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Inversion of Dynamical Indicators in Quantitative
Basin Analysis Models. I. Theoretical
Considerations’

I. Lerche?

Present-day observed downhole quaniities, which a dynamical model of basin evolution should
account for, include: total depth drilled, formation thicknesses, variations of porosity, permeabiliry
and total fluid pressure with depth, and depths of unconformities. Following a line of logic previ-
ously employed with multiple thermal indicators, i1 is shown how the observed quantities can be
used in a nonlinear inverse sense to determine, or at least constrain, parameters and functions
entering quantitative models of dvanmical sedimentary evolution. A procedure is given so that the
inverse methods can be used: (a) with single well data; (b) with multiple well data; and (c) simul-
taneously with thermal indicator data, which have already been previously successfully inverted
using a tomographic procedure. Parameters that can be evaluated using the dynamical indicator
inversion (dynamical tomography) include, bui are not fimited to, values dealing with geological
evenis (such as unconformity timing and amount of material eroded, the ‘‘openness’’ or ‘‘shut-
ness'' of faults; critical fracture pressure, etc.), as well as values dealing with intrinsic, or as-
sumed, lithologic equations of state (such as power law values in connections between permeability
and void ratio, or between frame pressure and void ratio). The dynamical tomography procedure
can be used with or without weighting the data and/or the dynamical indicators; is guaranteed 10
produce a closer correspondence between predicted and observed behaviors at each nonlinear
iteration; and is guaranteed 1o keep all parameters within any chosen domain. When used in a
multiple well setting, the dynamical tomography method enables an assessment to be made of the
assumed invariance 1o spatial location of parameters in equations of state, as well as allowing
geologic process parameters 10 vary with well location. The procedure also automatically incor-
porates the ability 10 determine precision, resolution, sensitivity, and uniqueness of any or all
parameters, both associated with equations of state and associated with geological processes.
Thus, a sharper understanding is achieved of the trustworthiness and uncertainty of quantitarive
basin analysis models in respect of: (1} intrinsic assumptions of a model; (ii) implicit or explicit
parameter dependences for both geological events and imposed functional dependences of vari-
ables; (iii) resolution with respect to finite sampling and measurement error or unceriainty in the
quality and quantity of observed data.
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INTRODUCTION

The dynamical evolution of sediments, and their compaction, are the underpin-
ning keystones on which rests the ability to model thermal history of a basin,
and hydrocarbon generation, migration, and accumulation histories. In the last
decade or so, numerical frameworks have been constructed which permit data-
driven models to be analyzed for fluid-flow and compaction in sediments (Yu-
kler, 1979; Welte and Yukler, 1981; Bethke, 1985; Cao et al., 1986; Lerche,
1990a, b). These models, by and large, include auxiliary procedures for han-
dling other phenomena allied to the evolution of fluids and compaction in sed-
iments, such as chemical cementation and dissolution (Bethke, 1985; Cao et
al., 1986), faulting and fracturing (Cao et al., 1989; Wei and Lerche, 1988),
erosion events (Armagnac, 1985; Armagnac et al., 1989}, thermal and hydro-
carbon histories, and so on. But the dominant support to analysis of these sub-
sidiary processes is provided by the burial history of the sediments.

Elsewhere {(Lerche, 1988a,b; He and Lerche, 1989; Pantano and Lerche,
1990), we have provided a scheme such that multiple thermal indicators, which
carry the impressed signature of a thermal record, can be inverted to yield in-
formation concerning paleoheat flux variation with time, unconformity events,
physical and chemical parameters of the individual thermal indicators, strati-
graphic ages, and overthrust events (Kuckelkorn et al., 1990). The essence of
the method used to invert present-day downhole thermal indicator data was
based on thermal indicator tomography—itself an offshoot of seismic tomog-
raphy.

It seemed to us that it might be possible to generalize the tomographic
procedure to allow the burial history of sediments at single and multiple well
sites to be subject to a similar procedure. The rationale for wishing to obtain
such a scheme is the plethora of seemingly freely variable parameters and func-
tions which can enter a basin analysis burial history calculation. For instance,
the quasi-empirical relation between permeability, «, and void ratio, e, for shales
is often written in the form

K = kyle/e,)® (N

where «, is the permeability on ¢ = e, e, is the surface void ratio (void ratio,
e, is related to porosity ¢, through ¢ = ¢ /(1 — ¢)), and B is a number, usually
of order 3 + 3 for most shales (Cao et al., 1986; Dutta 1989). This equation
of state for shales, therefore, contains three freely adjustable parameters.
Equally, the equation of state relating frame pressure (effective stress), Py, and
void ratio for shales is often written as the quasi-empirical relation

Py = Pple/e,)™ 2

where, again, Py, and A are freely adjustable parameters.
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Each lithology has its own equations of state relating permeability and
frame pressure to void ratio, and each of these equations has its own adjustable
parameters. In addition, there can be included different equations of state for
the same lithology under different conditions. For instance, a shale may have
an anisotropic permeability, which is different parallel and perpendicular to bed-
ding.

Thus, from the point of view of using observed data to provide constraints
on parameters in the equations of state, the advantages in having available a
dynamical inversion scheme are clear.

Equally, the burial histories of sediments are influenced by dynamical
events that occurred in the past. Thus, the development of a fault can have a
major impact on the on-going evolution of the basin. If the throw of the fault
is significant, then different lithologic units can be brought into juxtapositional
butting, leading to a change in the paths allowed thereafter for migration of
fluids. In turn, this change will impact the evolution of the dynamical compac-
tion of the sediments. Likewise, whether a fault is open to hydrodynamic fluid
flow or closed to such flow has a significant impact on the loss of fluid and
consequent fluid overpressure in the basin, as has been shown for the Pinedale
Anticline, Green River Basin, Wyoming by Wei and Lerche (1988).

The development of fracturing and the critical pressure at which fracturing
can take place also have roles to play in controlling the evolution of sediment
compaction and fluid loss in a basin (Cao and Lerche, 1989).

Similarly, the presence or absence of diagenetic cementation and dissolu-
tion, the timing of such events, the degree of cementation or dissolution, and
the formations subject to such effects, all influence the rate, amount, and timing
of fluid loss in sediments.

In addition, the presence of erosional events and whether they are depo-
sitional hiatae or represent deposition followed by erosion (in which case the
thickness and lithology of the eroded units and the timing of such erosion are
the critical unknown parameters influencing the burial history) are of concern
in attempting to assess the consequences to sedimentary burial history of such
events.

We see then two sorts of parameters entering burial history calculations:

1. Parameters associated with equations of state of lithologic units.
2. Parameters associated with geologic events.

The determination from observational data of those two sorts of parameters is
not independent in the sense that one cannot first determine, say, the parameters
relevant to the equations of state, and then the geological event parameters. The
reason is that one set of parameter values impacts the other. Thus, if the shale
scaling permeability, k., is arbitrarily chosen to be very small, then the loss of
fluids from shale layers is extremely slow. Thus, an erosional event may then
have little consequence for the shale. On the other hand, if «, is larger, so that
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fluids can escape relatively quickly, then a depositional /erosional event may
have a significant impact on the loss of fluid from the underlying shale. Clearly,
the problem is one of determining sirmultaneously the sets of parameters for both
equations of state and for geological events which are most consistent with
present-day data. In addition, the resolution of each parameter must be deter-
minable.

Supposing such a scheme to have been devised, it would then appear that
burial histories most consistent with observed data, and with known resolution
and uncertainty, are constructed. However, as has been noted elsewhere
(Lerche, 1990a), both thermal conductivities, fluid viscosities, chemical dia-
genesis, and conversion of kerogen to mobile and soluble oil and gas phases
are temperature-dependent, as is the thermal expansibility of fluids, the pressure
of gases, and the solubility of methane and ethane in water and oil. Thus, the
burial history evolution is dependent to a greater or lesser extent on the thermal
evolution of the sediments and on the hydrocarbon evolution within the sedi-
ments.

Thus, it would appear that the thermal history of the system must be known
simultaneously with the dynamical burial history of the sediments. This point
is reinforced when it is also recognized that thermal indicators contained infor-
mation concerning the impressed signature of the temperature history they have
been exposed to, which, in turn, owes some allegiance to the burial paths of
sedimentary units as weil as to intrinsic variations in paleoheat flux. Effects of
unconformities (Armagnac, 1985; Armagnac et al., 1989), of stratigraphic age
uncertainties (Pantano and Lerche, 1990), and so on, are recorded with some
resolution in thermal indicators. Conversely, observed present-day thermal in-
dicator values can be used to determine the degree to which such geological
events can be determined. But then these events, whether determined from dy-
namical burial path information or from thermal indicators, should have the
same parameter values. Hence, it should be possible to use both dynamical
information and thermal indicator information simultaneously to better deter-
mine event parameters. Such a procedure for mulitiple thermal indicators has
already been used (He and Lerche, 1990) to better constrain not only paleoheat
flux variations but also physical and chemical parameters for each thermal in-
dicator, since all thermal indicators must have been exposed to the same paleo-
heat flux—which information, therefore, acts as a constraint on allowed vari-
ations of other parameters.

This paper sets up the formal quantitative development for handling all of
these problems on an equal footing in order to illustrate the underlying mathe-
matical framework of the procedure. Case histories are considered in the next
papers in the series.

In the second section we present the methodology for handling the dynam-
ical inversion scheme when only single-well information is available. The third
section then provides a procedure for generalizing the method of the second
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section to allow for multiple-well information. The fourth section shows how
the dynamical inverse tomographic scheme can be combined with the thermal
indicator tomographic procedure already developed (Lerche, 1988a,b).

DYNAMICAL TOMOGRAPHY IN ONE-DIMENSION

The arguments put forward by He and Lerche (1989) for dealing with ther-
mal indicator tomography are valid in like manner when dealing with dynamical
tomography. Indeed, both the beholdenness to seismic tomography and the gen-
eral procedures developed in He and Lerche (1989) are transportable almost
wholesale to the dynamical tomography problem. Despite the closeness in gen-
eral development, nevertheless, it is appropriate to spell out some of the detailed
reasons underlying the rationale, as well as the appropriate generalizations nec-
essary to carry through the machinations for dynamical tomography. These de-
velopments seem appropriate for two main reasons: first, so that one does not
have to have the earlier papers on thermal indicator tomography and so this
paper stands on its own in a complete form; second, because there are interest-
ing technical differences of procedures and control functions for dynamical to-
mography which, when combined with thermal indicator tomography (as we
shall do later in the paper), lead to a general procedure for handling both dy-
namical and thermal parameters on the same footing. For these reasons we
believe it is important to construct the dynamical tomography procedure from
first principles.

GENERAL REMARKS

As with thermal indicator tomography, dynamical tomography is a nonlin-
ear inverse problem. The nonlinearity arises because the parameters and/or
functions to be determined influence the burial paths of the sediments, the thick-
nesses of stratigraphic units, the porosity of formations, and the fluid paleo-
overpressure. The essence of most tomographic procedures devised to date from
many disciplines has been to construct ‘‘almost linear’” solutions. Thus, the
true nonlinear behavior is linearized around initial estimates for the parameters,
the linearized equations are then solved to obtain linearized corrections to the
parameters, the new parameters are then used to linearize again around the new
nonlinar estimate, and the process iterated (Aki and Lee, 1976; Hawley et al.,
1981; Menke, 1984; Lerche, 1988a,b). In constructing a thermal indicator to-
mography inverse scheme we originally (Lerche, 1988a,b) followed this tried
and proven path. However, there are several difficulties that arise that make it
desirable to devise a more general procedure. First, as noted by Menke (1984),
a damping constant has to be introduced to stabilize inversion of matrices in the
linearized equations. The value of this damping constant is arbitrary, but tests
against many synthetic data sets have shown that a value of about 5-10% of
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the main diagonal elements of the relevant matrices produces acceptable inverse
solutions. But in any particular problem there is no way of knowing, short of
trial and error, the sensitivity of the inverse solutions to the value chosen for
the damping constant. (We would prefer to avoid the introduction of an arbitrary
constant, we have enough parameters to determine already.) Second, it can,
and does, happen that the linearized corrections to the initial parameters can
cause the up-dated (initial plus linearized correction) parameters to land in non-
physical space (e.g., a correction to a small initial erosional unconformity may
give a negative amount of erosion). Such facts can cause rapid numerical in-
stability of the linearized iteration scheme. It is, of course, possible to rewrite
parameters to enforce the physical requirements, but it would be preferable if
the tomographic procedure would ensure such correct physical behaviors au-
tomatically. Third, it can happen that the initial estimate of parameter values is
very far from the best parameter values so that many iterations are necessary to
approach the minimum mismatch between predicted and observed data. Such
effects can cause massive computer run time. We would prefer to have a pro-
cedure that would automatically find initial parameter values close to the ‘‘best’’
values. Fourth, there is no guarantee that, once a local minimum mismatch is
found, there is not some other, more global, minimum within the physically
acceptable domain. We would prefer to have a procedure which could readily
be used to search quickly for such a potential minimum. Fifth, it can happen
that the system is not sensitive to the precise value of a parameter, or a set of
parameters, in some range. When this occurs, the implication is that the system
cannot resolve such parameters, and attempts to find determined values should
then be discontinued. We would prefer a procedure which would rapidly sort
out such insensitive parameters from sensitive parameters which can be deter-
mined.

As a consequence of such difficulties with the conventional procedure, we
have gradually abandoned the linearized procedure outlined above over the last
few years in favor of a nonlinear scheme which does not suffer from the above
drawbacks, but which is still remarkably fast numerically. We consider this
framework in the next subsection.

Control Functions and Nenlinear Tomography

In a single well the information usually available is: (i) the depth, Z,
measured from the sediment-water interface to the total depth (TD) drilled; (ii)
the thicknesses, 7;, and lithologies and ages of each formation in an ordered
sequence i = 1, 2, ..., J. The sum of the thicknesses should be equal to the
total depth drilled

ZT = Z T;. (3)
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(iii) a set of porosity measurements ¢; measured at depths, z;, with j = 1, 2,
..., J5 (iv) a set of total fluid pressure measurements, P, measured at depths
e, withk = 1,2, ..., K; (v) occasionally, but not always, there will also be
a set of permeability measurements, x;,, measured at depths z;, with [ = 1, 2,
..., L; (vi) if unconformities have occurred, their depth positions, Z,, (n =
1,2,..., U) are also noted. One of the purposes of dynamical burial history
modeling is to devise time-dependent, fluid-flow, compaction models which
will honor the above data.

As we have remarked aiready, in the construction of burial history models
a suite of parameters is specified relating both to equations of state and to geo-
logical events. Let the vector, p, denote the complete set of all such parameters.
We recognize that the parameters are often of different dimensions which, in
the nearly linear procedure discussed above, requires a renormalization to di-
mensionless form prior to initiating a tomographic procedure (Menke, 1984).
As we shall see, the same is true with the nonlinear tomographic procedure to
be exhibited below.

The argument is now relatively straightforward. A quantitative burial his-
tory model constructs dynamically evolving values for total depth, Zy,(p, 1), for
porosity ¢4(z, p. 1), for total fluid pressure Py (p, ¢, 2), for formation thick-
nesses Ty (z, P, 1), for permeability «,,(z, p, 1) and will also insert unconform-
ities with depth and time so that the modeled unconformities occupy positions
Zy(p, 1, 7). Here t is time, z is depth below the water base, and p is the param-
eter vector to show explicitly that all modeled quantities depend on the param-
eters invoked.

At the present-day (r = 0), the modeled quantities take on the values Zy, (p),
Omz D), Pu(ps 2)s Tz, P)s k1 (z, P), and Zy,(z, p). For consistency, all of
the modeled values should be in agreement with the present-day measured val-
ues. Criteria used to asscess the degree of mismatch between predicted and
observed values are least-squares control functions as follows:

1. For TD,

X3,(p) = @up) — Z7) (4a)

2. For formation thicknesses,
1
Xim =" 2 (7 = 7P, ) (4b)
3. For porosity variations,
J
Xo0) =" % (9~ buly, P (4o)
j=
4. For fluid pressure variations

K
X3 =K' Z (P = Py pY (4d)
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5. For permeability variations

L
X2(p) =L"" ,Z (n &, — In Ky (2, P)Y (de)
=1
6. For unconformity positions,
[
X2p) = U™ 2 (Z, - Zyz, PV 4f)

n=

The reason for using the natural logarithm of the permeability in the least-squares
control function (4e) is that the observed permeabilities of shales are, typically,
several orders of magnitude smaller than those of sands (Glezen and Lerche,
1985; Dutta, 1989), with the lower shale permeabilities having dominant con-
trol on the escape of fluids from the subsurface (Cao and Lerche, 1990; Lerche,
1690a,b). The logarithmic dependence is appropriate to describe this dominance
of shales, as has also been noted by Warren and Price (1961), Freeze (1975),
Palcianskas and Domenico (1980), and others.

Note that the individual control functions in Eq. (4a) through (4f) have
different dimensions so they are not immediately comparable.

Suppose, for the moment, that some initial estimate has been chosen for
the parameter vector p. Let this value be py. (We shall retumn later to a proce-
dure for determining the initial parameter vector pg). Then construct the di-
mensionless quantities:

yiP) = Xip(0) /X3 (Po): Y3(P) = X3(p)/X:(po)
Yip) = X3()/X3(po); ¥3() = X2(p)/X3(Po)
yip) = X2(p)/X2(po); Yi(p) = X2(p)/X2(po) (5)

On p = py, each of the y’s is unity. Clearly, a smaller mismatch to the obser-
vations occurs when each of the y’s tends to zero. Now construct a global con-
trol function Y’ 2([:0) as follows:

6
Y'p) = 2 ay}p) (©6)

where the a, are positive fractional weight coefficients whose sum is unity. The
weight coefficients can be chosen to emphasize one aspect of the model and
agreement between observations and predictions over others. For instance, if
no permeability measurements are available, it would be inappropriate to com-
pare model predictions of log permeability against nonexistent observations. In
that case, one might set as = 0. Or again, it might be thought that porosity
measurements are less reliable than, say, formation thickness measurements, in
which case a; might be made smaller than the remaining weight coefficients.
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Before we can construct the nonlinear tomographic procedure, one further
factor needs to be addressed. The parameter vector, p, is a conglomerate of
scalar parameters, all of which have different dimensions. In order to construct
a simple nonlinear tomographic procedure, it is best to normalize parameters.
To this end, suppose that a scalar parameter is considered to be physically con-
strained to lie between a minimum p_,;,, and a maximum p,,,,. Then write

a= (p - pmin)/(pmax - pmin) (73)

sothata = Oonp = p;,,anda = 1 onp = p,,,. Perform a similar normal-
ization on each component of the parameter vector, p, so that for each com-
ponent we have

P = Puin + a(pmax - pmin)» O0<a=xl (7b)

Regard a vector a, of identical dimensionality to the vector p, as being funda-
mental with the connection between each component of a and each component
of p being given by Eq. (7b). The vector a then has entries which are dimen-
sionless for each component and are in the range {0, 1}. Regard Y? as a direct
function of the vector a, with p being determined parametrically through the
component representations as in Eq. (7b). Thus, an initial estimate for each
component p, in the range { Puin. Pmax §» Provides an initial estimate of aq,
through Eq. (7a), and so an initial estimate for the vector a,, directly related to
the initial estimate of the vector pg.

Consider then the following nonlinear iteration scheme for each scalar
component, a(j ) of a, to be run through N times:

_ _3r*(am)
ain + 1) = an) exp[ o; ————-aai(n) ] 8)
where
_3P@g)| .

@i = , da; (0) In[l + (Na;(0))" '] (9a)

with a,(0) = a,, and the derivative calculated numerically from
Bl;“(a(n)) = [Y(a,(n), a,(n) ... a;(n) + O.1a;(n), @ ., (n) ...)
a;(n)
~Y%(a(n))]/(0.1a;(n)) (9b)

The nonlinear iteration scheme given by Eq. (8) has several interesting char-
acteristics. First, it guarantees that if a; is positive at any iteration (including
the initial estimate), then a;(n) will be positive at every iteration. Second, it
guarantees that Y2 (a) will always be smaller or the same at each iteration if the
partial derivatives are calculated exactly. [If the derivatives are only calculated
numerically approximately, as by Eq. (9b), then small localized oscillations



826 Lerche

around a minimum can occur.] Thus, Y? is always decreased away from its
initial value so the procedure guarantees that a minimum will be found. (The
questions of resolution, precision, uniqueness, and sensitivity are deferred to
the papers dealing with case histories.)

Third, it is a relatively simple matter, once a minimum is achieved, to
“‘freeze’’ all parameters except one at the values corresponding to the mini-
mum, and to then perform a linear or random search between minima and max-
ima. The procedure is repeated for each and all parameters in tumn. In this way,
a relatively confident position can be taken that no minima have been over-
looked.

Fourth, in respect of the choice of initial estimates for the parameters, it
now becomes clear how to ensure that they will be close to a minimum position.
Choose the search range of each parameter (i.€., Prin, Pmax)- Then perform a
linear or random search on each within the parameter range to find the minimum
of Y(po)’, thereby identifying the rough value of the parameter. Choose that
value as the estimate of py. In practice this procedure works extremely effec-
tively. Indeed, when a rough estimate of the initial parameter vector has been
found, the linear search procedure can be iterated to provide closer approxi-
mations to the minimum value of Y(p,)’, and so a correspondingly better esti-
mate of the parameter vector.

Fifth, as a tactical maneuver, a more rapid approach to a minimum value
is obtained if N nonlinear iterations are done, the up-dated parameter vector,
pu- at the end of the iterations is used to replace p,, and then N more nonlinear
iterations performed. This tactic is far superior to doing 2N nonlinear iterations
around the original estimate, py.

To date, numerical experience on single well studies and on synthetic data
has shown that:

1. The nonlinear inversion generally converges rather rapidly in 5-10 it-
erations.

2. The pragmatic procedure: linearly estimate py, nonlinearly invert, lin-
early estimate, nonlinearly invert, is usually more than enough to ex-
haust the precision of the input data, so that the model arrived at after
the inversion procedure is a significantly better fit to data than the re-
sults of the first linear search estimate.

MULTIPLE WELLS IN A BASIN, 2-D DYNAMICAL
TOMOGRAPHY

In the case of a single-well study, there is little need to discriminate be-
tween parameters which are associated with equations of state from parameters
which are, or may be, associated with geological events. However, this is not
the case in multiple-well studies because geological events can change from
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spatial location to spatial location while, presumably, parameters in equations
of state should be invariant. Exceptions have to be provided for: thus, the an-
isotropy in shale permeability parallel and perpendicular to bedding can be in-
fluenced by the local depositional and compactional history of a system, and so
is location-dependent. But frame pressure-void ratio and permeability-void ra-
tio rules should, presumably, not be dependent on location within a given basin.

Two fundamentally different nonlinear inverse procedures are available,
depending upon the assumptions made concerning the parameter vector. On the
one hand, there is the extreme end-member decision that every component of
the parameter vector may be location-dependent for reasons not completely
understood. On the other hand, there is the extreme end-member strategy which
regards only geological event parameters as location-dependent, and any and
all equation-of-state parameters are considered independent of location.

In either event, there exists a procedure for determining the validity of the
extreme end-member scenarios. First, consider the situation in which all com-
ponents of the parameter vector p are considered dependent on location x; (i =
1,2,...,X)as well as on depth, z. Write p = p(x) to express this dependence.
Then suppose that at position x;, thicknesses, TD, porosity, fluid pressure,
permeability, and unconformity depths have been measured. Construct, as
above, Y,(p(x;))? for each quantity which now depends on the parameter vector,
p. at lateral location x;. The evolution and compaction of sediments in the basin
are now laterally connected because fluids can flow horizontally as well as ver-
tically. Thus, consistency of predicted and observed behaviors at a given lo-
cation does not guarantee a minimum discord at other positions in the basin.
To obtain a minimum mismatch at all positions in the basin introduce

X
¥ (PG, pO), - = X' 2y (p0))® (10)

Then proceed as noted above. Construct

6
Y= % ay,(px), pe, .Y’ (1n

and minimize Y2 with respect to the total set of parameter values, both geolog-
ical event and equation of state, each which is considered location-specific.

Then perform the linear or random search routine for each parameter,
thereby constructing a range of sensitivity for each parameter around the min-
imum value of Y2,

Now repeat the analysis but hold parameters thought to be independent of
geological events at common, location-independent values. Again minimize Y 2,
again construct the sensitivity range for each parameter around the minimum
value of Y?. Compare the degrees of resolution and sensitivity of this end-
member situation with the previous analysis above. If, to within some imposed
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degree of tolerance either in respect of intrinsic data resolution or in respect of
predicted and observed mismatch weighted or unweighted, there is no differ-
ence in the parameter values, then justification can be given for arguing that
parameters representing equations of state are indeed location-independent. A
significant departure of the sensitivity curves one from the other in the two cases
implies that, to within the resolution limit set, the parameter under investigation
is location-dependent. Thus, the procedure in the 2-D case is a simple gener-
alization of the 1-D procedure with only minor variations in technique—but
providing the potential for assessing the validity of intrinsic assumptions of
different extreme end-member behaviors.

COMBINED DYNAMICAL AND THERMAL TOMOGRAPHY

Information on the dynamical evolution of sedimentary basins is imparted
not only by present-day downhole data such as TD, formation thicknesses, po-
rosity, permeability, total fluid pressure, and unconformity depths, but some
information related to dynamical evaluation has also been impressed on thermal
indicators throughout their evolution (Lerche, 1990a,b). Indeed, elsewhere we
have used multiple present-day thermal indicator data in an inverse manner to
determine not only paleoheat flux variations and physical and chemical param-
eters associated with the thermal indicators, but also parameters associated with
geological events (such as unconformity thicknesses, stratigraphic ages, em-
placement time of overthrusts, insertion temperature and time or igneous
overthrusts) (Lerche, 1988a,b; Pantano and Lerche, 1990; He and Lerche; 1989;
Lerche, 1990a,b).

Clearly, parameters for geological events and equations of state are making
their effects felt on both dynamical tomography (in a direct sense) and on ther-
mal indicator tomography (in an indirect sense through the effects on tempera-
ture experienced by thermal indicators). Thus, a combined dynamical and ther-
mal indicator tomography should better resolve, or constrain, common
parameters influencing both types of indicator.

To allow for such a situation simply introduce the v thermal indicator,
T1(Z,), measured at the set of depths Z,, s = 1, 2, ..., S. Then, following
the procedure laid down elsewhere (Lerche, 1988a,b) for a thermal indicator
with a given kinetic description, we can write

N
Uip) = §7 L (TI(Z,, p) = TL (0, P’ (12)

where TI,(z,, p) is the predicted value of the ¢ thermal indicator with time ¢,
corresponding to present-day depth Z,. To combine a set of different multiple
thermal indicators, in a manner similar to that set out in the second section
above, we introduce

ui(p) = Up)*/U.po)’ (13)
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and

[ 4
wip) = V7' L bup) (14)

where ¥V is the total number of thermal indicators, and the b, are positive, frac-
tional weight factors. In the case of thermal indicators not only is the parameter
vector p made up of components due to geological events and equations of state,
but also components due to paleoheat flux and physical/chemical parameters
associated with each thermal indicator. Absorbing these *‘extra’ parameters
into the definition of p, we can then combine the dynamical and thermal indi-
cator control functions to write ‘

Wp)’ = Y(p)* + u(p) (15)

and perform the nonlinear inversion procedure of the second section on the
combined control function W(p)>.

This completes the formal mathematical analysis because, with both the
thermal and dynamical components successfully mated as above, we have avail-
able a procedure for assessing parameters of geological processes which affect
the evolution of sedimentary basins in both a local and a regional sense.

The combined determination of structural and dynamical properties of pe-
troliferous basins and of quantitative paleoheat flux variations, as well as phys-
ical/chemical parameters of equations of state and thermal indicators, together
with quantitative measures of their uncertainties consistent with downhole data,
offers the greatest probability of accurately assessing not only the timing of
hydrocarbon production and migration, but also the relationship to the timing
and development of structural and stratigraphic traps which serve as oil reser-
voirs in a basin.

DISCUSSION AND CONCLUSION

The development of dynamical indicator tomography closely parallels the
corresponding development for thermal indicator tomography. In essence, the
idea is to use observed, or inferred, present-day data to constrain parameters or
functions occurring in dynamical models of paleo-evolution of sediments. The
logic for assessing the degree to which model parameters can be constrained,
or determined, by present-day data is founded on a nonlinear inversion or least-
squares control functions in which total depth, formation thicknesses, porosity,
fluid pressure, permeability variations with depth, and depths to unconformities
act to constrain model behaviors.

This paper has spelled out the main theoretical procedures for enabling
quantitative numerical codes to be constructed in order to examine the resolu-
tion, precision, sensitivity, and degree of uniqueness with which information
can be extracted concerning the dynamical aspects of compaction and evolution
of sedimentary basins.
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The main factor which controls the evolution of compaction is the rate at
which fluid can escape from the sediments. That loss is dominated by both the
permeability variation and the excess fluid pressure gradient of shales, although
other factors (such as overburden load, unconformities, cementation, and so
on) play roles.

The inverse, nonlinear, dynamical tomography scheme set up here is de-
signed to address directly the questions of which parameters control the de-
tailed, dynamical development, the degree to which parameters can be deter-
mined or constrained, and the degree to which different hypotheses (e.g., open/
closed faults; erosion/hiatus; equation of state parameters dependent/indepen-
dent of spatial location) can be evaluated for their veracity.

As well as demonstrating that the design and implementation of a dynam-
ical indicator tomography procedure are eminently practical goals for a single
well (one-dimensional system), we also showed that both a two-dimensional
generalization as well as a combined dynamical/thermal indicator tomographic
procedure were implementable.

The advantage to having available the above method is that trial-and-error
searches do not have to be undertaken for each and every parameter, something
that is both time-consuming and very difficult to implement systematically. The
tomographic nonlinear inversion automatically incorporates a systematic method
for determining multiple parameters and their sensitivity, while guaranteeing to
stay within any pre-set ranges.

Underlying the development of the multiple dynamical and/or combined
thermal indicator methodology is the idea that multiple types and quantities of
dynamical downhole information act as powerful constraints to provide checks
and balances of one dynamical indicator against another—such as, for example,
formation thickness, porosity with depth, and fiuid pressure with depth.

The point here is that different dynamical indicators spanning the same
depth range in the same well must have been exposed to precisely the same
burial path behavior and to the same variations of fluid pressure or fluid flow
with time. Each dynamical indicator (TD, formation thickness, porosity,
permeability, fluid pressure, unconformity depth) must then produce the same
value for a parameter common to all indicators. By demanding such agreement,
and since each dynamical indicator has its own particular dependence on time
and fluid flow, the inverse procedure can extract those parameters which are
most consistent with the downhole data of a particular dynamical indicator, and
also with the geological parameters determined by inversion from other down-
hole dynamical indicators.

Potential applications of the dynamical tomography procedure on its own,
in one or two dimensions, and in combination with the thermal indicator to-
mography procedure developed previously (He and Lerche, 1989) are legion.

For example, as we have remarked already, the determination of parame-
ters associated with permeability is a crucial ingredient if we are to more ac-
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curately determine the temporal loss of fluid from a sedimentary basin. In turn,
the loss of fluid impacts the evolution of paleo-overpressure, which is linked to
both rock fracturing as well as to increased temperature (through retention of
fluid), thereby influencing thermal indicator evolution and hydrocarbon gener-
ation.

Or again, the presence of an erosional unconformity and the determination
of both the amount of sediment eroded as well as the timing of erosion influ-
ences the dynamical evolution of sediments in a basin, the thermal history of
the sediments, and the potential for hydrocarbon retention.

Many such cases can be investigated for the ability of present-day dynam-
ical and thermal indicator information to provide knowledge of the paleo-evo-
lution of a basin. Indeed, it could be argued that all of quantitative basin anal-
ysis requires such a treatment, leading to the exciting possibility of treating
every sedimentary basin by such techniques.

In the next paper in this series, we present case histories illustrating and
exemplifying applications of the theoretical development given here.
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