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Abstract

Within the geometrical optics approximation, we consider a class of mirrors (with surfaces formed by
rotating second-order curves) which enables an extension of the range of possible beam conversions in
optical systems. The formulas used in the calculations are quite simple. Based on this approach, we
worked out and presented a complete analytical algorithm for calculation of the mirror surface parameters
in & “HEX-DARR” resonator. To check the algorithm, a numerical calculation of an optical system is

carried out for a specific set of initial data. The results obtained confirm the accuracy of the equations
derived and the efficiency of the algorithm.

1. Introduction

The choice of a resonator type is of prime importance in the design of lasers with a ring active medium.
A description of resonators of several classes applicable in this instance is available in the literature (e.g., see
{1]). The “HEX-DARR" resonator is one of the most interesting schemes [2].

The mirror geometry in this resonator has its own special features. As a rule, mirrors of rather simple
shapes are used in optics. In optical systems, they are commonly used for collimating convergent/divergent
beams or for changing the center of curvature without changing its value. This problem is solved using,
respectively, spherical (parabolic) and plane mirrors. With cylindrical optics, similar problems are tackled
using mirrors formed by rotating a portion of a circle (parabola) or a straight line. It is a relatively simple
matter in this case to reconstruct the mirror shape from the ray traces. A wider range of beam conversions
(such as a convergent-to-convergent beam change with variation of curvature and so forth) and, hence, a
broader class of mirrors are used in a HEX-DARR resonator.

Accordingly, the problem of determining the mirror shape becomes more complicated. The use of conven-
tional methods based on the paraxial approach and the third-order aberration theory is extremely hampered
in this case. In the differential treatment based on the Linneman technique [3], the differential equation is
written on the basis of the given beam conversion in reflection by a mirror. Its solution defines a line (as
a set of points) — the generatrix of the mirror surface. One of the shortcomings of such an approach is the
awkwardness of the result description.

Another method — an analytical one - is the subject of this work. Second order curves are used here to
calculate and to represent the mirror surfaces of the resonator. In this case, every mirror is defined by seven
parameters in all (five define the shape, and the remaining two, the surface boundaries). We present the

calculation results and some useful estimates for a variant of the HEX-DARR resonator with a base length
of 2.5 m.

Translated from a manuscript submitted November 28, 1895.

286 1071-2836/96/1703-000286$15.00 ©1996 Plenum Publishing Corporation



Volume 17, Number 3, 1996 Journal of Russian Laser Research

7 I V)
A
6
6
ofdl | | _ . W N
. 1
\ 15
2 <4
3 E?\.\\\
6 6

Fig. 1. Schematic of HEX-DARR resonator: nozzle unit (NU); axicones (1-5); plane mirrors (6).

2. Resonator Ray Tracing

The mirror surfaces and the beams themselves are axisymmetric in the HEX-DARR resonator. We will
consider our problem in a section through the axis of symmetry. In what follows, for the sake of simplicity,
the term “surface” implies a generating surface of the mirror, and “beam,” a set of rays in the section plane.
Note that in this case the divergent/convergent beam is a beam whose rays intersect at points lying in an
axisymmetric circle.

The ray paths in the HEX-DARR resonator {see Fig. 1) can be described as follows. The beam parallel
to the symmetry axis is incident on axicone 1. After its reflection, we obtain a divergent/convergent beam.
Axicone 2 converts it into a divergent beam. After its reflection from axicone 3, we obtain a parallel beam at
almost a right angle to the axis. After the second reflection, we have a convergent beam. Between axicones 4
and 5, the beam becomes divergent again. Finally, after reflection from axicone 5, we obtain a beam parallel
to the axis. Note that after the second reflection from axicone 3 the convergence of the pencil of rays is
approximate in character (although the focal spot size is very small). A similar situation takes place after
subsequent reflections.

3. Features of Second-Order Curves

Inasmuch as second-order curves will be in active use, it is worthwhile to recall some of their features.
(i) They have equations of the type
p

r = y p>0, e>0;
T+ecos(p—wo) T

T = Zo+TCos
(1)

y = zg+rsing;

p1 < <
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where (zo, yo) are the Cartesian coordinates of the curve focus; ¢, is the direction of the major curve
axis (from the focus to the closest line tip); (r, ¢) are the polar coordinates of a curve point relative to the

focus. All of the angles are measured counterclockwise from the X axis. The curve type is determined by
the value of e:

0=e <« acdirde;
0<e< 1l <= anellipse;
e=1 <> aparabola;
e>1 <= ahyperbola (a short-range branch).

(ii) Upon reflection from the “inside” (as viewed from the focus), a beam diverging from one focus is
transformed by a parabola into a beam parallel to the major axis, by an ellipse into a beam converging to
another focus, and by a hyperbola into a beam diverging from another focus (the angular beam size decreases).
A beam parallel to the major axis is converted by a parabola into a beam converging to a focus.

Upon reflection from the “outside,” a beam converging to one focus is transformed by a parabola into a
beam parallel to the major axis, by an ellipse into a beam diverging from another focus, and by a hyperbola
into a beam converging to another focus (the angular beam size increases). A beam parallel to the major
axis is converted by a parabola into a beam diverging from a focus.

Note that, as shown below, the above-stated property of converting a spherical wave to a spherical or
plane ones is displayed in reflection only by second-order curves and straight lines.

(iii) For an ellipse, the sum of distances to the foci is constant:

ry + r9 = const.

For a hyperbola, the difference between distances to the foci is constant:
ry — r; = const.

(iv) The direction of the normal to a parabola ¢, :

SD";SDO:‘P:mPn"SOO'

Pn — Po =
The relationship between the angles for reflection:

Prn—P1= P2+ T =, = 20, = Py + Y3+ T,

where ¢, and ¢, are the angles of inclination of the ray before and after reflecticn. Consequently,

¢=¢1+ 92+ T~ @ (2)
(v) For a parabola with ¢, = 0,
sin
—Yp=p————=pt 2.
YN =P o p tan ¢/ (3)
For a parabola with ¢y = 7, .
_ sinp _p
v yg_pl—cost,o—ta.ncpﬂ' )
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Fig. 2. Ray traces for reflection from mirror: “external” reflection (a); “internal” reflection (b).

4. General Form of an Axicone

We obtain the general form of a curve exhibiting the following property: a beam diverging from one focus
diverges/converges to another after reflection (see Fig. 2).

We introduce a system of Cartesian coordinates with its origin in the middle of the segment connecting
the foci. The X axis is directed from the first focus to the second. We denote the interfocal distance by

2a > 0. The direction vector of the beam before reflection is symbolized as 1;, after reflection as l,, and
the normal at the point of incidence as n.
From the law of reflection

Ln =Ln.
We require, in addition, that
2] = [Li].

Then, expanding vector 1, into vectors l; and n, it is readily found that

l =1 + bn,
where
p— 2ok
fnf2

Let {z,y) be the coordinates of the incidence point. Then,

L = (z+a,9)
n = (dy, —dz).

From obvious geometric considerations, we have
(z - a, y) = constl; = const[(z + a) + bdy, y — bdz].

Eliminating const, we obtain
(z~a)(y~bdz)=y[(z+a)+bdy].

289



Journal of Russian Laser Research Volume 17, Number 8, 1996

Substitution of the value of b gives
dzdy (z* - a® - ¢’) = 2y [(dz) - (dy)’].
The equation supports the substitutions
T — -z y— -y
Therefore, one can introduce the new variables

X =z, dX = 2zdz;
Y =¢?, dY =2ydy.

With the new variables, the equation takes the form

dXdY (X -Y -a®) =Y (dX)’ - X (dY)*.

If
dX =0,
we obtain the obvious solution
z =0.
Otherwise, one can introduce
v = Yy
=X
After this, the equation acquires the form
Y(X-Y-da®)=Y - X(Y'). (5)

Differentiating (5) gives
Y'(X -Y -a®+2XY') = 0.
We have two variants. The first one is:

Y'=0 = Y=AX+B.

Substituting into (5), we find the relation between A and B :

The second variant is:
X -Y —a? = -2XY'.
Substituting into {5), we obtain
XYY =-Y or (zY')= -y
The only solution to this equation
y=0
has no physical significance.
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So, the solution sought is given by

BX 2 Bz?
BratP x vErpratt

Y =

It is easily seen that we obtain a formula for a second-order curve written in Cartesian coordinates.
Placing the coordinate origin at one of the foci and directing the polar axis toward the other, we obtain the
standard (in polar coordinates) curve form. In so doing, we have two solutions (depending on the sign of
B ): a hyperbola and an ellipse. In the differential treatment mentioned in the Introduction, these curves
are solutions of the differential equation for the generating surface of the mirror.

As the distance to the second focus tends to infinity (the beam is parallel after reflection), we obtain a
parabola with passage to the limit. To satisfy the conditions

p>0 and e2>0,

is possible for the origin to be transferred to the other focus and/or the direction of the polar axis be reversed.

In summary, an ellipse, a hyperbola, or a straight line converts a beam diverging from one focus into a
beam which diverges/converges at the other. The latter can be considered as the limiting case of a hyperbola
for

e— 00 and p=ae.

A similar transformation into a parallel beam is performed only by a parabola.

5. Calculation of the Axicone Parameters

From the above, it is easily comprehended that the axicones of the HEX-DARR resonator must be well
described in terms of second-order curves. It is an easy matter to obtain the axicone type from the beam
type (convergent, divergent, parallel) before and after reflection from the mirror: axicones 1, 3, and 5 are
parabolas; axicone 2 is a hyperbola or an ellipse; and axicone 4 is a hyperbola.

In the course of computations, determined for every mirror are the locations of two foci for a hyperbola
and an ellipse, and the location of one focus and the axis direction (i.e., ¢g) for a parabola. Additionally, a
“reference” point on the line (the point of reflection of the first ray) is determined.

With these data, we next find the parameters p, e, zq, Yo, and p, according to the following algorithm.

We locate the coordinate origin at the focus nearest to the “reference” point. The polar axis connects
the curve foci (for an ellipse and a hyperbola) or is parallel to the axis (for a parabola). In this manner, we
calculate the parameters zo, yp and o.

Employing the curve properties (see [4]), it is easy to calculate the parameter ¢:

F

F=2a; ro+r =24 =— e= for an ellipse;
241
e=1 for a parabola;
F
F=2e; r94r=2a = e= for a hyperbola,
Te—Ts

where F is the spacing between line foci; 2a is the spacing between line tips; r, and r, are the distances
from the “reference” point to the near and far foci.
It is now easy to calculate the parameter p:

p=r; —er; cos{p— ).
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Hence, the parameters of a particular axicone are calculated by simple analytical formulas.

Resonator ray tracing imposes obvious geometric limitations on the locations of the axicone foci. With
an appropriately chosen set of initial conditions, the locations of the axicone foci (axes) can be uniquely
determined and, consequently, the mirror surface shapes can be determined. This problem will be considered
in detail.

6. Notation and Initial Data

Let us introduce the coordinate system (X, Y) aligning the X axis with the symmetry axis of the
resonator from axicone 3 to axicone 1 and directing the Y axis upwards. We shall examine the ray traces

with the beam passing first through the upper section of the resonator and then through the lower one. We
introduce the notation:

F, — the common focus of axicones a and (a+4 1);

Fee, F,y — the Cartesian coordinates of the focus;

P,.., — the intersection point of ray m and axicone a;

Zem, Yam — the Cartesian coordinates of the intersection point;

Tem:s Pam — the polar coordinates of the intersection point with respect to the axicone focus (for
parabolic axicones);

ps — the parameter p for axicone g;

gam — theinclination angle of ray m to the X axis after reflection from axicone a (for parabolic
axicones).

We introduce several refinements of the definitions:

F; is the “personal” focus of axicone 4 (the ray convergence point after the second reflection from
axicone 3);

F_5 is the focus of the lower section of axicone 3;

P_yn and g¢_s. describe the rays after reflection from the lower section of axicone 3.

The traces of only two outer rays (y;; < ¥13) are considered in the calculation. From the resonator ray
tracing (see Fig. 1) it is clear that

g2 = ¥+ uw
= _r_
g3 9 q;
g-31 = 9,

where w, g, and v are small angles.

Different initial data sets can be adopted. Further, a variant with the following initial conditions will be
treated:

Ry — the radius of the nozzle unit;

R;p — the radial dimension of the oscillation zone;

R; — the y-range of the input beam;

R, — the y-range of the output beam;

X, — the z coordinate of the outer edge of axicone 1 (X, = z,,);

X; — the z coordinate of the inner edge of axicone 2 (X; = z43);

Xs — the z coordinate of the outer edge of axicone 3 (X5 = z4,);

Ryy  —  the radial clearance between the inner edge of axicone 2 and the outer edge of axicone 4
( Rau=v2s —[-yul )s

Rsy — theradial clearance between the beam and the nozzle unit in passing between axicones 3 and 4;
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Xs1 — the z-clearance between the outer edges of axicones 5 and 1 ( Xy = 243 — 733 );

Xy — the z-clearance between the outer edge of axicone 4 and the inner edge of axicone 2
(Xa=24—22 )

The rays are parallel to the X axis before reflection from axicone 1 and after reflection from axicone 5.
Ray 1 between axicones 2 and 3 and ray 2 between axicones 3 and 4 are also parallel to the X axis

v = Ry 4 Ry
y-sa = —Ryx— Rsn.

The points of intersection of the rays before and after reflection (also for axicone 4) are assumed to be the

axicone foci. In the system presented in Fig. 1, the beam enters the resonator above the axis but emerges
below it. Consequently,

Y20, Yrn>0;
Yo, £0; Yo; < 0.

7. General Computation Scheme

The computation algorithm consists of the three main stages:

(i) Employing a rather good analytical initial approximation (it can be improved by iterations, if necessary)
of the parameter ¢, we calculate the parameters of axicone 3.

(ii) The parameters of axicones 1 and 2 are derived analytically.

(iif) Solving the cubic equation, we find F,,. This enables us to determine all parameters of axicones 4
and 5.

In what follows, the stages of the computation scheme will be considered more closely.

8. Parameters of Axicone 3

In this section, formulas describing ray reflection from axicone 3 (see Fig. 3) will be derived. All quantities
considered are first expressed in terms of the parameter ¢. Next, we obtain an equation in ¢, which can be
solved by iterations.

For the upper section of axicone 3 (a parabola),

P = Ps
T
P = 3 q;
T = Fy

Yo = Fypy=Rx+RL.
Utilizing formulas (1) it is easy to obtain

D3

T = ;

3 1—singq’
T — _..__.Ila_..._.... .

32 1-sin(g+w)’
Tay = Fypp —ray;

(6)

Ty = Fzz — T'zz COS W;

ya = Fy;

Va2 = sz - T3z sin w.
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axicone 2

(x)n YJI)‘ 1—;_—:_:—-—- (Fka Fzy)

f Y

(X2, ¥20)
(xsz s YB)
(x axicone 4
S Yo VL
1 (Xas Yar)

310 ¥o31) N\ axicone 3
Fig. 3. Reflection of rays from axicone 3.

The lower section of axicone 3 is symmetric to the upper one. In a similar manner, with the additional use
of Eq. (2), it is easy to obtain

R S
-3 1-sin(3¢—v)’
= P .
T-32 = T sindq’
.3 = Fy—r_3 cos(2q—v);
(M)
T_ay = Fy —r.3; cos2q;
y-a1 = —Fy 4 r_3 sin(2g — v);
Y3z = -sz —T.32 sin 2q
Taking into consideration the inclination of the rays between the two reflections from axicone 3,
I.31 — Z31
— = cot ~ tan 8
Yoz — ¥Ya1 gar ¢ ®
and
T 53— 2
To 77 cot gaz — tan q. (9)
Y32 — Y32

It is seen from the ray tracing that for the inner edge of axicone 2

Ty = Ky ~tcosw;

Va2 = Fy —tsinw,
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while for the outer edge of axicone 4 (in the lower half)

Ty = ZT_s + Scos v,
Vo = yY-sitssinv,
where s and ¢ are some parameters.

So, equations for all the quantities of interest have been obtained.
Let us now take into account the initial data:

Y-32 = —Rnx-— Ran;
ng = RN + RL.
Then, we readily find from (7) that
1 —sin 3¢
= — Rgp) ———
ps = (RL — Rsn) sin 2
Furthermore, in view of z3; = X3, we have
P = 2iR2
sin ¢

Using Eqs. (8) and (9), expressions for v and w can be obtained:

A; .
2 arctan (— yn D) ;

<
I

g
I

—~q + 2 arctan [sin 3¢-(1-cosq) - B]

1+ cosg—sin3¢— B

where

A; = cos ¢(1—sin q)+ (1 +sin 3¢)(cos g + A);
A; = cos 3q(cos ¢+ A) ~sin g (1 —sin q);
A3 = cos q(sin ¢ —sin 3¢) + A(1 — sin 3¢);

D = JAl- AjAs;

A = 2—1‘:2"isinq(l--sinq);
P3
F

B = 23’-sinq(1—~sin3q).
P3

Finally, taking into account the conditions

Ty —T = Xy
Vo2 — (=ya) = Rag
we get:
s r_s; sin(w+ v —2q) + Xy; sin w4 Ryg cos w
B sin (w + v) ’
; T_a1 6in 2¢ + X3 sin v — Raq cos v
- sin (w + v)
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So, all parameters of axicone 3 are expressed in terms of ¢. Its value, in turn, can be obtained from the
condition
zq3 = Xs.
The magnitude of ¢ will be calculated by iterations, minimizing the error zj; — X;. Naturally, the

problem arises of how to obtain a sufficiently good initial approximation for this parameter. By virtue of its
smallness, it would be reasonable to employ an expansion in powers of ¢.

- b gg Tt Re
Ry — Rsn
We point out that
Ry + Rp > 1
Ry — Rsn ’

but k= O(1) (moreover, typically k < 1). We expand z;; — X; with relative accuracy O (¢*) and in

doing this retain the terms of the order of O (kg). Then, omitting cumbersome intermediate calculations, we
obtain the relationship

K
Ty — X2 = _qz_ + Ks(k,q) — K1 + qO (Rp — Ran + ¢Xaa + Ray), (10)
where
1 R
Ki = Xa=Xo+g[Ru—Row+2Xa+ Rat 2Ry + Re) (1- 72— )]
4 Ry —~ Ry
1
K, = Z(RL — Rsn + Rad)s
4 k k2 k
Ks = T-F2+9¢ [(RL = Rsn) (5 + 9> -q¢Xq (-2 + -2—> ~ Ry (5 - II)
Ra,
+ (-k+2¢)(Rn+ R (1--—————-—-)].
( a)(Rn L) R — Ran
With the provision that z,; — X, = 0, relation (10) takes the form

K,
" Ky — Ks(k,q) + qO(Rp — Rsn + qXaa + Rad)
Considering that, as a rule, K3 < K; we obtain the initial approximation for ¢ in two stages:
. K, Ry + R,
= == ko = 4qy ————=
(1) 9o K& qo R - Rapy |
.. K,
1t = ————
(#) o K, — K3(ko,q0)
Usually, the initial approximations ¢, and ¢; alone provide a wholly acceptable accuracy. If necessary,
g can be additionally refined via iterations by the Newton method, starting from ¢ =¢, or ¢ = ¢. In
s0 doing, the discrepancy z;; — X; is calculated from the precise analytical equations listed above. The
correction for ¢ is found with allowance for the formula
4 K ¢
dX, © (Ki+ K3~ K

q

The iterations converge rapidly.

On obtaining a sufficiently good approximation for ¢°, one should set X; = z5;(g*). If required, the

parameters Yy, Y., Yo, Y03, X, X5, and Xj;, which are as yet unused in calculations, can also be
modified at this moment.
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axicone 1

\ Zand

RH

Fig. 4. Reflection of rays from axicones 1 and 2.

9. Parameters of Axicones 1 and 2

This section is dedicated to the derivation of equations for the parameters describing axicones 1 and 2 (see

Fig. 4). Note, that i3, y23, Fj:, and F,, were obtained previously in the computation of the parameters of
axicone 3.

From obvious geometric equations, we have:

Va2 — Yn2
tan gyg = ———— .
z32 — X,

We introduce the notation:

A; and A, are the distances from Py; and Py, to Fy;
B, and B, are the distances from P;; and Pp; to F3.

Let the beam converge after reflection from axicone 1. Employing Eqgs. (3) and (4), it is readily found that

(Yr, — Fyy) tan (%’) = (Yn - Fy,) tan (%) . (11)
In this case, axicone 2 is an ellipse; therefore,
A+ By =A+ B;.
Taking into account that

Fly - Y _ Fly - F2y .
sin gy sin g1,

A1 =
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Fo.—
A, = l'y Vaz |
sin g3
Fiy~ynn  FHy-F,
tan g3 tan g1

B, = \/(Fxs ~z3)’ +(Fy - ya)’

B, = Fy,—z9-

we obtain the relationship

1 1 1 1
F.. - F. —(F, — = By - (Fy; - . 12
(Fiy w) (sin gu + tan 911) (Fiy = y) (sin 913 + tan 912) 2= (Fa = 72) (12)

Equations (11) and (12) can be shown to be fulfilled, too, when the beam diverges on reflection from axicone 1
(axicone 2 is a hyperbola).
With the identities

1 11
sinz tanz  tanz/2’
(Fzy - y,,)’

B; - (an - xza)

By +(Foe—2z0) '
Equation (12) can be rearranged to give

Flv"Fh_Flv—yn_ (Fay = y22)?

= . 13
tan g1;/2  tan §12/2 By 4+ (Far —zm) (13)
Solving system of equations (11) and (13), we arrive at

Y1Cu + Foy Y1 — y22Y12

F, = ;
v Yn—-Yn+Fy—ynt+C,
Y- F
= 2arctan ( L )
Ju (},“ - Flv) tan 912/2

where N
C. = tan (g12/2) (Fay — ¥22)
¢ By + (Fyr —z33)

From obvious geometric considerations,

F, -
R = X, 2292,
tan g2
yu = Y
Vi = F2y§
Yiz = Yo
- F
£y = Fl,+y“ 1y .
tan g1y
-~ F
Ty = Fxs+——yn L
tan g;;
I = Xl.

The sign of Fy, — Yy, specifies the type of axicone 2:

Ry, ~Y, <0 <= a hyperbola;
F,-Y:>0 <=> an ellipse;
Fryy~Yp=0 <= a parabola (axicone 1 being a straight line).
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Roi

axicone 5

—-*f

Y

Fig. 5. Reflection of rays from axicones 4 and 5.

10. Parameters of Axicones 4 and 5

In this section, we obtain expressions for the parameters describing axicones 4 and 5 (see Fig. 5). Note

that z,, and vy, were obtained previously in the calculation of axicone 3.
The location of the “personal” focus of axicone 4:

Fyy, = —~Ry-— Rsn;
ya — Fsy
Fy = zg-¥"Tw
3= 4 tan v

The location of the outer edge of axicone 5:

Ys2 = Yog;

il
Ry
+
by

Tga

We introduce the notation:

Ay
B, and B, are the distances from Py, and Py; to Fj.
Axicone 4 is a hyperbola, hence
Ag—Bz=A1-'B1.
Inasmuch as
A = \/(241 - Fs‘—.)2 + (ya — Fsy)2 ;
- - F
Ay = (Fa— a:“) _ F(y Ya , Fy 3y :
tan gy tan gq

and A, are the distances from P,; and Py, to F3;
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B, = F«; =~ Ya .
51D g4y

B2 - F(v — Y42 = Fly ""Fay
sin g43 Bin gqs

then
1 1 1 1

(F4v - !Iu) (sin ga - tan g“) - (F4v - Fsv) (sin Jaz - tan sm) = A, - (Fu - 141)-

In view of the identity

1 1 l1—cosz
sinz tanz sin

= tan — ,

N8

we obtain:
(F4y - ydl) tan gz"il‘ e (F4V - Fa') tan 223.2. = A’
where

Fa, — ygy)?
A:Al—(Fk—x‘l)zA—l(-;%‘;;:;)z;l—)-.

Using Eq. (3) we obtain for axicone 5:
(F4!l bt Yog) tan g—;g‘ = (F4V - Y01) tan 'g% .
The focus F¢ is located at the intersection of rays 1 and 2. Consequently,

F‘ly ""YOZ . F4y - Y1
tan gy tan g4

T4y — Igz =

Equations (14) and (15) are readily brought to the form:

da  _ Fey = Yo3 .
tan 2 = B ;
Ja2 Fyy — Yo,
tan =& = ~———
an > B R

where

B = (Fay = yau)(Fay = Yo3) — (Foy — F3,)(Fay — Yo1)

A
- Foy(Yor = Yoz + Fsy — ya) — F5,Yo1 + yauYoo
i .
In view of these equations and the identity
2 1
—tan z/2,

tanz  tan z/2

relationship {16) reduces to the cubic equation

@(Fy)=Ci(Fy— %) +2C: (Fey —yo) + C3 =0,
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where

C, = Ci(Fy)= Fy(2Y0: ~ Yo1 — ya1) + Yo1 va — (Yoa)*;
C;, = G (F‘ly) =C (241 - xs:) (F4y - Yoz) (F«ty - Yoz);
Cs = Cs(Fy)= c? (var = Yo1) (Fu — Yo ) (Fyy — Yoz)’?
C = A ;
Yor -Yos+ Fay —ya '
F&y Yo1 — yuYoa
Yor - Yos + Fasy — ya
From obvious considerations, Fy, < F¢, < Yp3. Note that C; does not change sign, while C;, < 0 and
Cs < 0 in this interval.

By analyzing the change of sign of the polynomial in (17), it can be shown that cubic equation {17) has
three roots: the first one is on the segment (Fi,, yo); the second, on the segment (y,, Yo1); the third, outside
of the segment (Fs,, Yo,).

From obvious geometric considerations,

tan 942 = F4y-Yoz=CF4y—Yo: S

2 B F‘|y - Yo

Yo =

0.

Consequently, Fy, < yo.

On this basis, Fy, is to be found on the segment (F3y, yo). The solution may be sought analytically by
solving the cubic equation (see [4]) or via iterations. In our work, we used an iteration scheme similar to the
method of parabolas.

As an initial approximaton, y, can be taken. For C = 0 (which corresponds to the case of v — 0 ),
the last two terms in (17) become zero and the polynomial has two roots equal to y,. For small C, these
terms are nonzero but still small when compared with the first term far from y,. As a result, the equation
has two roots close to yo (on the left and on the right).

Further we put

Ci = Ci(w)
C;, = (G (!Io);
C3 = CS (yo)o

i.e., we approximate the cubic polynomial with a parabola. As a new approximation, we take the lesser root
of the quadratic equation obtained. We repeat the iterations until the required accuracy is achieved. In the

vicinity of yo, the magnitudes of C;, Cy, and C3 vary ever so slowly, which promises fast convergence of
the iterations.

After deriving Fy, the value of z5; should be corrected by setting

Ci(Fy) (Fay = ¥0)* + C3(Fyy)
2C3(Fay) (Foy — ¥o) (Za1 — T52)

L
Ty =Ty +

In fact, this implies a small change in Xj;.

11. Example of Calculation

The algorithm stated above was tested with the following initial data (the dimensions are given in mil-
limeters):

RN = 150; RL = 50;
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TABLE 1. The Curve Parameters Describing the Surfaces of HEX-DARR Resonator

Axicone 1
p = 496.785468 789796 300 e = 1.000000000000000
zg = 264.465690379485200 | ¢ = 0.000000 000000000
Yo = T712.070453638987100 | ¢; = 4.360223974078329
w2 = 4.402989418760000
Axicone 2
p = 594.641980466858 700 e = 0.7671325074045093
zo = 264.465690379485200 | w0 = 2.908520220714430
yo = 712.070453638987100 | ¢; = 4.360223974078329
w2, = 4.402989418760000
Axicone 3
p = 4847.326842933073000) e = 1.000000000000000
zo = 2421.581968800840000 | po = 1.565817404909536
Yo = 200.000000000000000 | v; = 3.140592653589793
w2 = 3.152550497360514
Axicone 4
p = 35.219718309 796 850 e = 1.015080232260482
o = 117.704695820373700 | ¢, = 0.007184485207313319
Yo = 134.095287470663200 | ¢; = 0.9012434830558003
w2 = 1.690558522186128
Axicone 5
p = 116.826373506591900 e = 1.000000000000000
zg = 117.704695820373700 | o = 3.141592653 589793
Yo = 134.095287470663200 | ¢, = 4.042836136645593
p, = 4.832151175775922

Yn=1 Y;=31;

Yo1 = —2.5; Yo, = —75.5;

X, =46; X,=93; X;=-2,450;
Ryy=4; Ran=1,;

Xs1 = 27; X4 =20.

Listed in Tables 1 and 2 are the parameters of the curves describing the axicones of such a resonator and
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TABLE 2. The Ray Traces (the Coordinates and the Guide Vectors of Rays) in HEX-DARR Resonator

X Y Xn Ya

Entrance plane X = -100

-100.000 00000 1.00000000 ; 1.00000000 | 0.00000000

-100.000 000 00 16.00000000 | 1.00000000 | 0.00000000

-100.000 000 00 31.00000000 | 1.00000000 | 0.00000000
Reflection from axicone 1

3.96553055 1.00000000 | 0.34399195 | 0.93897260

2520922118 16.00000000 ;| 0.32505820 | 0.94569401

46.000 00000 31.00000000 ; 0.30543913 | 0.95221160
Reflection from axicone 2

76.86904038 | 200.00000000 | -1.00000000 | 0.00000000

84.66793910 § 188.98364761 | —0.99998889 | ~0.00471401

93.00000000 | 177.52328824 { -0.99995342 | -0.00965208
Reflection from axicone 3

-2450.00000000 | 200.00000000 | —0.00497890 | ~0.99998761

—2473.13449856 | 176.92601405 | —0.00497890 | —0.99998761

—2497.48817910 | 152.51851842 | -0.00497890 | ~0.999 98761
Reflection from axicone 3

-2451.98176509 | —198.02767838 | 0.99995437 | 0.00955300

—2474.88758692 | -175.17307773 | 0.99998806 | 0.00488750

—2498.999 386 58 | -151.00000000 { 1.00000000 | 0.00000000
Reflection from axicone 4

113.00000000 | -173.52328824 | 0.11848321 | 0.99295606

123.63725099 | -162.472646 78 | -0.20463742 | 0.97883785

131.05775162 | —151.00000000 | -0.61985102 | 0.78471951
Reflection from axicone 5

133.40713538 -2.50000000 { 1.00000000 | 0.00000000

97.85883409 | -39.16709652 | 1.00000000 | 0.00000021

73.00000001 | -77.49999999 | 1.00000000 ; 0.00000000

Outlet plane X = 100

100.000 00000 -2.50000000 | 1.00000000 { 0.00000000

100.00000000 | -39.16709606 | 1.00000000 | 0.00000021

100.00000000 | -77.49999999 | 1.00000000 | 0.00000000
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the ray paths going up in it. (X, Y) define the ray coordinates, and (X, Yy), the direction cosines of the
rays.

It is easily seen that all initial conditions are fulfilled virtually exactly. The emergent beam is paralle] to
the axis (its deviation does not exceed 0.05”). The fast convergence of the iterations in finding ¢ and Fy,
is noteworthy. It took eight iterations to calculate ¢ with computer accuracy and seven iterations for Fy,.
The foregoing analytical formulas for initial approximation of ¢ proved to be highly accurate. For instance,
for ¢ = go, the discrepancy |z33 — X3| = 3, while for ¢ = ¢, it decreases to 0.3, which is quite small in
comparison with the base resonator dimension, which is equal to 2450.

12. Summary

We underline the most important points set forth in this work.

1. We considered a class of mirrors (with surfaces formed by rotating second-order curves) which extends
the range of possible beam conversions in optical systems. The formulas used in the calculations are quite
simple.

2. On the basis of this approach, a complete analytical algorithm for calculating the mirror surface
parameters in a HEX-DARR resonator was worked out and presented.

3. To verify the algorithm, a numerical calculation of an optical system was carried out for a specific
initial data set. The results obtained confirm the accuracy of the equations derived and the efficiency of the
algorithm.
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