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Abst rac t  

Within the geometrical optics approximation, we consider a class of mirrors (with surfaces formed by 
rotating second-order curves) which enables an extension of the range of possible beam conversions in 
optical systems. The formulas used in the calculations axe quite simple. Based on this approach, we 
worked out and presented a complete analytical algorithm for calculation of the mirror surface parameters 
in a ~ttEX-DARR ~ resonator. To check the algorithm, a numerical calculation of an optical system is 
carried out for a specific set of initial data. The results obtained confirm the accuracy of the equations 
derived and the efficiency of the algorithm. 

i. Introduction 

The choice of a resonator type is of prime importance in the design of lasers with a ring active medium. 
A description of resonators of several classes applicable in this instauce is available in the li terature (e.g., see 
[1]). The ~HEX-DARR" resonator is one of the most interesting schemes [2]. 

The mirror geometry in this resonator has its own special features. As a rule, mirrors of rather simple 
shapes are used in optics. In optical systems, they are commonly used for collimating convergent/divergent 
beams or for changing the center of curvature without changing its value. This problem is solved using, 
respectively, spherical (parabolic) and plane mirrors. With cylindrical optics, similar problems are tackled 
using mirrors formed by rotating a portion of a circle (parabola) or a straight line. It is a relatively simple 
mat ter  in this case to reconstruct the mirror shape from the ray traces. A wider range of beam conversions 
(such as a convergent-to-convergent beam change with variation of curvature and so forth) and, hence, a 
broader dass of mirrors are used in a HEX-DAKR resonator. 

Accordingly, the p robhm  of determining the mirror shape becomes more complicated. The use of conven- 
tional methods based on the paraxiaJ approach a~d the third-order aberration theory is extremely hampered 
in this case. In the differential t reatment  based on the Linneman technique [3], the differential equation is 
written on the basis of the given beam conversion in reflection by a mirror. Its solution defines a line (as 
a set of points) - the generatrix of the mirror surface. One of the shortcomings of such an approach is the 
awkwardness of the result description. 

Another method - an analytical one - is the subject of this work. Second order curves are used here to 
calculate and to represent the mirror surfaces of the resonator. In this case, every mirror is defined by seven 
parameters in all (five define the shape, and the remaining two, the surface boundaries). We present the 
calculation results and some useful estimates for a variant of the HEX-DAKR resonator with a base length 
of 2.5 m. 

Translated from a manuscript submitted November 29, 1995. 
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Fig. 1. Schematic of HEX-DARR resonator: nozzle unit (NU); axiconea (1-5); plane mirrors (6). 

2. Resonator Ray Tracing 

The mirror surfaces aald the beams themselves are a~dsymmetric in the HEX-DARR resonator. We will 
consider our problem in a section through the axis of symmetry. In what follows, for the sake of simplicity, 
the term "surfax.e" implies a generating surface of the mirror, and "beam," a set of rays in the section plane. 
Note that  in this case the divergent/convergent beam is a beam whose rays intersect at points lying in an 
axisymmetric cixde. 

The ray paths in the HEX-DARR resonator (see Fig. 1) can be described as follows. The beam parallel 
to the symmetry axis is incident on axicone 1. After its reflection, we obtain a divergent/convergent beam. 
Axicone 2 converts it into a divergent beam. After its reflection from a.xicone 3, we obtain a parallel beam at 
almost a right angle to the ~xis. After the second reflection, we have a convergent beam. Between a.xicones 4 
and 5, the beam becomes divergent again. Finally, after reflection from azdcone 5, we obtain a beam parallel 
to the axis. Note that  after the second reflection from axicone 3 the convergence of the pencil of rays is 
approximate in character (although the focal spot size is very small). A similar situation takes place after 
subsequent reflections. 

3. F e a t u r e s  o f  S e c o n d - O r d e r  C u r v e s  

T 

y = 

Inasmuch as second-order curves will be in active use, it is worthwhile to recall some of their features. 
(i) They have equations of the type 

P 
l % e c o s ( ~ o - ~ o 0 )  ' P > 0 '  e > 0 ;  

Xo + r cos to; 

Xo + r s in  ~o; 
(1) 
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where (zo, Yo) are the Cartesian coordinates of the curve focus; 90 is the direction of the major curve 
axis (from the focus to the closest line tip); (r, ~p) are the polar coordinates of a curve point relative to the 
focus. All of the angles are measured counterclockwise from the X axis. The curve type is determined by 
the value of e : 

0 = e ¢=~ a circle; 

0 < e < 1 ¢=~ an ellipse; 

e = 1 ~ a parabola; 

e > 1 ~ a hyperbola (a short-range branch). 

(ii) Upon reflection from the "inside" (as viewed from the focus), a beam diverging from one focus is 
transformed by a parabola into a beam parallel to the major  axis, by an ellipse into a beam converging to 
another focus, and by a hyperbola into a beam diverging from another focus (the angular beam size decreases). 
A beam parallel to the major  axis is converted by a parabola into a beam converging to a focus. 

Upon reflection from the %utside," a beam converging to one focus is transformed by a parabola into a 
bemn parallel to the major  axis, by an ellipse into a beam diverging from another focus, and by a hyperbola 
into a beam converging to another focus (the angular beam size increases). A beam parallel to the major 
axis is converted by a parabola into a beam diverging from a focus. 

Note that,  as shown below, the above-stated property of converting a spherical wave to a spherical or 
plane ones is displayed in reflection only by second-order curves and straight lines. 

(iii) For an ellipse, the sum of distances to the foci is constant: 

rt + r2 = const. 

For a hyperbola, the difference between distances to the loci is constant: 

F 1 - -  F 2 ~ const. 

(iv) The direction of the normal to a parabola ~o. : 

~o. - ~o0 = ~ = ~  9 = 2 ~ .  - 9 o .  

The relationship between the angles for reflection: 

where ~al and ~2 are the angles of inclination of the ray before and after reflection. Consequently, 

= ~1 + ~ 2 + ~ ' -  ~o. 

(v) For a parabola with 9o = O, 

For a parabola with ~o = ~, 

y - y o = p  
sin ~o 

- -  p tan ~o/2 . 
1 + cos 

y - y o = p  
sin ~ p 

m 

1 - cos ~o tan ~0/2 

(2) 

(3) 

(4) 
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Fig. 2. Kay traces for reflection from mirror: "external" reflection (a); "internal" reflection (b). 

4 .  G e n e r a ]  F o r m  o f  a n  A x i c o n e  

We obtain the general form of a curve exhibiting the following property: a beam diverging from one focus 
diverges/converges to another after reflection (see Fig. 2). 

We introduce a system of Cartesian coordinates with its origin in the middle of the segment connecting 
the foal. The X axis is directed from the first focus to the second. We denote the interfocal distance by 
2a  > 0. The direction vector of the beam before reflection is symbolized as 11, after reflection as 12, and 
the normal at the point of incidence as n. 

From the law of reflection 

We require, in addition, that 

Then, expanding vector I~ into vectors 11 

12n = lln. 

1121 = II, r. 
and n, it is readily found that 

12 = l l  + bn, 

where 
2nll 

b--- 
ini2 

Let (z, y) be the coordinates of the incidence point. Then, 

11 -- 

n = 

From obvious geometric considerations, we have 

(z + a, y); 

( d r , - d x ) .  

(x-a,y)=const12--const[(x+a)+bdy, 9-bdx]. 

Eliminating const, we obtain 
(x- a)(~- bdz) = y[(x + a) + bdy]. 
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Substitution of the value of b gives 

dx dy (z 2 - a~ - V') = x~' [ ( ' ~ ) '  - (d~)~]  • 

The equation supports the substitutions 

x - - , - z ;  y - - , - y .  

Therefore, one can introduce the new variables 

X = z u, d X  = 2z  dx; 

Y = lt 2, d Y  = 21t dy. 

With the new variables, the equation takes the form 

d X  d Y  ( X  - Y - aU) = Y ( d X ) '  - X ( d Y )  2 . 

If 

we obtain the obvious solution 

Otherwise, one can introduce 

After this, the equation acquires the form 

Differentiating (5) gives 

d X  = O, 

x = O .  

d Y  y t  ~ , 

d X "  

Y ' ( X -  Y -  a 2) = Y -  X ( Y ' ) ~ .  

Y "  ( X  - Y - a 2 + 2 X Y ' )  = O. 

We have two variants. The first one is: 

Y " = 0  =~ Y = A X + B .  

Substituting into (5), we find the relation between A and B : 

The second variant is: 

Substituting into (5), we obtain 

The only solution to this equation 

has no physical significance. 

B 
A =  

B + a  2" 

X -  Y - a 2 = - 2 X Y ' .  

X (Y ' )2  = - Y  or ( z Y ' ) 2  = - y 2 .  

y = O  

(5) 
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So, the solution sought is given by 

B X  B z  3 
Y =  - - +  B or y~ = - -  + B. 

B + a 2 B + a 2 

It is easily seen that we obtain a formula for a second-order curve written in Cartesian coordinates. 
Pla~ing the coordinate origin at one of the foci and directing the polar axis toward the other, we obtain the 
standard (in polar coordinates) curve form. In so doing, we have two solutions (depending on the sign of 
B ): a hyperbola and an ellipse. In the differential treatment mentioned in the Introduction, these curves 
are solutions of the differential equation for the generating surface of the mirror. 

As the distance to the second focus tends to infinity (the beam is parallel after reflection), we obtain a 
paxabola with passage to the limit. To satisfy the conditions 

p > 0  and e>_0 ,  

is possible for the origin to  be transferred to the other focus and /o r  the direction of  the polar axis be reversed. 
In summary,  an ellipse, a hyperbola,  or a straight line converts a beam diverging from one focus into a 

beam which diverges/converges at the other.  The latter can be considered as the limiting case of a hyperbola 
for 

e - * o o  and p = a e .  

A similar t ransformation into a parallel beam is performed only by a parabola.  

5. Calculat ion of  the  Ax icone  Parameters  

From the above, it is easily comprehended that the axicones of the HEX-DARR resonator must be well 
described in terms of second-order curves. It is an easy matter to obtain the axicone type from the beam 
type (convergent, divergent, parallel) before and after reflection from the mirror: axicones i, 3, and 5 are 
parabolas; axicone 2 is a hyperbola or an ellipse; and axicone 4 is a hyperbola. 

In the course of computations, determined for every mirror axe the locations of two foci for a hyperbola 
and an ellipse, and the location of one focus and the axis direction (i.e., ~0) for a parabola. Additionally, a 
"reference" point on the line (the point of reflection of the first ray) is determined. 

With these data, we next find the parameters p, e, x0, Y0, and ~0 according to the following algorithm. 
We locate the coordinate origin at the focus nearest to the "reference" point. The polar axis connects 

the curve loci (for an ellipse and a hyperbola) or is parallel to the axis (for a parabola). In this manner, we 
calculate the parameters z0, P0 and ~o0. 

Employing the curve properties (see [4]), it is easy to calculate the parameter e : 

F 
F = 2 a e ;  r 2 4 - r l - - 2 a  ==e~ e =  ~ for an ellipse; 

r~ + r l  
e = 1 for a parabola;  

F 
F = 2 a e ;  r 2 + r l = 2 a  ==~ e =  ~ for a h y p e r b o l a ,  

t"2 - -  r l  

where F is the spacing between line foci; 2 a is the spacing between line tips; rl  and r2 are the distances 
from the "reference" point to the near and far foci. 

It is now easy to calculate the parameter  p : 

p = r, - erl cos (~ - ~o). 
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Hence, the parameters of a particular axicone are calculated by simple analytical formulas. 
Resonator ray tracing imposes obvious geometric limitations on the locations of the axicone loci. With 

an appropriately chosen set of initial conditions, the locations of the axicone loci (axes) can be uniquely 
determined and, consequently, the mirror surface shapes can be determined. Tiffs problem will be considered 
in detail. 

6. N o t a t i o n  and Init ial  D a t a  

Let us introduce the coordinate system (X, Y) aligning the X axis with the symmetry axis of the 
resonator from axicone 3 to axicone 1 and directing the Y axis upwards. We shall examine the ray traces 
with the beam passing first through the upper section of the resonator and then through the lower one. We 
introduce the notation: 

F, - -  the common focus of axicones a and (a + 1); 
F.=, Foy - -  the Cartesian coordinates of the focus; 
/ . - i  - -  the intersection point of ray m and axicone a; 
x.,n, it.,. M the Cartesian coordinates of the intersection point; 
r.m, ~o.m - -  the polar coordinates of the intersection point with respect to the a.'dcone focus (for 

parabolic axicones); 
p, - -  the parameter p for axicone a; 
g,m - -  the inclination angle of ray m to the X axis after reflection from axicone a (for parabolic 

axicones). 
We introduce several refinements of the definitions: 
Fs is the "personal" focus of a.xicone 4 (the ray convergence point after the second reflection from 

axicone 3); 
F-3 is the focus of the lower section of axicone 3; 
P-am and g-am describe the rays after reflection from the lower section of axicone 3. 
The traces of only two outer rays (Ylt < yl2) are considered in the calculation. From the resonator ray 

tracing (see Fig. 1) it is clear that 

g22 = ~ + w; 

gal = - - -  - q ;  

2 
g-31 = ~ 

where w, q, and v are small angles. 
Different initial data sets can be adopted. Further, a variant with the following initial conditions will be 

treated: 
RN - -  

RL 

R o  - -  

X t  

x 2  - -  

R24 - -  
( R2 ,  = Y2~ - 

Rst~ 

the radius of the nozzle unit; 
the radial dimension of the oscillation zone; 
the y-range of the input beam; 
the y-range of the output beam; 
the x coordinate of the outer edge of axicone i (Xi = z12); 
the z coordinate of the inner edge of axicone 2 (X2 = z2~); 
the x coordinate of the outer edge of axicone 3 (Xs = Xst); 

the radial clearance between the inner edge of axicone 2 and the outer edge of axicone 4 

[ - u , ~ l  ); 
the radial clearance between the beam and the nozzle unit in passing between axicones 3 and 4; 
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Xsl - -  the z-deaxance between the outer edges of axicones 5 and 1 ( Xsl = z .  - zl2 ); 
X43 - -  the z-deaxance between the outer edge of axicone 4 and the inner edge of axicone 2 

( x,2 = z,1 - ). 
The rays axe paxMlel to the X axis before reflection from axicone 1 and after reflection from axicone 5. 

Ray 1 between axicones 2 and 3 and ray 2 between axicones 3 and 4 axe also paxMlel to the X axis 

Yal = RIv + RL; 

Y-S2 = - - R N  --  RaN. 

The points of intersection of the rays before and after reflection (also for a,xicone 4) axe assumed to be the 
ax.icone rod. In the system presented in Fig. 1, the beam enters the resonator above the axis but emerges 
below it. Consequently, 

Yn -> O; Yt~ > O; 

Yo~ < 0; Yo3 < O. 

7. G e n e r a l  C o m p u t a t i o n  S c h e m e  

The computation algorithm consists of the three main stages: 
(i) Employing a rather good analytical initial approximation (it can be improved by iterations, if necessary) 

of the parameter q, we calculate the parameters of axicone 3. 
(ii) The parameters of axicones 1 and 2 are derived analytically. 
(iii) Solving the cubic equation, we find F4v. This enables us to determine ~ parameters of axicones 4 

and 5. 
In what follows, the stages of the computation scheme will be considered more closely. 

8.  P a r a m e t e r s  o f  A x i c o n e  3 

In this section, formulas describing ray reflection from axicone 3 (see Fig. 3) will be derived. All quantities 
considered axe first expressed in terms of the parameter q. Next, we obtain an equation in q, whic~ can be 
solved by iterations. 

For the upper section of axicone 3 (a parabola), 

P = Ps; 

~ao = - - q; 
2 

Xo = F~; 

= F2v=RN+RL. Y0 

Utilizing formulas (1) it is easy to obtain 

r31 

rs2 

z32 

Yal 

Ys~ 

P3 
= 1 - s i n  q ; 

Ps 
1 - s i n ( q ÷ w )  ' 

= F2= - r s l ;  

= F2z - rs2 COS w ;  

= F2v; 

= F2v - ra2 sin w. 

(6) 
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I (xsl, Ysl) a x i c one  2 . _  
" F,,) 

(x32 x2~, y.)  

. / I 2 axiconc 4 
(x_3~, Y-~ _ ~ :...-'-~ 

(x,l, y,~) 
(x'3" Y'3'Y~cone 3 

Fig.  3. Reflection of rays from axicone 3. 

The  lower section of  aJcicone 3 is symmet r i c  to the upper  one. In a similar  manner ,  wi th  the  add i t iona l  use 
of Eq. (2), i t  is easy to  ob ta in  

P3 
r-sx = 1 - s i n ( 3 q - v )  ; 

P3 
r -s2  = 1 - s i n 3 q  ; 

X-sx = Fu= - r-sx  cos(2q-v); 

x-32 = F 2 = -  r -s2  cos 2q; 

Y-31 = - F 2 y  + r-a1 s i n ( 2 q -  v); 

Y-a2 = -F~v  - r-32 sin 2q. 

Taking into considerat ion the incl inat ion of the  rays  be tween  the two reflections from a.x.icone 3, 

3:_31 ~ 2:31 

Y - 3 1  - Y31 
= cot g3~ - tan q 

and 
2 : - 3 2  - -  2:32 

= cot g32 - tan q. 
Y-s2 - Y32 

It is seen from the ray tracing that for the inner edge of a~xicone 2 

z2~ = F2=-tcosw; 

I122 = F2u-tsinw, 

(7) 

(8) 

(9) 
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while for the outer edge of axicone 4 (in the lower half) 

Z41 ~--- Z_Sl ~- S COS ~; 

Y41 = Y - s t + s s i n v ,  

where s ~nd t are some parameters.  
So, equations for all the quantities of interest have been obtained. 
Let us now take into a~:count the initial data: 

Y-s~ = - R t ~ -  RSN; 

F2v = R N + R L .  

Then, we readily find from (7) that  

P3 = (RL - RsN) 

Furthermore, in view of xst = X3, we have 

1 - sin 3q 

s in 2q 

X3 + p s  
F23 = 

1 - s in  q 

Using Eqs. (8) and (9), expressions for v and w can be obtained: 

v = 2a r c t an  A 2 + D  ' 

w = - q + 2 a r c t a n [  l + c o s q - s i n 3 q - B  J 

where 

At = cos q ( 1 -  sin q) + (1 + sin 3q)(cos q + A); 

A2 = cos 3q(cos q + A) - sin q(1 - sin q); 

As = cos q(sin q -  sin 3q) + A ( 1 -  sin 3q); 

D = A] AtAs  , 

A = 2 F 2 v s i n q ( l _ s i n q ) ;  
P3 

B = 2F~y sin q ( 1 -  sin 3q) . 
P3 

Finally, taking into account the conditions 

Z41--z22  = X42; 

y22-( -Y41)  = R24, 

we get: 

r-31 sin (w + v - 2q) + X42 sin w + R24 cos w 

sin (w + v) 
r-s1 sin 2q + X42 sin r - R24 cos v 

sin (w + v) 
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So, all parameters of axicone 3 axe expressed in terms of q. Its value, in turn, can be obtained from the 
condition 

Z 2 2  - -  X2, 
The magnitude of q will be calculated by iterations, minimizing the error z22 - X2. Naturally, the 

problem arises of how to obtain a sufficiently good initial approximation for this parameter. By virtue of its 
smallness, it would be reasonable to employ an expansion in powers of q. 

Let 
RN + R z  

k =  4q R'Lz-'-R"sN " 

We point out that 
Ru + RL 

;~1 ,  
RL - Rsu 

but k = 0 (1) (moreover, typically k • 1 ). We expand ms2 - X2 with relative accuracy 0 (q2) and in 
doing this retain the terms of the order of 0 (kq). Then, omitting cumbersome intermediate calculations, we 
obtain the relationship 

z22 - X2 = K_....22 + Ks (k ,q )  - KI + q O ( R z  - Raw + qX42 + R24), (10) 
q 

where 

Kt  = X2 - X3 + "~ RL -- R3/v + 2.X42 + R24 + 2(Rlv + RL) 1 - RL - R3NJJ ' 

1 
Ks = .~ ( RL -- R~u + I~24) ; 

4 [(RL-- R3~)(~+ q)- qX., (-2+ ~)- R2. (~-q) 
K3 = 1 - k / 2 + q  

( R,, 
+ ( - k + 2 q ) ( R ~ r + R L )  1 -  R z - R 3 u J J "  

With the provision that x~2 - X2 = 0, relation (10) takes the form 

Ks 
q = Kx - K 3 ( k , q )  + q O ( R L  - R3N + qX42 + R24)  " 

Considering that,  as a rule, K3 << K1 we obtain the initial approximation for q in two stages: 

K2 Rlv + RL 
( i )  q0 = ; k0 = 4q0 ' 

K2 
(ii)  qt = Kt  - K3(ko,  qo) " 

UsuaLly, the initial approximations q0 and qt alone provide a wholly acceptable accura.cy. If necessary, 
q can be additionally refined via iterations by the Newton method, starting from q = q0 or q = ql- In 
so doing, the discrepancy x22 - X2 is calculated from the precise analytical equations listed above. The 
correction for q is found with allowance for the formula 

dq K~ q2 

d X~ (K1 + K3) 2 ~ K~ 

The iterations converge rapidly. 
On obtaining a sufficiently good approximation for q' ,  one should set X2 = x22 (q'). If required, the 

parameters Ytl,  Yl2, Yox, Yo2, X t ,  Xs ,  and Xst, which are as yet unused in calculations, can also be 
modified at this moment. 
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Fig. 4. Reflection of rays from axicone~ 1 and 2. 

9. P a r a m e t e r s  o f  A x i c o n e s  1 a n d  2 

This section is dedicated to the derivation of equations for the parameters describing axicones 1 and 2 (see 
Fig. 4). Note, that z22, Y22, F2=, and F2v were obtained previously in the computation of the parameters of 
aJdcone 3. 

From obvious geometric equations, we have: 

~/22 - -  Y ] 2  
t a n  g t 2  - -  - -  

x 2 2  - X 1  

We introduce the notation: 

AI and A2 are the distances from P21 and P22 to F1; 

Bt and B2 are the distances from P21 and P22 to F2. 

Let the beam converge after reflection from axicone I. Employing Eqs. (3) and (4), it is readily found that 

(Yn - F,,) tan (~-~) = (Yn - Ft,)  tan ( ~ - )  . (11) 

In this case, axicone 2 is an ellipse; therefore, 

A l+B1  = A 2 + B ~ .  

Taking into a~:count that 

.41 - FI~-V~I_ FI,-F2y ; 
s i n  g l l  s in  g t l  
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we obtain the relationship 

As = Fry - y ; 
sin g l3  

F~ - y~ F~ - F~ 
B, = F ~ . - z , ~ -  + 

tan gt~ tan  g H  

B~ = ~ / (F , .  - z~)~  + ( F , ,  - y ~ ) ~ ,  

( ~ )  ( 1 + I q.~2 ) 
1 + 1 - ( F 1 ,  - Y2,)  s in  g , ,  t a n  = B2 - ( F ~ ,  - x 2 2 ) .  ( 1 2 )  (&,  - F~,)  s in g , l  

Equations (11) and (12) can be shown to be fulfilled, too,  when the beam diverges on reflection from axicone 1 
(axicone 2 is a hyperbola) .  

With  the identities 
1 1 

s in  z ta~ z 

B~- ( F 2 = -  z32) = 

Equation (12) can be rearranged to give 

Fxv - F2v Fry - Y22 

tan gt t /2  tan g12/2 

Solving sys tem of equations (11) and (13), we arrive at  

Fly = 

where 

g l l  = 

From obvious geometric  considerations, 

1 
tma z / 2 ;  

(r2y - ~ ) ~  

B2 + ( r2 , ,  - 2:2~) ' 

,+'~ + (Y2= - z22)  " 

Y . C .  + F ' ,vY .  - Y2~Y,2 

Y .  - YI~ + F2, - Y22 + C,, ; 

2 arc tan  (Y+t " - ' ~ 5  tan  g,,/2 
tan (gt:z/2) (F2 ,  - y22) 2 

C U  = 
B~ + (F~,  - z22) 

Ft~ = X 2 +  

yu  = Y~I; 

1/21 = F2v; 

Y,2 = YI2; 

z u  = FI~ + - -  

Xl2 = X 1 . 

The sign of Fly - YI2 specifies the type of axicone 2: 

Fry - Y;2 < 0 ~ a hyperbola;  

Ftu - YI2 > 0 ~ an ellipse; 

F,~ - Yn = 0 

FI~ - Y2~ 
tan g12 

~]ll -- Fly • 

t an  gll  
1/21 - Fly . 

tan  gn  

¢=~ a parabo la  (axicone 1 being a straight  line). 

(13) 

2 9 8  
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R o l .  . ) ,,, 

a x i c o n ~  1 

2 .  

~ ] i ~ ' ~  ~ ~ A~ 
axiconc 4 

Fig. 5. Reflection of rays from axicones 4 and 5. 

10. P a r a m e t e r s  o f  A x i c o n e s  4 a n d  5 

In this section, we obtain expressions for the parameters describing axicones 4 and 5 (see Fig. 5). Note 
that  z41 and Y41 were obtained previously in the calculation of azdcone 3. 

The location of the "personal" focus of azdcone 4: 

rsv = - -RN- -RSN;  

Y41 - Fsy 
rsz = z41 

tan v 

The location of the outer edge of axicone 5: 

We introduce the notation: 

AI 

B1 

xs2 = z l 2  + X51 • 

and A2 are the distances from P41 and P4~ to Fa; 

and B2 are the distances from P41 and P42 to F4. 

Axicone 4 is a hyperbola, hence 

Inasmuch as 

AI 

A2 

A2 - B2 = A1 - B1. 

= k/(=,l - Ft~) 2 + (Y4, - Fs,)  2 ; 

= (Fs. - z41) F4, - r~4______ 1 + F4y - Fsy . 
t an  g41 t an  g42 ' 
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Bt  = F4y-Y41. 
sin 941 

F4~ - Its2 F4,  - F-. v 
B 2 ~ ....... 

s in  942 s in  g42 

then  

( F4u -- Y41) (si:g41 
In  v iew of  t h e  i d e n t i t y  

we obtain: 

w h e r e  

I) (I 1) 
ta~~,, - (F,, - F,,) ~in'g,, ta;,g,, = A, - (F3. - ~,,). 

I I I - cos z z 
- ~ = = t a n  

s in  z t a n  z s in  x 2 ' 

942 941 _ (F4, - F~y) t a n  - ~ -  = A, (F4v - Y,,) t a n  

(F3y - y~1) 2 
A = A, - (F~ - x,,) = A, + (r~ - ~,,)" 

Using Eq. (3) we obtain for axicone 5: 

94~ = (F4y - Yol) t a n  g'' (r,, - Yo2) tan y "T " 

The focus F4 is located at the intersection of rays i and 2. Consequently, 

X 4 1  ~ 2~S2 = 
F4v - Yo2 F4y - ~4, 

t a n  g4m t&n 941 

Equations (14) and (15) axe reahily brought to the form: 

tan 94--.LI = F4~ - Yo2 
2 ' B ; 

942 F4y - Yo: 
t a n  

2 B ' 

where 

B 
(t,v - ~,,)(r. - Yo,) - (F,~ - f.~)(F. - Yo,) 

,4 
F4y(Yol - Yo2 + F3y - ~ i )  - F3yYo, + y41Yo2 

.4 

In  view of  t h e s e  e q u a t i o n s  a n d  t h e  i d e n t i t y  

2 1 

tan z tan z/2 
tan X/2.  

relationship (16) reduces to the cubic equation 

• (F ,v)  = c ,  ( r ,v  - ~o)' + 2 C ,  ( r , ,  - ~o) + C ,  : 0, 

(14)  

(xs) 

(:6) 

(IT) 
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where 

C2 = 

C3 = 

C = 

From obvious considerations, 
Cs < 0 in this interval. 

c,  (F,y) = , %  (2 Yo2 - Yo,  - ~,~) + Yot l/,, - (Yo2)2; 
c~ ( r , , )  = c (=,~ - ~ s , ) ( F , ,  - Yo~)(F, ,  - Yo~); 

C, ( F, ,  ) = C 2 (I/4t - Ym  ) ( F41 - Yo, ) ( F, ,  - Yo2 )2; 
A 

Yol - Yo2 + Fsv - ~1 

Fsv Yol - 1/41Yo2 

Yo t  - Yo~ + F ~  - l/~t 

Fsy < F4y < Yo2. Note that C2 does not change sign, while Ct < 0 and 

By analyzing the change of sign of the polynomial in (17), it can be shown that cubic equation (17) has 
three roots: the first one is on the segment (Fsu, I/0); the second, on the segment (l/0, Yo2); the third, outside 
of the segment (F~u, Yo2). 

From obvious geometric considerations, 

tan g42 F4v - Yo2 = C F4v - Yo2 - - =  > 0 .  
2 B F4v - l/0 

Consequently, F4y ( l/0. 
On this basis, F4y is to be found on the segment (Fsv, l/0). The solution may be sought analytically by 

solving the cubic equation (see [4]) or via iterations. In our work, we used an iteration scheme similar to the 
method of pazabolas. 

As an initial approximaton, l/0 can be taken. For C = 0 (which corresponds to the case of v --* 0 ), 
the last two terms in (17) become zero and the polynomial has two roots equal to l/0. For small C, these 
terms are nonzero but still small when compared with the first term far from l/o. As a result, the equation 
has two roots close to l/0 (on the left and on the right). 

Further we put 

c~ = C~ (l/0); 

c~ = C~(l/0); 

c s  -- Cs(l/0), 

i.e., we approximate the cubic polynomial with a parabola. As a new approximation, we take the lesser root 
of the quadratic equation obtained. We repeat the iterations untU the required accuracy is achieved. In the 
vicinity of V0, the magnitudes of Cl, C2, and Cs vary ever so slowly, which promises fast convergence of 
the iterations. 

After deriving F4y, the v~ue of xs~ should be corrected by setting 

Ct(F4,) (F, ,  -- yo) 2 + C3(F,y) t, 
3 :52 ~--- X 4 1  

2 G ( F , , )  (F , ,  - l/0) (z4, - z52) " 

In fact, this implies a small change in Xsl. 

11.  E x a m p l e  o f  C a l c u l a t i o n  

The algorithm stated above was tested with the following initial data (the dimensions are given in mil- 
limeters): 

R N = 1 5 0 ;  R L = 5 0 ;  
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T A B L E  I.  The Curve Parameters Describing the Surfaces of HEX-DARR Resonator 

Axicone I 

p = 496.785468 789796300 

Zo = 264.465690379485200 

Yo = 712.070453638987100 

e 

~o o = 

~01 ---- 

~02 = 

1.000000000000000 

0 .000000000000000 

4 .360223974078329 

4 .402989418760000 

Axicone 2 

p = 594.641980466858 700 

Xo = 264.465690379485200 

Yo = 712.070453638987100 

e = 

~o ---- 
~p! ---- 

~P2 : 

0 .7671325074045093 

2 .908520220714430 

4 .360223974078329 

4 .402989418760000 

Axicone 3 

p = 4847.326842933073000 

Xo = 2421.581968800840000 

YO = 200.000000000000000 

1.000000 000000000 

1.565817404909536 

3 .140592653589793 

3 .152550497360514 

Axicone 4 

p = 35.219718309796850 

zo = 117.704695820373700 

Yo = 134.095287470663200 

e 

~Po = 

~o I : 

1 .015080232260482 

0 .007184485207313319  

0.901243 4830558003  

1.690558 522 186 128 

A . x ] c o n e  5 

p = 116.826373506591900 

xo = 117.704695820373700 

Yo = 134.095287470663200 

e 

~o = 

~ = 

1.000 000 000 000 000 

3.141592 653 589 793 

4.042 836136 645 593 

4.832151 175 775 922 

Yxl = 1; Y12 = 31; 

Yol = -2.5; Yo2 = -75.5; 

X~ =46; X2=93;  ) (3=-2 ,450;  

R 2 4 = 4 ;  R3N= 1; 

Xst = 2 7 ;  X 4 2 = 2 0 .  

Listed in Tables 1 and 2 ~re the parameters  of the curves describing the axicones of such a resonator  and 

302 



Volume 17, Number 3, 1996 Journal of Russian Laser Research 

TABLE 2. The RAy Trs~es (the Coordinates and the Guide Vectors of Rays) in HEX-DARR Resonstor 

X Y X .  Y. 

-100.00000000 

-I00.00000000 

-I00.00000000 

3.96553055 

25.20922118 

46.00000000 

76.86904038 

84.667939 I0 

93.00000000 

Entrance plane X -- -100  

1.00000000 

16.00000000 

31.00000000 

1.00000000 

1.00000000 

1.000000 00 

Reflection from axicone i 

1.00000000 

16.00000000 

31.00000000 

0.00000000 

0.00000000 

0.00000000 

0.34399195 

0.32505820 

0.305439 13 

Reflection from ~cicone 2 

200.000 000 O0 

188.983 647 61 

177.523 288 24 

Reflection from 
L 

-2450.00000000 200.00000000 

-2473.13449856 176.92601405 

-2497.488 179 10 152.51851842 

Reflection from 

-2451.981 76509 

-2474.887586 92 

-2498.99938658 

-I.00000000 

-0.99998889 

-0.99995342 

axicone 3 

-0.00497890 

-0.004 97890 

-0.00497890 

axScone 3 

0.93897260 

0.94569401 

0.95221160 

0.00000000 

-0.00471401 

-0.00965208 

-0.99998761 

-0.99998761 

-0.99998761 

-198.027 678 38 

-175.173 077 73 

-151.000 000 O0 

0.99995437 

0.999 98806 

1.00000000 

0.00955300 

0.00488750 

0.000000 O0 

Reflection from axicone 4 

113.00000000 -173.52328824 0.11848321 0.99295606 

123.637 29099 -162.47264678 -0.20463742 0.97883785 

131.057 751 62 -151.00000000 -0.61985102 0.78471951 

Reflection from axicone 5 

133.407135 38 

97.85883409 

73.00000001 

I00.000 00000 

I00.00000000 

I00.00000000 

-2.500 000 O0 

-39.167 096 52 

-77.499 999 99 

1.000 000 O0 

1.000 000 O0 

1.000 000 O0 

Outlet plane X = i00 

-2.500 000 O0 

-39.167 096 06 

-77.499 999 99 

1.000 000 O0 

1.000 000 O0 

1.000 000 O0 

0.000 000 O0 

0.000 000 21 

0.000 000 O0 

0.000 000 O0 

0.000 000 21 

0.000 000 O0 
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the ray paths going up in it. (X, Y) define the ray coordinates, and (X~, Y~), the direction cosines of the 
rays. 

It is easily seen that all initial conditions axe fulfilled virtually exa~:tly. The emergent beam is parallel to 
the axis (its deviation does not exceed 0.05"). The fast convergence of the iterations in finding q and F4v 
is noteworthy. It took eight iterations to calculate q with computer accuracy and seven iterations for F4y. 
The foregoing analytical formulas for initial approximation of q proved to be highly accurate. For instance, 
for q = q0, the discrepancy [z22 - X2I ~-- 3, while for q = ql, it decreases to 0.3, which is quite small in 
comparison with the base resonator dimension, which is equal to 2450. 

12. Summary 

We underline the most important points set forth in this work. 
1. We considered a class of mirrors (with surfaces formed by rotating second-order curves) which extends 

the range of possible be-an conversions in optical systems. The formulas used in the calculations are quite 
simple. 

2. On the basis of this approach, a complete analytical algorithm for calculating the mirror surface 
parameters in a HEX-DARR resonator was worked out and presented. 

3. To verify the algorithm, a numerical calculation of an optical system was carried out for a specific 
initial data set. The results obtained confirm the accuracy of the equations derived and the efficiency of the 
algorithm. 
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