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Kriging in Terms of  Projections' 

A. G. Journel 2 

In the last f ew years, an increasing number o f  practical studies using so-called kriging estima- 
tion procedures have been published. Various terms, such as universal kriging, lognormal 
kriging, ordinary kriging, etc., are used to define different estimation procedures, leaving a 
certain confusion about what kriging really is. The object o f  this paper is to show what is the 
common backbone o f  all these estimation procedures, thus justifying the common name o f  
kriging procedures. The word "kriging" (in French "krigeage") is a concise and convenient 
term to designate the classical procedure o f  selecting, within a g i v e n  class o f  possible esti- 
mators, the estimator with a minimum estimation variance (i.e., the estimator which leads to a 
minimum variance o f  the resulting estimation error). This estimation variance can be seen as a 
squared distance between the unknown value and its estimator; the process o f  minimization o f  
this distance can then be seen as the projection o f  the unknown value onto the space within 
which the search for an estimator is carried out. K E Y  W O R D S :  k r i g i n g ,  geos ta t i s t i c s .  

BACKGROUND 

Some History 

In mining practice, one problem is to find the best possible estimator of the 
mean grade of a block, taking into account the assay values of the different 
samples available either inside or outside the block to be estimated. In the 
early 1950's, D. G. Krige (1951) proposed a regression procedure to assign a 
weight to each sample assay, the block grade estimator being a linear com- 
bination of the available assays. This original regression procedure is recalled 
in Matheron (1971, p. 118). In 1963, Matheron formalized and generalized 
this regression procedure and gave it the name of "kriging." According to 
the original definition given by Matheron, kriging is the probabilistic process 
of obtaining the best linear unbiased estimator of an unknown variable, 
"best" being taken here in the sense of minimization of the resulting estima- 
tion variance (or variance of the resulting estimation error). Then a second 
major generalization was attained when Matheron (1973, 1975a, 1975b) 
studied various procedures to obtain unbiased n o n  linear estimators; he 
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gave them names such as disjunctive kriging and kriging of transformed 
variables. The word "kriging" was kept because all these nonlinear pro- 
cedures and the initial linear kriging process (to obtain linear estimators) 
have in common the principle of minimization of the estimation variance. 
Hence, kriging per se should be redefined as a probabilistic theory of  estima- 
tion based on the principle of minimization of the estimation variance. 

Need for Precise Terminology 

This theory of estimation gives rise to numerous practical processes to 
obtain estimators, and these processes can keep the generic name of kriging 
provided that an additional expression makes clear which particular process 
is used; for example, linear kriging with unknown stationary expectation for 
the process of obtaining the best linear unbiased estimator of an unknown 
variable of unknown expectation. One can then understand why practitioners 
are reluctant to use such a long definition; they would simply say "kriging" 
or use condensed expressions such as "ordinary kriging," "universal kriging," 
"lognormal kriging," etc. Certainly this appears to be confusing to someone 
not quite accustomed to both the theory and various practical kriging 
processes. The object of this paper is to give an overatl view of the probabilistic 
theory of kriging which will allow the linkage between the various practical 
processes that practitioners have been using under various names for some 
20 years. An attempt will be made to settle upon a unique terminology. 

What Is New About Kriging? 

A point must be stressed : the principle of building an estimator by minimiza- 
tion of a squared norm (called here estimation variance) is not new; it has 
been well known to statisticians since the works of Wiener (1949). What is 
truly new is the practical day-to-day application of this principle in fields as 
varied as mining estimations, forest surveys, cartography, meteorology, etc. 
Hence, as regards their works in the field of estimation, Krige, Matheron, 
and their fellows should be considered as craftsmen who not only cast the 
operational tools but made the effort to put them into practice. 

Kriging in Terms of Projection 

Let A = {Z(x),  x ~ D} be a set of random variables Z(x )  defined at each 
point x (of a three-dimensional deposit D for example). Let g be the vector 
space defined as the set of all finite linear combinations of the elements of A : 

g : {ff Z(xa) ; Z(xa) e A ,  2 a real} 
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The neutral element 0 = (2 = O).Z(x) of d ° is the random variable almost 
certainly null. 

Notation 

Throughout  this paper the condensed notation 2" Z~ will be used to represent 
the sum Z 2~ Z(x~), and 2 ~ 2 # try# to represent the sum Z E 2~ 2p try#. 

¢t ¢x f l  

The vector space 8 is provided with a scalar product  equal to the 
noneentered covariance (which is not necessarily stationary): 

(z(x), Z(y)) = E ( Z ( x )  zOO} = ~x, 

In practical terms, this covariance characterizes the spatial correlation 
between two variables Z(x) and Z(y) located at two different points x and y. 
Let re(x) = E{Z(x)} be the expected value of Z(x); the centered covariance is 
then written: 

E{ [Z(x) - m(x)] [Z0') - m0')]  } = a'~, = a~,-  m(x).m(y) 

The norm [[Z(x)11 of  a vector Z(x) is defined as the positive square root of  
(Z(x), Z(x)), i.e., NZ(x)[[ 2 = (Z(x),Z(x)). The distance between two ele- 
ments Z(x) and Z(y) is defined as the norm IIZ(x)-Z(y)ll of  the vector 
Z(x)-Z(y). 

Let Z(xo) ~ 8 be any given unknown variable, and let do' c do be any 
vector subspace (or less restrictively any linear manifold). One can then 
prove that  there exists one and only one element Z* e do' which satisfies the 
minimum of  the distance IIZ-Z* N, this unique element Z* is then called the 
projection of  Z(xo) onto the subspace d°'; see Figure 1. 

The kriging process is nothing but this projection of an unknown value 
onto a particular subspace do' c d o within which the search for an estimator 
Z* is carried out. The corresponding minimum distance E{[Z(xo)-Z*] 2} is 
called minimum estimation variance or simply kriging variance. 

z(~o) 

Figure 1. The kriging estimator Z* defined as 
the projection of the unknown Z(xo) onto the 
subspace do' c 8. 
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Figure 2. Projections of the unknown Z(xo) 
onto the two subspaces d o" c do'. 

There are as many kriging processes and corresponding kriging esti- 
mators Z* as there are different sets do' c do within which the projection of the 
unknown Z(xo) is to be made. Consider the two sets do" and do' of  Figure 2, 
with do" c d o' ~ do, and the two corresponding kriging estimators Z * "  and 
Z* '  : as g '  includes do", the projection Z* '  is nearer to the unknown Z(xo) 
than Z*" .  Hence, as the set where the search for the estimator is carried out is 
wider, the estimation will be better. This remark is a prelude to the classifica- 
tion of the various kriging estimators. 

LINEAR KRIGING P R O C E S S E S  

Let us first consider the class of  linear estimators, i.e., the vector subspace 
do,+1 c do, of  dimension (n + 1), generated by the linear combinations 

~ 2 ~ Z ~  + 20 • 1 
~ = 1  

of  n particular variables {Z~ = Z(x~), ~ = 1 . . . .  , n} called data plus the 
constant 1. The linear kriging processes are defined as the processes of  
projecting the unknown Z(xo) either onto do,+1 itself, or onto any linear 
manifold C c do,+t. The restrictions of  do,+~ to various linear manifolds 
C guarantees the unbiasedness of  the estimator Z*, i.e., E{Z*} = E{Z(xo)} 
as will be shown. 

Conditions for the Unbiasedness of  the Estimator 

Consider the expectation of  any element Z* = 20 + 2  ~ Z~ e do.+ ~ : 

E{Z*} =- 20+2" E(Z,} = 20+2" m(x,) 

The element Z*, considered as an estimator of  Z(xo), is unbiased if and only 
if E{Z*} = E{Z(xo)}, i.e., 
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;to+ ~ ; t ,m(x , )=  m(xo) (1) 
~ t = I  

Various cases are distinguished according to whether the expected 
values m(xo), re(x,) are known or not, and in the second case whether m(x) 
is stationary or not. 

Case 1. All the expectations are known (it does not matter then whether 
they are stationary or not). The unbiasedness of the estimator Z* is then 
characterized by the single condition (1), i.e., 

;to = m(xo) -  ;t~' m(x~) 

Case 2. The expectation is stationary but unknown, i.e., m(x) = m(x,) 
= unknown constant m, V x, x,. The unbiasedness condition (I) is then 
satisfied if and only if ;to = 0 and 

The first condition, 2o = 0, amounts to restricting the set of  the possible 
estimators to the vector subspace 6'. c oa.+ 1- The subspace d'., of  dimension 
n, is generated by the linear combinations 2 ~ Z~ of the n data only. The second 
condition 

amounts to restricting o~. to the linear manifold C1 defined by the condition 
I; ;t~ = 1 on the weights 2~. Hence in the presence of  an unknown stationary 

expectation, the unbiasedness condition (1) demands that the linear estimator 
Z* be an element of  the linear manifold : Z* ~ C1 c gn ~ ~n+ 1. 

Case 3. The expectation is neither stationary nor known. We are then 
at a loss to express the unbiasedness relation (1). It is necessary to provide 
the form of  the expectation m(x); for example, m(x) is an unknown linear 
combination of  L known functions f~(x): 

L 

re(X) = a l f , ( x )  
/ = 1  

the L parameters at being unknown. The unbiasedness condition (1) can 
then be written: 

20 + Z a, Z ;t j r ( x , )  = Z a,~(Xo) 

This relation is verified, whatever the unknown parameters a~ are, if and 
only if: 
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2o = 0, which amounts to the restriction g ,  c g,+ t 

,~12 , f t (x~)  = f(xo) ,  V1 = I , . . . , L  

The last L conditions amount  to a restriction of  g ,  to the linear manifold 
CL, of dimension n - L .  Note that the previous stationary case corresponds 
to constant expectation of  the form: 

m(x) = a l f  1 (x), with a I = m a n d f l ( x  ) = I, V x 

The corresponding linear manifold C1 is then of  dimension n -  1, and defined 
by the unique condition Z 2, = 1. 

Ix 

Note the inclusions: C L c  Cz_l  c . . . c  C 1 c ~,  c ~',_i.  The 
wider the set onto which the projection is done, the nearer will be the 
corresponding projected value Z* to the unknown Z(x0); see Figure 2. 
Each of these projection sets gives rise to a particular linear kriging process. 
Let us start considering the wider space, i.e., d°,+ 1. 

Linear Kriging Process with Known Expectations (Simple Kriging) 

The kriging estimator Z~o is of the form 

z L = ,~o+~o~Z~ 

and is the projection of  the unknown Z(x o) onto the vector space 8,+ 1 ; see 
Figure 3. This projection is unique and is characterized by the orthogonality 
of the vector Z(xo)-Z~o to each of the (n + 1) vectors generating g,+ 1 : 

( Z ( x o ) - Z *  o, 1 ) = 0 

( Z ( x o ) - Z * o ,  Z~) = O, V~ = 1 . . . . .  n 

With Z* o = 20 + 2~ o Z~ 

(~) ~ zc,~ 

Projection of the unknown Z(xo) 
ontoS,+l c 8. 

Figure 3. 
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the preceding relations of orthogonality give rise to the following (n+ 1) 
linear equations with (n + 1) unknowns (the weights 20, and 2K°,): 

{ ~ o + 2 ~ o m ( X  ~)  = m(xo) 

;tomo(x~)+2~oa~ ~r~o ,  V~ = l . . . . .  n ( 2 )  

with 

re(x) --- E{Z(x)}  = (Z(x) ,  1) 

and cr,p and a,z being the noncentered covariances. 

Thus 

a~p = (Z(x,), Z(xp) ) 

Note that the first equation of system (2) is nothing but the relationship 
(1) ensuring the unbiasedness of the estimator Z* e g,+ L. Multiplying the 
elements of the first equation of system (2) by m(x,)  and subtracting this 
equation from the (a + l)th equation (written for ct) gives 

2~ro[tr,a- re(x,)" m(x¢)] = o',xo- re(x,),  m(Xo), V ~ = 1 . . . .  , n 

The last n equations of system (2) can thus be written in terms of the centered 
covariance a,'p = ~r,a - m(x , ) .m(x  a) : 

Va = 1,. n (3) '~Ko~ cr~' ---- O'~xo,' . . ,  p= l  

This system (3) of n linear equations is called a system of linear kriging with 
known expectations, or a system of simple kriging. 

Once the n weights 2to , are determined by solving the kriging system 
(3), the weight 2o is given by the first equation of system (2) and the kriging 
estimator Z~o is then written: 

Z*o = m(Xo) -- J'~o m(x~) + ;LIo Z, = 21o[Z ~ -  m(xe)] + ln(Xo) 

The centered estimator Z ~ o - m ( x o )  thus appears as a linear combination 
2"xo[Z,-m(x,)] of the centered data; more precisely, Z ~ o - m ( x o )  is the pro- 
jection of the unknown Z ( x o ) - m ( x o )  on the vector space g~ generated by 
the linear combinations of the n centered data. 

Estimation Variance 

The estimation variance E{[Z(xo) -Z*o]  2} is nothing but the minimum 
squared distance lIZ(xo)-Zr*o It 2. This minimum estimation variance is also 
called kriging variance and is denoted by O-~o: 
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, to = IIZ( o>- ztol l  = 
with 

;tKo ~ ;O~o (Z(x~) - m(x~), Zp - m(xp) ) = ;,Ko~ ,LKo' ~ ~p' = ;~,~o ~ o '  

- 2 2~o (Z(xo) - m(xo), Z~-  m(x~) ) = 2 2~ro %:,o' 

The kriging variance becomes 

What Are the Prerequisites for Obtaining Z~o ? 

All the expected values, m(Xo), rn(x~), ~ = t , . . . ,  n, must be known as well 
as the covariance function, centered or not. 

Linear Kriging Process with Unknown Stationary Expectation (Ordinary 
Kriging) 

When 
E(Z(x)) = re(x) = m(x~) = unknown constant m, V x, x~ 

we see that the unbiasedness of  a linear estimator 2 ~ Z~ ~ g ,  restricts the 
search for this estimator to the linear manifold C1 ~ g ,  defined by the 
unique condition Y~ 2~ = 1 ; see Figure 4. 

The kriging estimator Z~I = 2~: 1Z~ is then defined as the projection of  
the unknown Z(xo) onto the linear manifold C1 c 8,.  This projection is 
unique and characterized by conditions: 

(a) Z*,  belongs to C1, i.e., E 2 ~  = 1, and 

(b) the vector Z * , - Z ( x o )  is orthogonal to any difference Z ~ -  ~, 

(g) 

Figure 4. Projection of Z(xo) onto the linear 
manifold C1 c 3'. c ~. 
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with Z~, ~" ~ C~. Y being an arbitrary element of C1 [for instance the mean 
value F = (I/N) E Z~], the previous orthogonality condition (b) is charac- 

terized by the orthogonality of Z*,-Z(xo) to each of the n vectors Z ~ -  ~, 
i.e., 

( Z * ,  - Z ( x o ) ,  Z ~ -  F )  = 0 ,  V ~ = 1 . . . .  , n 

By putting Pl = (Z* , -Z(xo) ,  Y), condition (b) may be rewritten: 

(Z~q, Z ~ ) - p l  = (Z(xo), Z, ) ,  Va = 1 . . . .  , n 

Finally we obtain the system of (n + 1) linear equations with (n + 1) unknowns 
(the n weights 2K,~ and the parameter #1): 

(5) 
L 2 ~ a ~ # - / a l  = credo, V .  = 1 . . . . .  n 

This system (5) is called a system of linear kriging with unknown station- 
ary expectation, or a system of linear kriging with an unbiasedness condition 
of order 1 (for the unbiasedness is guaranteed by the single condition Y. 

# 

2~# = 1, on the n weights 2K,#). We propose to use the shorter name 
ordinary kriging system or process, because this kriging process is the most 
commonly used, at least in mining practice. 

Estimation Variance 
The corresponding minimum estimation variance E{[Z(xo)-Z*~]2}, called 
kriging variance, is written: 

~L = II Z(mo) - z* ,  11 ~ = II Z(xo)I1 ~ + II z* ,  I1 = - = <ZCmo), z* ,  > 
With 

IlZCxo)ll ~ = ,,xoxo, I I zL l l  ~ = , t~ : , ,~ ,  ~ ,  = ,~:,,,o~,o + ~,, 

and 

the kriging variance becomes: 

a~,, = axoxo-,tLa~,:o+~l (6) 
Note that the system of equations (5) and the expression (6) of the kriging 
variance can be stated replacing the noncentered covariance by the centered 
covariance a~,, = ax,-m 2. The unknown value m 2 is eliminated from these 
equations thanks to the unbiasedness condition 

E).K~ a = 1 
# 
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Similarly, these equations can also be written replacing the covariance 
function trxr by the semivariogram function y:,y defined by: 

y,,, = ½[a':,,, + a; , , - -  a;,]  = ½E{ [Z (x ) -  Z(y)]  2 } 

In practice the inference of the semivariogram function is easier than the 
inference of the corresponding covariance function (centered or not). 

What Are the Prerequisites for Obtaining Z*, ? 

The expected value no longer needs to be known, but is assumed to be 
stationary. The knowledge of  the covariance function (centered or not), 
axr = (Z(x), Z(y) ), is required. 

Algebraic Proof of the Kriging System (5) 
The kriging estimator Z~, is the element of Cz nearest to the unknown 
Z(xo); see Figure 4. Hence the weights ;tr, ~ of Z*, = itS1 Z,  must be such 
that: 

(a) E 2~,~ = 1 
~t 

(b) the squared distance t lZ(xo)-2~, Z~ II 2 = d 2 is minimum. 

Using the classical formalism of Lagrange, this amounts to minimizing the 
expression Q = d 2 - 2  ~q E At: ,  with 2/z~ being the Lagrange multiplier. 

a~ 

The minimum of Q is obtained by equating the n partial derivatives to zero, 
i.e., 

With 

these derivatives are written: 

- 2 a,x0 + 2 2 [ ,  a ~ # -  2/1~ = 0, 

The (n + 1) unknowns (the n weights ;tr,, 
system (5) of (n + 1) linear equations. 

OQ/O2x,~ = 0, Va = 1 . . . . .  n 

d 2 ~ 2~ # = axoxo--22r, a~xo+ r12r~tr~# 

VO~ = l , . . . , n  

and #1) are thus given by the 

Linear Kriging Process  in the Presence o f  a Trend (Universal Kriging) 

The expectation is neither stationary nor known, but is of known form such 
as a linear combination of L known functions {fz(x), I = 1 . . . . .  L} : 

re(x) = Y.a ,A(x)  
I 

the L parameters at being unknown. This non-stationary expectation m(x) 
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Z(xo| A 

(81 

Figure 5. Projection of Z(xo) onto the linear 
manifold CL c N. c ~. 

is called trend ot drift. We see then that the unbiasedness of  a linear estimator 
2 ~ Z~ E 8n restricts the search for this estimator to the linear manifold C,. c 
8n defined by the L following conditions on the weights, 

~, 2,,ft(x,,) = fl(xo), V l = 1 . . . . .  L 

see Figure 5. The linear manifold CL is of  dimension (N-L),  hence is narrower 
as L increases, i.e., as the form of  the unknown drift re(x)  is assumed to be 
more complex. 

The kriging estimator Z *  r = 2~c L Z~ is then defined as the unique 
projection of  the unknown Z ( x o )  onto the linear manifold CL c ~n. In this 
case, the algebraic p roof  of  the equations characterizing the projected value 
Z~c L is easier than the geometric one. 

The kriging estimator Z *  L is the element of  CL nearest to the unknown 
Z(xo) .  Hence the weights 2rL ~ of Z~cL must  be such that:  

(a) Z 2rx., f i  (x,) = fi(Xo), VI  = 1 . . . .  , L, i.e., Z~c L e Cz 

(b) The squared distance [IZ(xo)-2~-,. Z~[I 2 = d 2 is minimum. 

This amounts to minimizing the expression 

Q = d2 - Z 2Pl Z2rL~fl(x,) 

with {2 Px, l = l . . . .  , L} being the L Lagrange multipliers. The minimum 
of Q is obtained by equating to zero the n partial derivatives with respect to 
the n unknowns {2rL~, g = l , . . . ,  n}, i.e., 

OQ/O2rL~ = O, V g = 1 . . . . .  n 

With 

d 2 ~ .~ .# Gxoxo - 2 '~KL O'axo -~- AKz, AK,r_. GaP 
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these derivatives are written: 

--2%xo+22PrLtr,p--2~/atfl(x,) = 0, V0~ = 1 . . . . .  n 
1 

The (n +L)  unknowns (the n weights 2rL, and the L Lagrange multipliers 
tq) are thus given by the following system of (n +L)  linear equations: 

f ~  2rLaf,(xp) = f,(Xo), V l = 1 . . . . .  L 
(7) 

;~,. a~p - ~ ~ f ~ ( x = )  = o ~  o, V 0~ = 1 . . . . .  n 

This system (7) is called a system of linear kriging in the presence of an 
unknown drift of known form, or a system of linear kriging with an un- 
biasedness condition of order L [for the unbiasedness is warranted by the 
L conditions 

)~Lp~(xp) = fzfxo), V l = I,. . . ,L 

on the n weights )'KLp]" Some practitioners use the shorter name universal 
kriging system or process. "Universal" is used because the corresponding 
kriging estimator is unbiased whatever the unknown parameters a, of the 
drift 

re(x) = E a~f,(x) 
l 

are. 

Estimation Variance 

The corresponding miminum estimation variance E{[Z(xo)--Z~*L]2}, called 
kriging variance, is written: 

2 = IIZ(xo)ll 2 ÷ tl ~Ltl -2<Z(xo) ,ZL> ~ = IIZ(xo)-ZLil  2 z *  2 

W i t h :  t lz(xo) l l  2 - -  ~xoxo 

11 ,<._11 = ,~ ,< ,_ ,~ ,< ,. ~=,  = E ,~ ,< , .=E ,< , , f , ( -~ : )+ .~ ,<L ,~ :x .  = 
a t 

l 

and: 

(Z(xo)," * ZKL) = 2KL a~xo 

the kriging variance becomes: 

a ~  = a~o~o-2~La~o+ ~12tfl(xo) (8) 
I 
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As was noted before for the ordinary kriging system (5) and variance (6), the 
system (7) of  equations and the expression (8) can be written replacing the 
noncentered covariance axy by either the centered covariance 

o;, = o = , - m ( x ) ,  re(y) 

or the semivariogram 

~ ,  = ½E{[Z(x)-Z(y)]  2} 

What Are the Prerequisites for Obtaining Z~cr. ? 

The expectation m(x) no longer needs to be stationary, but its form is as- 
sumed to be known: 

mfx) = Z at f i  (x) 
i 

the L functions f~ (x) being known, and the L parameters a~ remaining 
unknown. The knowledge of the covariance function (centered or not) 
a~y = (Z(x),  Z(y))  is required. In practice, when one single realization of  the 
nonstationary stochastic process Z(x) is available, problems arise in the 
inference of the nonstationary covariance E{Z(x).Z(y)}; see Matheron 
(1971, p. 188) and Delfiner (1975). 

Notes 
(1) When 

m(x) = al f i  (x) = a I = unknown constant m, V x 

i.e., when the expectation is unknown but stationary, by making L = 1 and 
It (x) = 1, V x, the system (7) reduces to the system (5) of linear kriging with 
unknown stationary expectation. 

(2) As the linear manifold Cz is included in the linear manifold CI, CL 
= C1, the kriging estimator Z~, in the stationary case is nearer to the 

S 
Figure 6. Hierarchy of the kriging estimators: 

2 2 CL = C1 implies that aKL > crrl. 
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unknown Z(xo) than the kriging estimator Z~¢ L in the presence of a drift of  
order L >  1, i.e., a2X~ < a~¢,; see. Figure 6. The increase in estimation variance 
¢rx_ax ~ 2  2 is the price paid for assuming a wider hypothesis on the expectation 
re(x). This difference ar~-crx~2 2 increases as L increases, i.e., as the drift 
re(x) = Z az f l  (x) is assumed to be of  a more complex form. 

t 
(3) The kriging estimator Z*~ in the presence of  a drift can also be seen 

as the projection of the kriging estimator Z*~ in the stationary case onto the 
linear manifold CL C C1 (theorem of  the three perpendiculars). Pythagora's 
theorem then shows: 

2 * * 2 IIz(x0)-z Lll IIZ(xo)-Z*lll +IIzK,-z Lll 
that is, 

2 = ,  II"ZK,-ZK  ''2 O'KL" - -  O'KI 

THE NONLINEAR KRIGING PROCESSES 

Until now we have only considered linear estimators Z* = 2" Z,,  i.e., we 
have limited the search for an estimator to the vector space 8, ,  generated by 
the linear combinations of  the n available data Z,. But one can remove this 
limitation and try to look for a nonlinear estimator, for example any non- 
linear function Z* = f(Z1, Z2 . . . . .  Z,) of the n available data. This amounts 
to considering a space H,  of estimators which is much wider than ¢,,. As 
¢,  c H,, the nonlinear kriging estimator deduced by projection of the 
unknown Z(xo) onto H,  will be better [nearer to Z(x0)] than the linear 
kriging estimator. But on the other hand, as will be shown, the prerequisites 
for obtaining this nonlinear kriging estimator are more severe and may not 
be met in practice, 

Conditional Expectation 

Let {Z~, a = 1 . . . . .  n} be the n available data. The most general form for an 
estimator Z* is a measurable function f(Z1, Z2, • . . ,  Z,) of  the n available 
data. The set H,  of  all these measurable functions of  n data is a vector space; 
note that H ,  contains in particular the vector subspace g ,  generated by all 
the linear combinations 2 ~ Z,. As H,  is the widest space where the search for 
an estimator can be carried out, the projection of the unknown Z(xo) onto 
H,  is the best possible estimator of  Z(xo) that can be deduced from the 
n data Z, ;  see Figure 7. Now this best possible estimator is, by definition, the 
conditional expectation of Z(xo), i.e., 

E. Zo = E{Z(xo)/Z(xl), Z(x2) . . . . .  Z(x.)} 
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z(x o) 

~ /  EnZ 0 / 
Figure 7. The conditional expectation E. Zo 
defined as the projection of Z(xo) onto H.. 

see Neveu (1964, p. 116). Hence when the set where the unknown Z(xo) is to 
be projected is the vector space H,, the corresponding kriging estimator is 
identical to the conditional expectation E,,Zo. 

Note first that the conditional expectation E,,Zo, considered as an 
estimator of Z(xo), is unbiased, for obviously E{E,, Zo} = E{Z(xo)}. Y = 

f ( Z  1 . . . .  , Z,) being any arbitrary element of H,, the projection E, Z o of 
Z(xo) onto H,  is characterized by one of the following two relationships: 

llZ( o)-E.Zolt = minHZ(xo)- Y[[, Y Y e l l .  

( Z ( x o ) - E .  Zo, Y) = O, V Y~.H. 

What Are the Prerequisites for Obtaining E. Z o ? 

In order to build the projection E. Zo, i.e., to find the n-variable function 

E. Z o = f x (Z ,  . . . .  , Zn) ~ 1t. 

it is necessary to be able to express scalar products of the type: 
<Z(x0)-fK, f>  = E{[Z(xo) - f r ( Z l  . . . .  , Z . ) l ' f ( Z , , . . . ,  Z.)}, v f ~  H.  

To do this, we must know the distribution of the (n + 1) variables 

{Z(xo) ,  Zfxl), Z(x2)  . . . .  , Z (x . )}  

In the general case, when the information is limited to a single realization 
of the stochastic process Z(x) at each of  the n data points {x., ~ = 1 . . . . . .  n}, 
such an inference is not possible and the conditional expectation is inaccessible. 

In practice, the conditional expectation E, Zo can be obtained only in 
very particular cases, for instance if the stochastic process Z(x) is Gaussian 
and stationary. It is a classical probabilistic result [see Neveu (1964, p. 123)], 
that the conditional expectation of a Gaussian stationary stochastic process 
is identical to the best linear estimator, i.e., the unknown Z(xo) has the same 
projection onto H.  and 8,+1 and this projection 
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E, Zo = Z*o = 2o + ;t~:o Z, 

can be determined explicitly from the system (2) or (3) of simple kriging. 

Linear Kriging Process Applied to the Transformed Variables 

Because the stationary Gaussian case is so favorable [the best possible 
estimator of any unknown Z(xo) can then be obtained], it would be con' 
venient to transform the stationary random variable Z(x) drawn from any 
distribution into a stationary, centered Gaussian random variable G(x). 
Let ~b be the transformation 

G(x) = ¢{Z(x)} 

this transformation can be obtained by either graphically using the two 
distribution functions of Z(x) and G(x), or a development in orthogonal 
polynomials [Hermite polynomials, for example; see Matheron (t975b, 
p. 229)]. 

The variable G(x) so obtained, has a single variable Gaussian distribu- 
tion, thus it remains to assert a stronger, but in practice well-verified, hypo- 
thesis that all the multivariate distributions of the stochastic process G(x) 
are also Gaussian. Under this hypothesis, the conditional expectation 

& Go = E{G(xo)/G(xO, G(x=) . . . .  G(x.)} 

is identical to the simple linear kriging estimator, 

C ,o = a ,o 6 ,  
provided by the system of equations (3). Now when the n transformed data 
G= are fixed, the conditional law of G(xo) is also Gaussian, with an expected 
value E, Go = G*o and variance the kriging variance a}o provided by 
relation (4). Knowing this conditional law, it is then easy to retrieve the 
sought-after conditional expectation of the initial variable Z(xo) = qb -1 
{G(xo) }, i.e., 

E. Zo = l{G(xo) /O(xl) , . . . ,  O(x.)}} 

Note that, because the transformation function ~b is generally not linear, 
the conditional expectation E. Z o is not linear with respect to the n initial 
data (Z1, Z2 . . . . .  Zn)" 

Example. Suppose that the initial stochastic process has a lognormal 
multivariate distribution. The stochastic process 

a(x) = log Z(x) 

is then Gaussian, and the inverse transform is simply 

Z(x) = exp a(x) 
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A linear kriging process applied to the logarithms of the initial data is 
also called by practitioners a lognormat kriging process; see Lallement and 
Mar6chal (1977). It is interesting to note that Krige's initial estimation 
procedure was in fact a lognormal kriging process, as Krige worked on the 
logarithms of the Witwatersrand's gold grades. 

What Are the Prerequisites for Obtaining E, Zo Through the Linear Kriging 
Process Applied to the Transformed Variable G(x) = ~b{Z(x)} ? 

This transformation function ~b must be known, which requires the station- 
arity of the stochastic process Z(x) and the knowledge of its single-variable 
distribution function [and thus in particular the knowledge of the stationary 
expectation E{Z(x)} = m]. Then the linear kriging estimator G~o must be 
built, which requires the knowledge of the stationary covariance function 

(G(x), G(y)} = E{G(x) G(y)} 

of the transformed stochastic process G(x); the inference of this covariance 
is generally done from the available transformed data G(x,). Moreover, the 
linear kriging estimator G~co must be assumed to be identical to the con- 
ditional expectation E, Go, which requires the assumption that all the 
multivariate distributions of the transformed stochastic process G(x)= 
q~{Z(x)} are Gaussian. 

In practice, these prerequisites are seldom met all together, and the 
nonlinear estimator 

Z* = E{c~- X{G(xo)/G(xl) . . . . .  G(x.)}} 

provided by this nonlinear estimation procedure differs from the true con- 
ditional expectation 

E.  Zo = E{Z(xo ) /Z (x , )  . . . . .  Z(x.)} 

However, and under the condition that the one-variable distribution of 
Z(x) is well known, practice has shown that this nonlinear estimator Z* is 
generally better than the linear kriged estimators Z~o or Z~cl provided by 
the direct linear kriging processes applied to the initial data Z(x,), i.e., by 
projection of the unknown Z(xo) onto either g,+l  or the linear manifold 
CI c g,+j .  

Disjunctive Kriging Process 

We have seen that the best possible estimator of an unknown Z(xo) using n 
data {Z~, a = 1 , . . . ,  n} is the conditional expectation E, Zo, which is the 
projection of Z(xo) onto the space H, of the n-variable measurable functions 
f ( Z 1 , . . . ,  Z,). However, in the general non-Gaussian case, this conditional 
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expectation E.Z o remains inaccessible. One solution is then to restrict the 
space onto which the unknown Z(xo) is to be projected, to the vector subspace 
~.  c H., ~.  being generated by all the linear combinations 2" Z .  of the n 
data. The idea of the disjunctive kriging process is to consider an intermediate 
space D. : 8 .  c D. c H.. This space D., where Z(xo) is to be projected, 
should be more inclusive than d"., i.e., g .  = D., so as to provide estimators 
which are more powerful than simple linear estimators; on the other hand, 
D. must be less inclusive than H., i.e., D. ~ H,,, so that the prerequisites for 
obtaining the projection of Z(xo) onto Dn can be met in practice. It is to be 
noted that the more inclusive the space where the projection is to be made, 
the more severe are the prerequisites. 

A good choice for this intermediate space D. is the vector space generated 
by the sums of n single-variable measurable functions, i.e., 

D. :{gl (Z1)+g2(Z2) + . . -  + g.(Zn)) 

see Matheron (1975,b p. 221). Note that this space D. does satisfy the 
inclusions: g .  = D. = H.. The estimator provided by the disjunctive 
kriging process is then the projection Z*K of the unknown Z(xo) onto D.;  
see Figure 8. 

Equations of  the Disjunctive Kriging Process 

The projection Z* x of Z(xo) onto H.  is characterized by the usual two 
conditions: 

(a) Z* K ~ D., i.e., Z~K = Z f~(Z.) 
, = 1  

(b) the vector Z(xo)-ZoK is orthogonal to any vector Y of D., i.e., 
(Z(x o ) - Z *  K, Y) = O, V Y ~ D.. 

z(~) 

Figure 8. The disjunctive kriging estimator 
Zffr defined as the projection of Z(xo) onto Dn. 
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Now, D, is generated by the measurable functions g(Zp) depending 
on only one of  the data Za, so that condition (b) can be written: 

(Z(xo), g(Zp)) = (Z* K, g(Zp)), for any fl = 1 . . . .  , n 

and any single-variable measurable function g. This condition is satisfied if 
and only if (the proof  although classical is recalled later on) Z(xo) and 
Z*K admit the same conditional expectation upon each of the Zp, fl = 1 . . . . .  
n, taken separately, i.e., 

E{Z(xo)/Z,) = ~ ( z ; , d z d  

E{Z(xo)/Zd = ~ { z ; d z d  
(9) 

E(Z(xo)/Z.) = ~{z*K/z.} 

Considering the expression 

zgK = EJ~(Z~) 

given by the first condition (a), the disjunctive kriged estimator Z*K is 
finally characterized by the following system of n equations: 

E{L(Z~)/Zp} = E{Z(x0)/Z~}, Vfl = 1 . . . . .  n (10) 

In the general case, the system of equations (10) provides the solution functions 
f~, c¢ = 1 , . . . ,  n, in the form of integral equations. These functions are then 
approximated by limited expansions in orthogonaI polynomials (e.g., 
Hermite polynomials). In the scope of  the present paper, the statement of the 
approximate resolution procedure of  system (I0) will take us too far afield; 
readers are referred to Matheron (1975b, p. 223). 

Proof. The condition (b) remains to be proved: 
Condition (Z(xo),g(Zp)) = (Z'K, g(Z~)), V fl = 1 , . . . ,  n, and V the 

measurable function g, is satisfied if and only if the system of equations (9) is 
met. 

Let d~ be the vector space generated by all the single-variable measurable 
functions g(Zp) of the particular data Zp. The conditional expectation 
Ep Zo = E{Z(xo)/Zp} of Z(xo) with respect to the data Zp is, by definition, the 
projection of Z(xo) onto alp, and thus the vector Z(xo)-Ep Zo is orthogonal 
to any vector g(Zp) belonging to the space alp, i.e., 

(Z(xo)-E~ Zo, g(z~)) = o, v g(Zp) e d~ 

This orthogonality relation can be written: 

(Z(xo), g(ZB)) = (E~ Zo, g(Zp)>, v g(z~) e dp 
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Similarly, considering the projection of Zg r onto dp: 

(Z;r ,  g(Zp) ) = (Ep Z~r, g(Zp) ), V g(Zp) ~ dp = D,, 

and the preceding condition (b) can then be written: 

(EaZo,g(Zp)) = (Ep Zgx, g(Zp)), V fl = 1 , . . . ,  n, and V g 

This is satisfied if and only if 

EpZo= r Z*K, V =I . . . . .  n 

which is nothing but the system of equations (9). 

Estimation Variance 

The resolution of system of equations (10) provides both the disjunctive 
kriging estimator Z* x and the corresponding estimation variance 

cr~¢ = E{ [Z(xo)  - Z ' x ]  z} = [IZ(xo) - Z * x  II'- 

Because the space H. includes the space D., the projection of Z(xo) onto 
H.  (i.e., the conditional expectation E. Zo) is nearer to Z(xo) than the pro- 
jection of Z(xo) onto D. (i.e., the disjunctive kriged estimator Zgr) ;  see 
Figure 9. The theorem of the three perpendiculars shows that Z~K is also 
the projection of the conditional expectation E. Zo onto D., and Pythagora's 
theorem shows the following relation between the various estimation 
variances: 

cr~r = IIZ(xo)--Z*KI[ 2 = IIZ(x0)-E. Zo 112 "~ - liE. Zo-Z*KII 2 

What Are the Prerequisites for Obtaining Z~r  ? 
In order to set the system of equations (10) characterizing the disjunctive 
kriged estimator Z~x, it is necessary to know the conditional expectations 

Z(xo) 

,o .............. Z /  

Figure 9. Hierarchy of the two estimators E.Zo 
and Zgr : D. c H. implies that: 

tr2 K > IIZ(xo)-E. Zoll 2. 
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E{f~(Z~)IZp} and E{Z(xo)/Zp}, V/~ = 1 . . . . .  n; this is possible when all the 
bivariate distributions for the pairs (Z~,Zp) and (Za,Zo) are known. 

Thus, Z* x is not as good an estimator as the conditional expectation 
E, Zo. On the other hand, the disjunctive kriging process requires less 
prerequisites than does the process for obtaining the conditional expectation; 
only the set of bivariate distributions is required instead of the set of (n + 1)- 
variate distributions. 

CONCLUSIONS 

When estimating an unknown value Z(xo) from n available data {Z(x,), 
c~ = 1 . . . . .  n}, the search for an estimator can be carried out in various 
spaces of possible estimators. Once this space do' is defined, the best esti- 
mator, i.e., the element of do' which is the nearest to the unknown Z(xo), 
is the projection of Z(xo) onto do'. The general term "kriging" is given to the 
various processes for obtaining the projections of the unknown Z(xo) onto 
various spaces d o' of possible estimators. The space do' where the projection 
is to be done is chosen according to the possible inference about the stochastic 
process Z(x). The more that can be known about Z(x), i.e., the more severe 
prerequisites that can be inferred, the wider the space do' of possible esti- 
mators will be, and consequently the nearer to the unknown value Z(xo) the 
corresponding kriging estimator will be. Thus the following hierarchy of the 
various kriging estimators can be stated (see Table 1). 

(a) Starting from the widest space of possible estimators, i.e., the vector 
space H,  of all measurable functions ftZ1 . . . . .  Z,) of the n available data, 
one defines the best possible estimator, i.e., the conditional expectation 
E, Zo. Conversely, the prerequisites are extremely severe: all the (n+l ) -  
variate distributions of the ( n + l )  variables {Z(xo), Z,, ~ = 1 . . . . .  n} 
must be known. In practice, these prerequisites are only met in the case of a 
Gaussian stationary stochastic process Z(x). 

(b) A first restriction of the space of possible estimators is the vector 
space, D, c H,, generated by all the sums of n one-variable measurable 
functions, i .e,  

O n ~ ¢~ 

The corresponding kriging process provides the so-called disjunctive kriging 
estimator Z 'K,  which is not as good an estimator as the conditional expecta- 
tion. Conversely, the prerequisites are already less severe, and the bivariate 
distributions must be known. In practice, these bivariate distributions can 
only be inferred if the process Z(x) is stationary. 
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(c) A second restriction of the space of possible estimators is the vector 
space g,+l c DR c H,, generated by all the linear combinations ,t ~ Z~+ 
20" 1 of the n data Z~ plus the constant 1. The corresponding kriging process 
provides the so-called kriging estimator with known expectations, Z~.o. 
This estimator is not as good as the preceding disjunctive kriging estimator 
Z ' r ,  i.e., 

Conversely the prerequisites are less severe; only the (n+l )  expectations 
E{Z(xo}, E{Z(x~,)}, ~ = 1,. . . . .  17, and the covariance function E{Z(x) 
ZOO} must be known. In practice, the knowledge of the (n+l )  preceding 
expectations requires the stationarity of the stochastic process Z(x), 

(d) Further restrictions of the space of possible estimators are the various 
linear manifolds, Cz c ¢,+1 ~ D. c H., defined by an increasing number 
L of conditions on the n weights ~ of the linear estimator Z* = ~ Z~. For 
a given linear manifold CL, the corresponding kriging process provides the 
so-called universal kriging estimator, or more precisely the linear kriging 
estimator Z* L with an unbiasedness condition of order L. The less inclusive 
the linear manifold Cz is, i.e., the greater the number L of conditions on the 
weights 2~ is, the less precise the corresponding kriging estimator will be. 
This can be written in terms of estimation variances: 

0"2L > 0 -2 > > a~ ,  > a~o 
- -  K L -  I - -  " . . . .  

Conversely, the greater L is, the less severe are the prerequisites for obtaining 
Z~L. In all cases, the knowledge of the covariance function E{Z(x) Z(y)} is 
required, but: 

--for  L = 1, the expectation no longer needs to be known but is as- 
sumed to be stationary, i.e., E{Z(x)} = m, V x. 

--for L)  1, only the knowledge of the form of the nonstationary ex- 
pectation is required, i.e., 

L 
E{Z(x)} = re(x) = ~ a,f,(x) 

/ = 1  

the L functions fa(x) being known but the L parameters at remaining un- 
known, thus leaving re(x) unknown. As L increases, a more and more complex 
form for the trend re(x) is accepted. 
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