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Inversion of Dynamical Indicators in Quantitative 
Basin Analysis Models. I. Theoretical 

Considerations 1 

I. L e r c h e  2 

Present-day observed downhole quantities, which a dynamical model o f  basin evolution should 
account for, include: total depth drilled, formation thicknesses, variations of  porosity, permeability 
and totat fluid pressure with depth, and depths o f  unconformities. Following a line o f  logic previ- 
ously employed with multiple thermal indicators, it is shown how the observed quantities can be 
used in a nonlinear inverse sense to determine, or at least constrain, parameters and functions 
entering quantitative models o f  dyanmicat sedimentary, evolution. A procedure is given so that the 
inverse methods can be used: (a) with single well data; (b) with multiple well data; and (c) simul- 
taneously with thermal indicator data, which have already been previously successfully inverted 
using a tomographic procedure. Parameters that can be evaluated using the dynamical indicator 
inversion (dynamical tomography) include, but are not limited to, values dealing with geological 
events (such as unconformio' timing and amount of  material eroded, the "openness" or "shut- 
ness" of  faults; critical fracture pressure, etc.), as welt as values dealing with intrinsic, or as- 
sumed, lithologic equations o f  state (such as power law values in connections between permeability 
and void ratio, or between frame pressure and void ratio). Tire dynamical tomography procedure 
can be used with or without weighting the data and~or the dynamical indicators; is guaranteed to 
produce a closer correspondence between predicted and observed behaviors at each nonlinear 
iteration; and is guaranteed to keep all parameters within any chosen domain. When used in a 
multiple well setting, the dynamical tomography method enables an assessment to be made of  the 
assumed invariance to spatial location o f  parameters in equations o f  state, as well as allowing 
geologic process parameters to vary with well location. The procedure also automatically incor- 
porates the abiti~., to determh~e precision, resolution, sensitivity, and uniqueness o f  any or all 
parameters, both associated with equations o f  state and associated with geological processes. 
Thus, a sharper understanding is achieved of  the trustworthiness and uncertainty of  quantitative 
basin analysis models in respect of." (1) intrinsic assumptions of  a model, (ii) implicit or explicit 
parameter dependences for both geological events and imposed functional dependences o f  vari- 
ables; (iiO resolution with respect to finite sampling and measurement error or uncertain~ in the 
quality and quantitT of  observed data. 
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INTRODUCTION 

The dynamical evolution of sediments, and their compaction, are the underpin- 
ning keystones on which rests the ability to model thermal history of a basin, 
and hydrocarbon generation, migration, and accumulation histories. In the last 
decade or so, numerical frameworks have been constructed which permit data- 
driven models to be analyzed for fluid-flow and compaction in sediments (Yu- 
kler, 1979; Welte and Yukler, 1981; Bethke, 1985; Cao et al., 1986; Lerche, 
1990a, b). These models, by and large, include auxiliary procedures for han- 
dling other phenomena allied to the evolution of fluids and compaction in sed- 
iments, such as chemical cementation and dissolution (Bethke, 1985; Cao et 
al., 1986), faulting and fracturing (Cao et al., 1989; Wei and Lerche, 1988), 
erosion events (Armagnac, 1985; Armagnac et al., 1989), thermal and hydro- 
carbon histories, and so on. But the dominant support to analysis of these sub- 
sidiary processes is provided by the burial history of the sediments. 

Elsewhere (Lerche, 1988a,b; He and Lerche, 1989; Pantano and Lerche, 
1990), we have provided a scheme such that multiple thermal indicators, which 
carry the impressed signature of a thermal record, can be inverted to yield in- 
formation concerning paleoheat flux variation with time, unconformity events, 
physical and chemical parameters of the individual thermal indicators, strati- 
graphic ages, and overthrust events (Kuckelkom et al., 1990). The essence of 
the method used to invert present-day downhole thermal indicator data was 
based on thermal indicator tomography--itself an offshoot of seismic tomog- 
raphy. 

It seemed to us that it might be possible to generalize the tomographic 
procedure to allow the burial history of sediments at single and multiple well 
sites to be subject to a similar procedure. The rationale for wishing to obtain 
such a scheme is the plethora of seemingly freely variable parameters and func- 
tions which can enter a basin analysis burial history calculation. For instance, 
the quasi-empirical relation between permeability, K, and void ratio, e, for shales 
is often written in the form 

= K , ( e / e , )  a (1) 

where K, is the permeability on e = e , ,  e ,  is the surface void ratio (void ratio, 
e, is related to porosity 4), through e = ~b/(1 - ~b)), and B is a number, usually 
of order 3 + 3 for most shales (Cao et al., 1986; Dutta 1989). This equation 
of state for shales, therefore, contains three freely adjustable parameters. 
Equally, the equation of state relating frame pressure (effective stress), Pf, and 
void ratio for shales is often written as the quasi-empirical relation 

Pf = P f , ( e / e , )  -A (2) 

where, again, P f ,  and A are freely adjustable parameters. 
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Each lithology has its own equations of state relating permeability and 
frame pressure to void ratio, and each of these equations has its own adjustable 
parameters. In addition, there can be included different equations of state for 
the same lithology under different conditions. For instance, a shale may have 
an anisotropic permeability, which is different parallel and perpendicular to bed- 
ding. 

Thus, from the point of view of using observed data to provide constraints 
on parameters in the equations of  state, the advantages in having available a 
dynamical inversion scheme are clear. 

Equally, the burial histories of sediments are influenced by dynamical 
events that occurred in the past. Thus, the development of  a fault can have a 
major impact on the on-going evolution of the basin. If the throw of the fault 
is significant, then different lithologic units can be brought into juxtapositional 
butting, leading to a change in the paths allowed thereafter for migration of 
fluids. In turn, this change will impact the evolution of the dynamical compac- 
tion of the sediments. Likewise, whether a fault is open to hydrodynamic fluid 
flow or closed to such flow has a significant impact on the loss of fluid and 
consequent fluid overpressure in the basin, as has been shown for the Pinedale 
Anticline, Green River Basin, Wyoming by Wei and Lerche (1988). 

The development of fracturing and the critical pressure at which fracturing 
can take place also have roles to play in controlling the evolution of sediment 
compaction and fluid loss in a basin (Cao and Lerche, 1989). 

Similarly, the presence or absence of diagenetic cementation and dissolu- 
tion, the timing of such events, the degree of cementation or dissolution, and 
the formations subject to such effects, all influence the rate, amount, and timing 
of fluid loss in sediments. 

In addition, the presence of erosional events and whether they are depo- 
sitional hiatae or represent deposition followed by erosion (in which case the 
thickness and lithology of the eroded units and the timing of such erosion are 
the critical unknown parameters influencing the burial history) are of concern 
in attempting to assess the consequences to sedimentary burial history of such 
events. 

We see then two sorts of parameters entering burial history calculations: 

1. Parameters associated with equations of state of lithologic units. 

2. Parameters associated with geologic events. 

The determination from observational data of those two sorts of parameters is 
not independent in the sense that one cannot first determine, say, the parameters 
relevant to the equations of state, and then the geological event parameters. The 
reason is that one set of  parameter values impacts the other. Thus, if the shale 
scaling permeability, K,, is arbitrarily chosen to be very small, then the loss of 
fluids from shale layers is extremely slow. Thus, an erosional event may then 
have little consequence for the shale. On the other hand, if K. is larger, so that 
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fluids can escape relatively quickly, then a depositional/erosional event may 
have a significant impact on the loss of fluid from the underlying shale. Clearly, 
the problem is one of  determining simultaneously the sets of parameters for both 
equations of state and for geological events which are most consistent with 
present-day data. In addition, the resolution of each parameter must be deter- 
minable. 

Supposing such a scheme to have been devised, it would then appear that 
burial histories most consistent with observed data, and with known resolution 
and uncertainty, are constructed. However, as has been noted elsewhere 
(Lerche, 1990a), both thermal conductivities, fluid viscosities, chemical dia- 
genesis, and conversion of kerogen to mobile and soluble oil and gas phases 
are temperature-dependent, as is the thermal expansibility of fluids, the pressure 
of gases, and the solubility of methane and ethane in water and oil. Thus, the 
burial history evolution is dependent to a greater or lesser extent on the thermal 
evolution of the sediments and on the hydrocarbon evolution within the sedi- 
ments. 

Thus, it would appear that the thermal history of the system must be known 
simultaneously with the dynamical burial history of the sediments. This point 
is reinforced when it is also recognized that thermal indicators contained infor- 
mation concerning the impressed signature of the temperature history they have 
been exposed to, which, in turn, owes some allegiance to the burial paths of 
sedimentary units as well as to intrinsic variations in paleoheat flux. Effects of 
unconformities (Armagnac, 1985; Armagnac et al., 1989), of stratigraphic age 
uncertainties (Pantano and Lerche, 1990), and so on, are recorded with some 
resolution in thermal indicators. Conversely, observed present-day thermal in- 
dicator values can be used to determine the degree to which such geological 
events can be determined. But then these events, whether determined from dy- 
namical burial path information or from thermal indicators, should have the 
same parameter values. Hence, it should be possible to use both dynamical 
information and thermal indicator information simultaneously to better deter- 
mine event parameters. Such a procedure for multiple thermal indicators has 
already been used (He and Lerche, 1990) to better constrain not only paleoheat 
flux variations but also physical and chemical parameters for each thermal in- 
dicator, since all thermal indicators must have been exposed to the same paleo- 
heat flux--which information, therefore, acts as a constraint on allowed vari- 
ations of other parameters. 

This paper sets up the formal quantitative development for handling all of 
these problems on an equal footing in order to illustrate the underlying mathe- 
matical framework of the procedure. Case histories are considered in the next 
papers in the series. 

In the second section we present the methodology for handling the dynam- 
ical inversion scheme when only single-well information is available. The third 
section then provides a procedure for generalizing the method of the second 
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section to allow for multiple-well information. The fourth section shows how 
the dynamical inverse tomographic scheme can be combined with the thermal 
indicator tomographic procedure already developed (Lerche, 1988a,b). 

DYNAMICAL TOMOGRAPHY IN ONE-DIMENSION 

The arguments put forward by He and Lerche (1989) for dealing with ther- 
mal indicator tomography are valid in like manner when dealing with dynamical 
tomography. Indeed, both the beholdenness to seismic tomography and the gen- 
eral procedures developed in He and Lerche (1989) are transportable almost 
wholesale to the dynamical tomography problem. Despite the closeness in gen- 
eral development, nevertheless, it is appropriate to spell out some of the detailed 
reasons underlying the rationale, as well as the appropriate generalizations nec- 
essary to carry through the machinations for dynamical tomography. These de- 
velopments seem appropriate for two main reasons: first, so that one does not 
have to have the earlier papers on thermal indicator tomography and so this 
paper stands on its own in a complete form; second, because there are interest- 
ing technical differences of procedures and control functions for dynamical to- 
mography which, when combined with thermal indicator tomography (as we 
shall do later in the paper), lead to a general procedure for handling both dy- 
namical and thermal parameters on the same footing. For these reasons we 
believe it is important to construct the dynamical tomography procedure from 
first principles. 

G E N E R A L  R E M A R K S  

As with thermal indicator tomography, dynamical tomography is a nonlin- 
ear inverse problem. The nonlinearity arises because the parameters and/or 
functions to be determined influence the burial paths of the sediments, the thick- 
nesses of stratigraphic units, the porosity of formations, and the fluid paleo- 
overpressure. The essence of most tomographic procedures devised to date from 
many disciplines has been to construct "almost linear" solutions. Thus, the 
true nonlinear behavior is linearized around initial estimates for the parameters, 
the linearized equations are then solved to obtain linearized corrections to the 
parameters, the new parameters are then used to linearize again around the new 
nonlinar estimate, and the process iterated (Aki and Lee, 1976; Hawley et al., 
1981; Menke, 1984; Lerche, 1988a,b). In constructing a thermal indicator to- 
mography inverse scheme we originally (Lerche, 1988a,b) followed this tried 
and proven path. However, there are several difficulties that arise that make it 
desirable to devise a more general procedure. First, as noted by Menke (1984), 
a damping constant has to be introduced to stabilize inversion of matrices in the 
linearized equations. The value of this damping constant is arbitrary, but tests 
against many synthetic data sets have shown that a value of about 5-10% of 
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the main diagonal elements of  the relevant matrices produces acceptable inverse 
solutions. But in any particular problem there is no way of knowing, short of 
trial and error, the sensitivity of  the inverse solutions to the value chosen for 
the damping constant. (We would prefer to avoid the introduction of an arbitrary 
constant, we have enough parameters to determine already.) Second, it can, 
and does, happen that the linearized corrections to the initial parameters can 
cause the up-dated (initial plus linearized correction) parameters to land in non- 
physical space (e.g., a correction to a small initial erosional unconformity may 
give a negative amount of  erosion). Such facts can cause rapid numerical in- 
stability of  the linearized iteration scheme. It is, of  course, possible to rewrite 
parameters to enforce the physical requirements, but it would be preferable if 
the tomographic procedure would ensure such correct physical behaviors au- 
tomatically. Third, it can happen that the initial estimate of  parameter values is 
very far from the best parameter values so that many iterations are necessary to 
approach the minimum mismatch between predicted and observed data. Such 
effects can cause massive computer run time. We would prefer to have a pro- 
cedure that would automatically find initial parameter values close to the "bes t "  
values. Fourth, there is no guarantee that, once a local minimum mismatch is 
found, there is not some other, more global, minimum within the physically 
acceptable domain. We would prefer to have a procedure which could readily 
be used to search quickly for such a potential minimum. Fifth, it can happen 
that the system is not sensitive to the precise value of a parameter, or a set of 
parameters, in some range. When this occurs, the implication is that the system 
cannot resolve such parameters, and attempts to find determined values should 
then be discontinued. We would prefer a procedure which would rapidly sort 
out such insensitive parameters from sensitive parameters which can be deter- 
mined. 

As a consequence of such difficulties with the conventional procedure, we 
have gradually abandoned the linearized procedure outlined above over the last 
few years in favor of  a nonlinear scheme which does not suffer from the above 
drawbacks, but which is still remarkably fast numerically. We consider this 
framework in the next subsection. 

Control Functions and Nonlinear Tomography 

In a single well the information usually available is: (i) the depth, Z r, 

measured from the sediment-water interface to the total depth (TD) drilled; (ii) 
the thicknesses, r i, and lithologies and ages of  each formation in an ordered 
sequence i = 1, 2 . . . . .  I. The sum of the thicknesses should be equal to the 
total depth drilled 

I 

ZT = ~ r i. (3)  
i=1 
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(iii) a set of  porosity measurements ~j measured at depths, zj ,  with j = 1, 2, 
. . . .  J; (iv) a set of total fluid pressure measurements, Pt., measured at depths 
zk, with k = 1, 2 . . . . .  K; (v) occasionally, but not always, there will also be 
a set of permeability measurements, K/, measured at depths z~, with l = 1, 2, 
. . . .  L; (vi) if unconformities have occurred, their depth positions, Z,,, (n = 
1, 2 . . . . .  U) are also noted. One of the purposes of dynamical burial history 
modeling is to devise time-dependent, fluid-flow, compaction models which 
will honor the above data. 

As we have remarked already, in the construction of burial history models 
a suite of parameters is specified relating both to equations of state and to geo- 
logical events. Let the vector, p, denote the complete set of all such parameters. 
We recognize that the parameters are often of different dimensions which, in 
the nearly linear procedure discussed above, requires a renormalization to di- 
mensionless form prior to initiating a tomographic procedure (Menke, 1984). 
As we shall see, the same is true with the nonlinear tomographic procedure to 
be exhibited below. 

The argument is now relatively straightforward. A quantitative burial his- 
tory model constructs dynamically evolving values for total depth, ZM(p, t), for 
porosity q~M(z, P, t), for total fluid pressure PM(P, t, z), for formation thick- 
nesses rM(z, p, t), for permeability KM(Z, p, t) and will also insert unconform- 
ities with depth and time so that the modeled unconformities occupy positions 
ZM(p, t, z). Here t is time, z is depth below the water base, and p is the param- 
eter vector to show explicitly that all modeled quantities depend on the param- 
eters invoked. 

At the present-day (t = 0), the modeled quantities take on the values ZM(p), 
~bM(Z, p), PM(P, Z), rM(Z, p), ~M(Z, P), and Z M ( z ,  p). For consistency, all of 
the modeled values should be in agreement with the present-day measured val- 
ues. Criteria used to asscess the degree of mismatch between predicted and 
observed values are least-squares control functions as follows: 

1. For TD, 

X~rD(P) = (ZM(p) -- Zr)  ~ (4a) 

2. For formation thicknesses, 
I 

Xr(p) = I -I ~ (zi - rM(p, zi)) 2 (4b) 
i=1  

3. For porosity variations, 
J 

X~(p) = J - '  ~ (dpj - dpM(Zj, p))2 (4c) 
j = l  

4. For fluid pressure variations 
K 

X2(p) = K - t  "~' (Pk - PM(Z,~, p))2 (4d) 
k = l  



824 Lerche 

5. For permeability variations 

L 

XZK(p) = L -1 ~ (In Kt - In rM(zt, p))2 (4e) 
/ = l  

6. For unconformity positions, 

U 

X,Z,(p) = U -t  ~ (Z, - ZM(z,,, p))2 (4f) 
t~= I 

The reason for using the natural logarithm of the permeability in the least-squares 
control function (4e) is that the observed permeabilities of  shales are, typically, 
several orders of magnitude smaller than those of sands (Glezen and Lerche, 
1985; Dutta, 1989), with the lower shale permeabilities having dominant con- 
trol on the escape of fluids from the subsurface (Cao and Lerche, 1990; Lerche, 
1990a,b). The logarithmic dependence is appropriate to describe this dominance 
of shales, as has also been noted by Warren and Price (1961), Freeze (1975), 
Palcianskas and Domenico (1980), and others. 

Note that the individual control functions in Eq. (4a) through (4f) have 
different dimensions so they are not immediately comparable. 

Suppose, for the moment, that some initial estimate has been chosen for 
the parameter vector p. Let this value be P0. (We shall return later to a proce- 
dure for determining the initial parameter vector P0). Then construct the di- 
mensionless quantities: 

y~(p) 2 , 
= XTD(p)/X.~D(Po);  Y~(P) = X2r(p)/X2r(po ) 

Y3(P) = X~(p)/X~(po); Y4(p)2 ___ X p ~ ( p ) / X 2 ( p o )  

y~(P) = X~(p)/X?,(po); yg(p) = X?,(p)/XT,(po) (5) 

On p = P0, each of the y 's  is unity. Clearly, a smaller mismatch to the obser- 
vations occurs when each of the y 's  tends to zero. Now construct a global con- 
trol function y2 (p) as follows: 

6 

Y~(P) = ~ ary~(p) (6) 
r = l  

where the ar are positive fractional weight coefficients whose sum is unity. The 
weight coefficients can be chosen to emphasize one aspect of  the model and 
agreement between observations and predictions over others. For instance, if 
no permeability measurements are available, it would be inappropriate to com- 
pare model predictions of log permeability against nonexistent observations. In 
that case, one might set a5 = 0. Or again, it might be thought that porosity 
measurements are less reliable than, say, formation thickness measurements, in 
which case a 3 might be made smaller than the remaining weight coefficients. 
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Before we can construct the nonlinear tomographic procedure, one further 
factor needs to be addressed. The parameter  vector, p, is a conglomerate of  
scalar parameters,  all o f  which have different dimensions. In order to construct 
a simple nonlinear tomographic procedure, it is best to normalize parameters. 
To this end, suppose that a scalar parameter  is considered to be physically con- 
strained to lie between a minimum Pmin, and a maximum Pmax- Then write 

a = ( p  - P m i n ) / ( P  . . . .  - -  Pmin) (7a) 

SO that a = 0 on p = Pmi, and a = 1 on p = Pmax- Perform a similar normal- 
ization on each component  of  the parameter  vector, p, so that for each com- 
ponent we have 

P = Pmin q-  a(pma.~ - Pint,), 0 < a <_ 1 (7b) 

Regard a vector a,  of  identical dimensionality to the vector p, as being funda- 
mental with the connection between each component  of  a and each component  
of  p being given by Eq. (7b). The vector  a then has entries which are dimen- 
sionless for each component  and are in the range {0, 1 }. Regard y2 as a direct 
function of  the vector  a,  with p being determined parametrically through the 
component  representations as in Eq. (7b). Thus,  an initial estimate for each 
component  p, in the range { Pmin, Pmax } ,  provides an initial estimate of  a 0, 
through Eq. (7a), and so an initial estimate for the vector ao, directly related to 
the initial estimate of  the vector  Po. 

Consider then the following nonlinear iteration scheme for each scalar 
component ,  a ( j  ) of  a,  to be run through N times: 

E ~Y2(a(n))] a(n  + 1) = a(n)  exp - o t i  Oai(n) ] (8) 

where 
2 - I  

c3Y (a0) j] 
ozi = ~ In [ 1 + ( N a i ( O ) ) -  (9a) 

with ai(0) = ao, and the derivative calculated numerically from 

OY z (a(n)) _ [y2 (a I (n), a2 (n)  . . . a i ( n )  + O. l a i ( n ) ,  ai + l (n)  . . . ) 
Oai(n)  

_ y2 (a(n))] / (0.  l a i ( n ) )  (9b) 

The nonlinear iteration scheme given by Eq. (8) has several interesting char- 
acteristics. First, it guarantees that if a i is positive at any iteration (including 
the initial estimate),  then a i ( n )  will be positive at every iteration. Second, it 
guarantees that yZ (a) will always be smaller or  the same at each iteration if the 
partial derivatives are calculated exactly. [If the derivatives are only calculated 
numerically approximately,  as by Eq. (9b), then small localized oscillations 
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around a minimum can occur.] Thus, y2 is always decreased away from its 
initial value so the procedure guarantees that a minimum will be found. (The 
questions of  resolution, precision, uniqueness, and sensitivity are deferred to 
the papers dealing with case histories.) 

Third, it is a relatively simple matter, once a minimum is achieved, to 
" f reeze"  all parameters except one at the values corresponding to the mini- 
mum, and to then perform a linear or random search between minima and max- 
ima. The procedure is repeated for each and all parameters in turn. In this way, 
a relatively confident position can be taken that no minima have been over- 
looked. 

Fourth, in respect of the choice of  initial estimates for the parameters, it 
now becomes clear how to ensure that they will be close to a minimum position. 
Choose the search range of each parameter (i.e., P,,i,, Pmax)" Then perform a 
linear or random search on each within the parameter range to find the minimum 
of Y(po) 2, thereby identifying the rough value of the parameter. Choose that 
value as the estimate of  P0. In practice this procedure works extremely effec- 
tively. Indeed, when a rough estimate of  the initial parameter vector has been 
found, the linear search procedure can be iterated to provide closer approxi- 
mations to the minimum value of Y(p0) 2, and so a correspondingly better esti- 
mate of the parameter vector. 

Fifth, as a tactical maneuver, a more rapid approach to a minimum value 
is obtained if N nonlinear iterations are done, the up-dated parameter vector, 
PN, at the end of the iterations is used to replace Po, and then N more nonlinear 
iterations performed. This tactic is far superior to doing 2N nonlinear iterations 
around the original estimate, Po. 

To date, numerical experience on single well studies and on synthetic data 
has shown that: 

1. The nonlinear inversion generally converges rather rapidly in 5-10 it- 
erations. 

2. The pragmatic procedure: linearly estimate Po, nonlinearly invert, lin- 
early estimate, nonlineady invert, is usually more than enough to ex- 
haust the precision of the input data, so that the model arrived at after 
the inversion procedure is a significantly better fit to data than the re- 
sults of the first linear search estimate. 

M U L T I P L E  W E L L S  IN A BASIN, 2-D DYNAMICAL 
T O M O G R A P H Y  

In the case of  a single-well study, there is little need to discriminate be- 
tween parameters which are associated with equations of state from parameters 
which are, or may be, associated with geological events. However, this is not 
the case in multiple-well studies because geological events can change from 
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spatial location to spatial location while, presumably, parameters in equations 
of state should be invariant. Exceptions have to be provided for: thus, the an- 
isotropy in shale permeability parallel and perpendicular to bedding can be in- 
fluenced by the local depositional and compactional history of a system, and so 
is location-dependent. But frame pressure-void ratio and permeability-void ra- 
tio rules should, presumably, not be dependent on location within a given basin. 

Two fundamentally different nonlinear inverse procedures are available, 
depending upon the assumptions made concerning the parameter vector. On the 
one hand, there is the extreme end-member decision that every component of 
the parameter vector may be location-dependent for reasons not completely 
understood. On the other hand, there is the extreme end-member strategy which 
regards only geological event parameters as location-dependent, and any and 
all equation-of-state parameters are considered independent of location. 

In either event, there exists a procedure for determining the validity of the 
extreme end-member scenarios. First, consider the situation in which all com- 
ponents of the parameter vector p are considered dependent on location xi (i = 
1, 2 . . . . .  X) as well as on depth, z. Write p = p(x) to express this dependence. 
Then suppose that at position x~, thicknesses, TD, porosity, fluid pressure, 
permeability, and unconformity depths have been measured. Construct, as 
above, Yr(p(xi)) 2 for each quantity which now depends on the parameter vector, 
p, at lateral location x~. The evolution and compaction of sediments in the basin 
are now laterally connected because fluids can flow horizontally as well as ver- 
tically. Thus, consistency of predicted and observed behaviors at a given lo- 
cation does not guarantee a minimum discord at other positions in the basin. 
To obtain a minimum mismatch at all positions in the basin introduce 

X 

yr(p(xl), P(X2) . . . .  )2 = X - I  y '  yr(p(xi))2 (10) 
i = l  

Then proceed as noted above. Construct 

6 

Yz = ~ GYr(P(Xl), p(x2) . . . .  )z (11) 
r = l  

and minimize y2 with respect to the total set of parameter values, both geolog- 
ical event and equation of state, each which is considered location-specific. 

Then perform the linear or random search routine for each parameter, 
thereby constructing a range of sensitivity for each parameter around the min- 
imum value of y2. 

Now repeat the analysis but hold parameters thought to be independent of 
geological events at common, location-independent values. Again minimize Y", 
again construct the sensitivity range for each parameter around the minimum 
value of y2. Compare the degrees of resolution and sensitivity of this end- 
member situation with the previous analysis above. If, to within some imposed 



828 Lerche 

degree of tolerance either in respect of intrinsic data resolution or in respect of  
predicted and observed mismatch weighted or unweighted, there is no differ- 
ence in the parameter values, then justification can be given for arguing that 
parameters representing equations of  state are indeed location-independent. A 
significant departure of the sensitivity curves one from the other in the two cases 
implies that, to within the resolution limit set, the parameter under investigation 
is location-dependent. Thus, the procedure in the 2-D case is a simple gener- 
alization of the 1-D procedure with only minor variations in technique--but 
providing the potential for assessing the validity of intrinsic assumptions of 
different extreme end-member behaviors. 

COMBINED DYNAMICAL AND T H E R M A L  TO MO G RA PH Y  

Information on the dynamical evolution of sedimentary basins is imparted 
not only by present-day downhole data such as TD, formation thicknesses, po- 
rosity, permeability, total fluid pressure, and unconformity depths, but some 
information related to dynamical evaluation has also been impressed on thermal 
indicators throughout their evolution (Lerche, 1990a,b). Indeed, elsewhere we 
have used multiple present-day thermal indicator data in an inverse manner to 
determine not only paleoheat flux variations and physical and chemical param- 
eters associated with the thermal indicators, but also parameters associated with 
geological events (such as unconformity thicknesses, stratigraphic ages, em- 
placement time of overthrusts, insertion temperature and time or igneous 
overthrusts) (Lerche, 1988a,b; Pantano and Lerche, 1990; He and Lerche; 1989; 
Lerche, 1990a,b). 

Clearly, parameters for geological events and equations of state are making 
their effects felt on both dynamical tomography (in a direct sense) and on ther- 
mal indicator tomography (in an indirect sense through the effects on tempera- 
ture experienced by thermal indicators). Thus, a combined dynamical and ther- 
mal indicator tomography should better resolve, or constrain, common 
parameters influencing both types of indicator. 

To allow for such a situation simply introduce the v th thermal indicator, 
TI,,(Z,), measured at the set of depths Z,, s = 1, 2 . . . . .  S. Then, following 
the procedure laid down elsewhere (Lerche, 1988a,b) for a thermal indicator 
with a given kinetic description, we can write 

S 

U,Z,(p) = S - I  ~ (TI,,(Z,., p) - Tl,,(ts, p))2 (12) 
s = l  

where TI,,(t s, p) is the predicted value of the v th thermal indicator with time q 
corresponding to present-day depth Zs. To combine a set of different multiple 
thermal indicators, in a manner similar to that set out in the second section 
above, we introduce 

u ~,(p) = U,,(p) ~" / U,,(p0) 2 (13) 
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and 
V 

u2(p) = V -1 ~ bru,,(p) 2 (14) 
v =  I 

where V is the total number of thermal indicators, and the br are positive, frac- 
tional weight factors. In the case of thermal indicators not only is the parameter 
vector p made up of components due to geological events and equations of state, 
but also components due to paleoheat flux and physical/chemical parameters 
associated with each thermal indicator. Absorbing these "extra" parameters 
into the definition of p, we can then combine the dynamical and thermal indi- 
cator control functions to write 

W(p)~ = y(p)2 + u(p)2 (15) 

and perform the nonlinear inversion procedure of the second section on the 
combined control function W(p) 2. 

This completes the formal mathematical analysis because, with both the 
thermal and dynamical components successfully mated as above, we have avail- 
able a procedure for assessing parameters of geological processes which affect 
the evolution of sedimentary basins in both a local and a regional sense. 

The combined determination of structural and dynamical properties of pe- 
troliferous basins and of quantitative paleoheat flux variations, as well as phys- 
ical/chemical parameters of equations of state and thermal indicators, together 
with quantitative measures of their uncertainties consistent with downhole data, 
offers the greatest probability of accurately assessing not only the timing of 
hydrocarbon production and migration, but also the relationship to the timing 
and development of structural and stratigraphic traps which serve as oil reser- 
voirs in a basin. 

DISCUSSION AND CONCLUSION 

The development of dynamical indicator tomography closely parallels the 
corresponding development for thermal indicator tomography. In essence, the 
idea is to use observed, or inferred, present-day data to constrain parameters or 
functions occurring in dynamical models of paleo-evolution of sediments. The 
logic for assessing the degree to which model parameters can be constrained, 
or determined, by present-day data is founded on a nonlinear inversion or least- 
squares control functions in which total depth, formation thicknesses, porosity, 
fluid pressure, permeability variations with depth, and depths to unconformities 
act to constrain model behaviors. 

This paper has spelled out the main theoretical procedures for enabling 
quantitative numerical codes to be constructed in order to examine the resolu- 
tion, precision, sensitivity, and degree of uniqueness with which information 
can be extracted concerning the dynamical aspects of compaction and evolution 
of sedimentary basins. 
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The main factor which controls the evolution of compaction is the rate at 
which fluid can escape from the sediments. That loss is dominated by both the 
permeability variation and the excess fluid pressure gradient of shales, although 
other factors (such as overburden load, unconformities, cementation, and so 
on) play roles. 

The inverse, nonlinear, dynamical tomography scheme set up here is de- 
signed to address directly the questions of which parameters control the de- 
tailed, dynamical development, the degree to which parameters can be deter- 
mined or constrained, and the degree to which different hypotheses (e.g., open/ 
closed faults; erosion/hiatus; equation of  state parameters dependent/indepen- 
dent of spatial location) can be evaluated for their veracity. 

As well as demonstrating that the design and implementation of a dynam- 
ical indicator tomography procedure are eminently practical goals for a single 
well (one-dimensional system), we also showed that both a two-dimensional 
generalization as well as a combined dynamical/thermal indicator tomographic 
procedure were implementable. 

The advantage to having available the above method is that trial-and-error 
searches do not have to be undertaken for each and every parameter, something 
that is both time-consuming and very difficult to implement systematically. The 
tomographic nonlinear inversion automatically incorporates a systematic method 
for determining multiple parameters and their sensitivity, while guaranteeing to 
stay within any pre-set ranges. 

Underlying the development of the multiple dynamical and/or combined 
thermal indicator methodology is the idea that multiple types and quantities of 
dynamical downhole information act as powerful constraints to provide checks 
and balances of one dynamical indicator against another--such as, for example, 
formation thickness, porosity with depth, and fluid pressure with depth. 

The point here is that different dynamical indicators spanning the same 
depth range in the same well must have been exposed to precisely the same 
burial path behavior and to the same variations of fluid pressure or fluid flow 
with time. Each dynamical indicator (TD, formation thickness, porosity, 
permeability, fluid pressure, unconformity depth) must then produce the same 
value for a parameter common to all indicators. By demanding such agreement, 
and since each dynamical indicator has its own particular dependence on time 
and fluid flow, the inverse procedure can extract those parameters which are 
most consistent with the downhole data of a particular dynamical indicator, and 
also with the geological parameters determined by inversion from other down- 
hole dynamical indicators. 

Potential applications of the dynamical tomography procedure on its own, 
in one or two dimensions, and in combination with the thermal indicator to- 
mography procedure developed previously (He and Lerche, 1989) are legion. 

For example, as we have remarked already, the determination of parame- 
ters associated with permeability is a crucial ingredient if we are to more ac- 
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curately determine the temporal  loss o f  fluid from a sedimentary basin. In turn, 
the loss o f  fluid impacts  the evolut ion o f  paleo-overpressure ,  which is l inked to 
both rock fracturing as well  as to increased temperature (through retention of  
fluid), thereby influencing thermal indicator  evolution and hydrocarbon gener- 
ation. 

Or again,  the presence o f  an erosional  unconformity and the determination 
of  both the amount o f  sediment  eroded as well as the t iming of  erosion influ- 
ences the dynamical  evolution o f  sediments  in a basin,  the thermal history o f  

the sediments,  and the potential  for hydrocarbon retention. 
Many such cases can be investigated for the abil i ty of  present-day dynam- 

ical and thermal indicator  information to provide knowledge o f  the paleo-evo-  
lution of  a basin. Indeed,  it could be argued that all of  quantitative basin anal- 
ysis requires such a treatment,  leading to the excit ing possibil i ty of  treating 
every sedimentary basin by such techniques.  

In the next paper  in this series,  we present case histories illustrating and 
exemplifying applicat ions o f  the theoretical development  given here. 
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