 
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E x a m p l e  4. R+ = {ei - ej}i<j<n+l C R n+l with ms  = I and we c h o o s e  R~. equal to a subsystem 
R~ = {ei - ej }i<j<n with m~ = 1. The corresponding functions ¢(k,  x) and ¢ ' (k,  x) are connected by the 
relation ¢ = De ' ;  the explicit form of the differential operator from [6] is 

D = H ( 0 i  - On+x) + lower terms. 
i_<n 

Therefore, the operator L = D o L0 o D* is a quantum integral of problem (1) if we choose L0 to be equal 
to unity or to any integral (2). 

N o t e  1. In [4], the trigonometric version of Theorem 2 is presented. There, in condition (5), the 
Err  o polynomial (c~, k) 2m° should be replaced by 1-Is=l ((~, k) 2 - s2( a,  ~))" Then R+ is the positive part of an 

arbitrary root system in R n and the group W is the corresponding Weyl group. In this case, the literal 
analogs of Theorems 1-4 are valid and the corresponding operator H has the form 

H = - A  + ~ ma(mo" + 1)(c~,c~) s in-2(a,x) .  
o, ER+ 

Formulas of Examples 2-4 also have trigonometric analogs that determine the integrals of the Sutherland 
system (10) with the Hamiltonian 

H = - A  + ~ 4sin-2(xi  - xj).  
i<j 

N o t e  2. Using Theorem 4, we can construct the quantum integrals L /  to problem (6) for f of the 
form 

f ( k )  = fo(k) 1-I (c~, k) 2m°, (11) 

where R t corresponds to a Coxeter subgroup W ~ and f0 is an arbitrary polynomial that  is invariant w.r.t. + 
this subgroup. However, as Volchenko and Kozachko demonstrated in [11], already for the system R+ 
of type B2, there exist polynomials that satisfy condition (5) but are not expressible via polynomials of 
type (11). This demonstrates that not all integrals L! of problem (6) can be obtained by formula (9). This 
concerns the trigonometric case as well. 
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