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Let G be a non-oriented graph without parallel edges and without 
slings, with vertices V1, V2,..., V~. Let us denote by d(V~:) the valency (or 
degree) of a point V~- in G, i. e. t h e  number of edges starting from Vk. Let 
us put 

(1) c(G)= rain d(Vk). 
l ~ k - < = n  

If G is an arbitrary non-complete graph, let cp(G) denote the least number 
k such that by deleting k appropriately chosen vertices from G (i. e. deleting 
the k points in question and all edges starting from these points) the result- 
ing graph is not connected. If G is a complete graph of order n, we put 
cp(G)~n--1. Let c~(G) denote the least number l such that by deleting ! 
appropriately chosen edges from G the resulting graph is not connected. We 
may measure the strength of connectedness of G by any of the numbers 
cp(G), c~(G) and in a certain sense (if G is known to be connected) also 
by c(G). Evidently one has 

(2) e(~) >= co(O) >-_ c~(O). 

It is known further that any two points o f  G are connected by at least 
G(G) paths having no point in common, except fi~e two endpoints (theorem 
of MEN6E~--WmTNEV, see [1] and [2]) and by at least c~(G) paths having 
no edge in common (theorem of FORD and FULKE~SON, see [3]). 

We shall denote by %.(G) the number-of vertices of G which, have the 
valency r ( r ~  0, 1, 2 , . . . ) .  "-. 

As in two previous papers ([4], [5]) we consider the random graph F,,,N 
defined as  follows: Let there be given n labelled points Vz, I/'2 . . . .  , V.~. Let 

u~ c~oo~e. ,  ,a.~om ~ e~e~ amoo~ ~.e (~).o~si~,o e~e~ ~onnoc~,.~ 

should be equiprobable. We denote by/7,~, N the random graph thus obtained. 
We shall denote by P ( . )  the probability of the event in the brackets. 
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The aim of this note is to investigate the strength of connectedness of 
the random graph F~,,,N when n and N both tend to + ~ ,  N ~ - N ( n )  being 
a function of n. As it has been shown in [4], the following theorem holds: 

THEOREM 1. I f  we have N ( n ) ~ l n  l o g n + a n + o ( n )  where a is a real 

constant, then the probability of  F,, ~v(,o being connected tends to exp ( - -e  -2~') 
for n - - ,  + 

In this paper we shall prove the following theorem: 

THEOREM 2. I f  we have N ( n ) =  1 r ~-n  log n + ~ n  l o g l o g n + a n + o ( n )  

where e is a real constant and r a non-negative integer, then 

(3) 

further 

(4) 

and 

e-2a i lira P(cp(F,, ~v(~0) ~ r) = 1-- exp - -  
,§ r! }' 

(5) 

e-~a t lim P ( c ~ ( F ~ , _ u  p - -  r! ) 

e_,2 a "~ 

'l~--~ 4- r 

REMARK. Clearly Theorem 2 can be considered as a generalization 
of Theorem 1. As a matter of fact, any of the statements G ( G ) = O  or 
ce(G)-~-O is equivalent to G not being connected and thus for r = 0  (3) and 
(4) reduce to the statement of Theorem 1. It has been shown further in [4] 

n 
that if N ( n ) ~ l o g n + a n + o ( n )  and F%~,(~) is not connected, then it con- 

sists almost surely of a connected component and of a few isolated points. 
Therefore (5) is for r = 0  also equivalent to the statement of Theorem 1. 
Thus in proving Theorem 2 we may restrict ourselves to the case r ~ 1. 

The statement (5) of Theorem 2 gives information about the minimal 
valency of points of /'~,~. In a forthcoming note we shall deal with the 
same question for larger ranges of N (when c(F,,N) tends to infinity with n), 
further with the related question about the maximal valency of points of F~, ~. 

We shall prove further the following 

1 r 
THEOREM 3. I f  we have N(n) ~ 7 n log n q- ~-n  log log n + an q- o(n) 

where a is a real constant and r a non-negative integer, then we have 

~,k e-Z 
(6) lira P(v,.(F,~,~-0~))=k) k! for k---O, 1 , . . .  

"It ~-  + CO 
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e-2Ce where Z= r---f-.; in Other words, the distribution of 7:r(rl;,~r tends to a 

Poisson distribution. 
PROOF OF THEOREMS 2 AND 3. Let 1" >-- 1 be an integer and - -  o~ < a < -1- ~ .  

Let us suppose that 

1 r 
(7) N(n) = ~ n log n q- 7 2- n log log n + a n -[- o (n). 

Let F~,~v be a random graph with the n vertices V1, V2,...,  V~ and 
having N edges. Let Pk(n, N, r) denote the probability that by removing r 
suitably chosen points from F~,~ there remain two disjoint graphs, consisting 

Y -1 

of k and n - - k - - r  points, respectively. We may suppose k < / ~ f -  ~. First 
L ~ J  

we have clearly 

pk(n ,N,r )<=(n) (nTr) ( (2) - -k ( ; - -k - - r )  ) 

It follows by some obvious estimations that 

o(,) (8) lo  S< N(n), r ) =  . 
(r+3) ~ n -  r 

log n p .  
Now we consider the case k<=(r+3)loglog n . Let k(n,N,r) denote the 

probability that by removing r suitably chosen points (the set of which will 
be denoted by A)F , ,  ~r can be split into two disjoint subgraphs F '  and F "  
consisting of k and n - - k - - r  points, respectively, but that F~,2r can not be 
made disconnected by removing only r - -1  points. If F,,AT has these pro- 
perties and if s denotes the number of edges of F,,2v connecting a point of 
J with a point of F', then we have clearly s => r. Otherwise, by definition, 
s <= rk. Thus we have 

(9) * ~ n rk 
P; (n, N, r) s 
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It follows that 
[(r,3) log,, 1 

Z ~  P~:(n,N(n),r)=O( 1 ) 
(10) k:2 

I 

From (8) and (10) it follows that for n ~-1-  

(11) p (c~ (,e,,, ~(,o) = r) --~ P(c(r~,, ~,~(~) - r ) .  

As a matter of fact, (8) and (10) imply that if by removing r suitably chosen 
points (but not by removing less than r points) F., ~(~,~ can be split into two 
disjoint subgraphs F '  and F"  consisting of k and n'k--r points, respec- 

k ~ / ~ r / ,  then only the case k = l  has to be considered, the tively, where 
k - - J  

probability of k > 1 being negligibly small. It remains to prove (5). This c a n  
be done as follows. First we prove that 

(12) lira P(c(F.,~v.0) N r--l)~---0. 
~ - + +  C0 

For r = l  this follows already from Theorem 1. Thus we may suppose here 
r>=2. We have 

((:):7 
P(c( r . ,  N) ~ r - - l )  =< ~.~n 

h ~ l  

and thus 

(13) 

which proves (12). 

P(c(F% N(~))<--r--l) ~ 0 (lo--~n) 

Now let q'r(Fn, ~) denote the number of vertices of F,., 5. which have the 
valency r. Then we have clearly by (12) 

(14) P (c(F,, x(,o) r) ,--, P (rr(F,, ~(~)) =/= 0). 

Now evidently 

(15) P(rr(rn, x(~)) =:/= 0) = ~_~ (--1)J-ls~ ' 
j = l  

where 
(16) 

Evidently, if we stop after taking an even 

Sj= ~ . ~  ... ,~ P(d(V~)= r, d (V~. ) -~ -  r, . .  ., d ( V k ) =  r).  
! ~/r <C k 2 <  , . .  <k~n 

or odd number of terms of the 
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sum on the right-hand side of (15), we obtain a quantity which is greater 
or smaller, respectively, than the left-hand side of (15). Now clearly 

N(n) - -  r ] ,~ e -2~ 

and thus 

e-2a 
(17) lim & - -  r! 

n-~- + co 

Now let us consider P (d (G~)~r ,  d (G~)=r )  where k~4=G. If both �89 and 
G_~ have valency r, three cases have to be considered: a) either G~ and �89 
are not connected, and there is no point which is connected with both G, 
and �89 b) or G~ and �89 are not connected, but there is a point connected 
with both; c) G~ and G~ are connected. We denote the probabilities of 
the corresponding subcases by P~(d(G~)=r,  d(G~)~r) ,  Pb(d(G~)~r ,  
d(G~)~-r) and P~ (d( G,) = r, d(G~)=r) ,  respectively. We evidently have 

\n. rU' 

\N(n)]  
and thus 

(18) , l e2o t  2;2 P ~ , ( d ( V T ~ ) = r , d ( V ~ . o ) = r ) , ~  rf J" 

On the other hand (denoting by l the number of points which are connected 
with both V~.~ and Vk), we have 

(19) 

_ ( n - - 2 ) !  

- -  /:1~7 l ! ( r - - l ) ! (n - -2r  q- l--2)V 

P f f d ( G )  • r, d(G~2) ~-I") 

n ( 

\ N(n)--2r ] 

N(n),! 

= O  
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Similarly one has 

(2o) 

P~(d(Vk,) == r, d(Vk~)~--- r) = 

r - 1  (n- -2) !  

=~'~=o l ! ( r - - l - - 1 ) F ( n - - 2 r  + l ) !  

Thus we obtain 

1 (e-2~] 2 

The cases j > 2 can be dealt with similarly. Thus we obtain 

(e-2~y 
(21) ,~li~m+=SJ=~! ~ r! ) ( j = 1 , 2 , 3 , 4 ,  . . .).  

It follows from (16) and (21) that 

(22) tim P (r~.(I',+, ~ ) )  4= 0) 1--exp - -  
~++~ r! }" 

In view of (2), (11) and (14) Theorem 2 follows. 
To prove Theorem 3 it is sufficient to remark that by the well-known 

formula of CH. JORDAN 

(23) p ( v ~ ( C , , , x o o ) = k ) = ~ _ , ( _ _ l )  j k Sj+,,, 
j--O 

and thus by (21), 
e-2O: 

putting Z =  r-~-. , we obtain for k ~ O ,  1 , . . .  

(24) lira p tj, r~F,~,, ~.(,)---k = k! ( t ~ ~ ~ j! kI 
'~t .--)- + s 

Thus Theorem 3 is proved. 
Our thanks are due to T. QALLAI for his valuable remarks. 

(Received 12 October 1960) 
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