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S H O R T  N O T E  

O n  C o n d i t i o n a l  S i m u l a t i o n  to I n a c c u r a t e  D a t a  j 

Dean S. Oliver 2 

INTRODUCTION 

Of the many methods available lbr conditional simulation to exact data, two are 
particularly interesting because of the contrast in approaches. One approach is 
to generate a "rough" field (an unconditional simulation) with the same co- 
variance as the true field, then to subtract a smooth correction that forces the 
simulated field to pass through the data (Journel and Huijbregts, 1978). A second 
approach is to calculate a "'smooth" estimate that passes through the data, then 
use the LU decomposition of the estimation error covariance to add a stochastic 
component to the estimate. It is known that these methods are equivalent (Krza- 
nowski, 1988; Dietrich and Newsam, 1995). 

The first method is used with the method of turning bands and with spectral 
methods because these methods are efficient at generating unconditional simu- 
lations. The second method is less commonly used because it requires a square- 
root decomposition of the estimation error covariance matrix (or operator). If 
the problem of interest is large, then taking this square root can be difficult and, 
because the problem is not stationary after measurements have been introduced, 
it seems unlikely that this method could be used for large problems, although 
Dietrich and Newsam (1995) have pointed out that taking the square root of 
conditional covariance matrices may be done efficiently using Chebychev poly- 
nomial approximations. 

The introduction of errors into the measurements requires a modification 
of even the first method. Clearly, it is not desirable to force the conditional 
simulation to honor inaccurate measurements exactly, but the ideas behind the 
two approaches generally are valid and can be shown to give equivalent results 
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if small modifications are made. I use this equivalence to develop an efficient 
method for calculating a square root decomposit ion of  the estimation error co- 

variance for use in simulation. 

Although the problem of  errors in observations has received little attention 
in the geostatistical literature, Marcotte (1995) recently proposed several ap- 
proaches based on filtering of  data measurement error. 

PRELIMINARIES 

Consider the spatial random field, Z(.r), which is the sum of  a known trend, 
re(x), and a fluctuation, e(x), that is 

Z(x) = m(.r) + ~(x) (1) 

For simplicity, assume that the covariance,  CL-, between e(x) and e(x' ) for two 
points in the domain of  Z, is known and defined by 

Ct:(-r, x ' )  = Ele(x)~(.r' )] (2) 

where the expected value of  the fluctuation, E[e(.r)], is zero everywhere.  

Suppose, also, that N observations of  phenomena that are linearly related 
to Z have been made and that these observations have errors that jointly are 
distributed normally with zero mean and (N × N) covariance matrix, C o, that 
is, the N-dimensional data vector ,  d ''b', is given by 

d ''b' = UZ + e, where e ~ NN(O, C1~) (3) 

If, for example,  the ith observation is a measurement of  the value of  Z at a 
location x,, then 

FiZ = f 6(x - x,.)Z(x) dx = Z(x,) 

where the Dirac delta function, 6(x), is the seen to be the kernel of  the data 
operator for point sampling of  the field. In this simple example,  d'i 'b~ = Z(xi) 
+ e,, but, clearly, other types of  measurements,  such as travel time in crosswell 
seismic tomography, would have different, more complex,  kernels. 

Note that F is a linear operator mapping the model space containing Z 
(infinite dimensional) into the data space containing d °bs (N-dimensional).  The 

transpose of  F maps elements of  the dual of  the data space (N-dimensional) into 
elements of  the dual of  the model space (infinite dimensional).  It also is possible 
to think of  Z as a vector field defined on M grid points, in which instant, Z, m, 
and e are M-dimensional vectors, Ct= is an (M x M) matrix, F is an (N x M) 
matrix, and F r is a standard matrix transpose of  F. See J/irvinen (1976) for a 
lucid description of  the connection between finite and infinite dimensional ma- 
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trices, or Chapter 4 of Lanczos (1961) for a description of the connection be- 
tween differential operators acting on functions, and matrices acting on vectors. 

In much of the following, the explicit dependence of the random variable 
on the spatial coordinate will be suppressed to simplify the presentation. 

SMOOTH PLUS ROUGH 

Using the notation of Equations (1) and (3), the best estimate of Z(x) based 
on the measurements can be written as follows (see Rodgers, 1976; Hachich 
and Vanmarcke, 1983): 

2 = m + CI:-FT(FCLFr+ Ct~)-~(d °b~ - Fro) (4) 

or, more explicitly (see Tarantola, 1987: McLaughlin and Townley, 1996), 

2(x)=,n(x)+lltc~-(x.~)F~(~)d~ 1 

" I.f,, It F(n)C,:(,7. Y)F'(~) @d~ + C,, ' 

• d~'h~- X, F(~),n(~)d~L (5) 

Similarly, the estimation error covariance is 

C~:, = C1: - CI:Fr(FC~.Fr + CI~)~LFCt: (6) 

A conditional simulation can then be generated using the square root of the 
estimation covariance as follows: 

rb'2S (7) Z'" = 2 +  ,_~. 

When Z '~ is a continuous field, S in Equation (7) is a randorn field with a Dirac 
covariance measure. If, however, Z'" is a defined only at M discrete locations, 
then S ~ Np(O, Ip) and ~t:"c'J/2 is a (M x P) matrix of rank P (see Rao, 1965, p. 
440). A square root, CJ/z:.,, of the estimation covariance must satisfy the following 
relationship: 

I/2 I/2 T C,~ = CE [Ct: I (8) 

which, for continuous fields, can be written as 

Ce(x, x' = I ""'" ) t~E-tx, ~ CEll2"~t~, x ' )  d~ (9) 
d D 
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ROUGH PLUS SMOOTH 

Another way to approach the problem is to subtract a relatively smooth 
correction from the unconditional simulation, the advantage over  the previous 
method being the relative simplicity of  generating unconditional simulations. 

Joumel and Huijbregts (1978) discussed this method in detail for the situation 
in which the observations of  a regionalized variable are exact,  that is without 
error. Because the observations were assumed to be exact,  the observed values 

and the simulated values had to be the same at the observation locations. 
When the observations are not exact,  we can only require that the condi- 

tional realizations have the same expectation as Z and that the covariance of  the 

conditional realizations be equal to the estimation covariance of  Z. Conditional 
simulations with these properties can be generated by replacing [Z - 2'] in the 
tk~llowing identity, 

z = 2" + I z  - 21 (10) 

with another random tield isomorphic to [Z - Z]. The unconditional simulation, 

Z""" = m + C), '2S (11) 

clearly has the same mean and covariance as Z. Measurements or observations, 
d "L', of the unconditional realization are generated by adding random errors, E, 

to the exact obse~,ations, FZ ~'~~, that is, 

d .... = FZ ..... + E (12) 

where the errors are drawn from the same distribution as the tree measurement 
e Fro rs ,  

E = C~eSI~ (13) 

and So  is a vector of  N independent random normal deviates. The best estimate 
of Z ~~ based on inaccurate observations of  the unconditional simulation is 

2 "~ = m + CI .FI (FCt ,  F~ + CtD I(d ..... - Fm)  (14) 

Note that Equation (14) is identical to Equation (5) except that simulated data, 
d ~ ' ,  have been used instead of  the actual observations. A formula for the 

conditional simulation of  Z is obtained by substitution of  Equations (11) and 
(14) into Equation (10). 

Z '~ = 2' + [Z ..... - 2'°~~ 1 

= 2 + [C~!2S - C t : F I ( F C I . F I  + CID I( (FZ ..... + E)  - Fm)] 

= 2 + (1CI/21- 01 - CFFI(FCt .  . CL~) [FC~c" Ct~tJ ~_1) S (15) 
St) 
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Z "  is again seen to be the sum of  a smooth,  determinist ic term and a rough, 
stochastic tenn. 

EQUIVALENCE 

Equations (7) and (15) represent two different ways of  generating simula- 
tions of random fields that are conditional to inaccurate data. Clearly,  the ex- 
pectations of  Z' '  from Equations (7) and (15) are identical. To show that the 
two methods are equivalent,  we need to also establish that the covariance of  
realizations generated by the second method is equal to the estimation covariance 
used in the first method. From Equation (15), the covariance of the conditional 
simulation of  Z is 

E{ (Z ' '  - Z ) ( Z ' '  - Z)  -r} = ([C~. >' O] - CI. FTiFC,~F~+ C,~) ~ 

• IFC~ :2 C]j2I) 

E S Sl;I l (lC~. ~- • I [ s , , - l S "  . o, 

- CrF~(FCt:FI + Ct~) [FCt.:- C~;:]) / 

Because S and St~ are independent,  

E S StY] l 

and the covariance of  the conditional simulation is 

c 7  = ([cI_ ~ 2 0 l  - C , : F ' ( F G F  ' + G , )  ' IFC~. ~- C]'ell 

I ~ I'" I 2 ! • (ICI: :'2 01 - Ct:Fr lFCt :Fr+ C1~) ll~Cl: - CI) ]) 

= ([C,~-" 0] - CFF' (FC~ .Fr+  Ct, ) '[FC~. 2 C){2]) 

• - ](FCt. F j + C1~) ~FCI. 

= C~.~2C~. I'2 - CI-F'I(FCt: F T +  G,)  ~ P " ~ - r ' ~ -  

- C~. (2 C~!':Fr(FCLF r + C~) tFC~ 

+ C~Fr(FCt. F t  + CD) I(FCI.:'2. C~-Fr/" r + ~l~r'l'err'e~D, 

• ( F C I . F r +  Ct))-IFC~ 

= Cr: - C ~ F t ( F C ~ F T +  Cl~)IFCt: 
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which is simply the a posteriori covariance that was calculated in the first method. 
Thus, the two methods generate equivalent random fields. 

A N  E X A M P L E  

Consider the simple situation in which the data are point measurements of 
the regionalized variable, and the prior covariance of the value of ~ at two points 
is a function only of the separation. A simple expression for a "square root" 
of the a posteriori  covariance can be obtained from Equation (15). 

- -  p I / 2 /  L(x, x ' )  l Cu2E 0] CI. FT(FCFFT . C*~) -I  [FC~ f2- "-'t) J 

N N 

= C ~ / 2 -  Z C , , . ( x - x 3  ~ (K-  ~,,cL ~.~ - x , )  
i = 1  j = l  

N N 1 

~" Ct:.(x x,) ~ ~K i, ,~1:2 ] - - ~ 'u tv" z~ i~ (17) 
t =  I j =  I / 

where Kii = C / : (x , -  x¢) + Ct),j. For some covariance models, C~: '2 is easy to 
calculate. For example, Oliver (1995) showed that if Ct:-(r) = o 2 exp ( - r / a )  in 
3-D, then C~(2(r) = o / ~  exp( - r / a ) .  

A conditional realization can be generated fairly easily using Equation (15). 
which can be rewritten as follows: 

Z'" (Z Ct:FTK -I 1,2 I/" = - Cr~ SI~) + (Cl:- - CI, F r K  IFCI:"2)S (18) 

The first term on the right side of Equation (18) is the "smooth" part of the 
conditional field. The stochastic component of the first term can be attributed 
to the addition of random errors to the "data" calculated from the unconditional 
simulation. The second term is a nonstationary, weighted moving average pro- 
cess. It can be calculated in the same way as any weighted moving average, 
with the additional complication that the weights are functions of location. 

DISCUSSION 

If S is a vector of independent random normal deviates distributed as N(0, 
IN) and Z = LS, then Z is distributed as N(0, LLr) .  For any desired covariance 
matrix, C = LL T, a square matrix L can be determined numerically using, for 
example, the Cholesky algorithm. Almost no one, however, uses the Cholesky 
method tbr conditional simulation because the cost of factoring a nonstationary 
covariance matrix is prohibitive lot large problems. 

Equations (7) and (t5) are both "'square root" approaches to conditional 
simulation. The advantage of Equation (15) is that it uses the square root of the 
stationary a priori  covariance to generate the square root of the a posteriori  
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covariance. Because it is possible to factor a stationary covariance operator 

analytically tbr most covariance models ,  it is not necessary to perform Cholesky 

decomposi t ion to use Equation (15) |b r  conditional simulation. 

The square root, L, given by Equation (17) is not square; it, however ,  does 

satisfy C = LL r. The disadvantage o f  this is that the L given by Equation (17) 

is slightly larger than necessary,  indicating that we must generate and use a few 

more random deviates than if we used Cholesky decomposi t ion to calculate L 

for simulation. Of  course, if CE is condit ioned poorly, as it will be, for example,  

if a Gaussian covariance model  is used, the optimal decomposi t ion could be 

calculated from a singular value decomposi t ion algorithm, in which instance L 

would be smaller than the Cholesky factors. 

The method described in this paper has two advantages in certain situations. 

The first is that the calculation o f  the square root o f  the conditional covariance 

is nearly trivial, and depends only on the number  of  data, not on the size of  the 

domain or the fineness of  the discretization. The second advantage is that only 

the coefficients of  the inverse of  the kriging matrix need be stored, unlike meth- 

ods that calculate the square root directly. 
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