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Practical  Considerat ions  in the Appl icat ion of  
S imulated Anneal ing  to Stochastic  

S imulat ion ~ 

Clayton V. Deutsch 2 and Perry W. Cockerham 2 

Realizations generated by conditional simulation techniques must honor as much data as possible 
to be reliable numerical models of the attribute under study. The application of optimization methods 
such as simulated annealing to stochastic simulation has the potential to honor more data than 
conventional geostatistical simulation techniques. The essential feature of this approach is the 
formulation of stochastic imaging as an optimization problem with some specified objective function. 
The data to be honored by the stochastic images are coded as components in a global objective 

function. This paper describes the basic algorithm and then addresses a number of practical ques- 
tions: (1) what are the criteria for adding a component to the global objective function ? (2) what 
perturbation mechanism should be employed in the annealing simulation? (3) when should the 
temperature be lowered in the annealing procedure? (4) how are edge/border nodes handled? (5) 
how are local conditioning data handled? and (6) how are multiple components weighted in the 
global objective function ? 

KEY WORDS: conditional simulation, cosimulation, edge effects, objective functions, simulated 
annealing. 

I N T R O D U C T I O N  

In the "anneal ing"  approach to stochastic simulation there is no explicit random 
function model (Haldorsen and Damsleth, 1990). Rather, the creation of  a re- 
alization is formulated as an optimization problem to be solved with a numerical 
optimization technique (seminal references for the application of  these tech- 
niques to spatial problems include Farmer (1992), Geman and Geman (1984), 
Kirkpatrick et al. (1983), and Metropolis et al. (1953)). The first requirement 
of this class of methods is an objective (or energy) function which is some 
measure of difference between the desired spatial characteristics and those of  a 
candidate realization. 

The global optimization technique most often used to obtain such realiza- 
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tions is based on an analogy with the physical process of annealing. Annealing 
is the process by which a material undergoes extended heating and is slowly 
cooled. Thermal vibrations permit a reordering of  the atoms/molecules to a 
highly structured lattice, i.e., a low energy state. In the context of 3-D numerical 
modeling, the annealing process may be simulated through the following steps: 

1. An initial 3-D numerical model (analogous to the initial melt in true 
annealing) is created by assigning a random value at each grid node by 
drawing from the population distributed. Note that this initial spatial 
distribution could be constructed so that it already shares additional 
features of the desired spatial distribution. 

2. An energy function (analogous to the Gibbs free energy in true anneal- 
ing) is defined as a measure of difference between desired spatial fea- 
tures and those of the realization. For example, the energy or objective 
function could be the squared difference between the semi-variogram of  
the realization and a model semi-variogram. 

3. The image is perturbed by swapping pairs or sets of  values taken at 
random locations in the 3-D numerical model (this mimics the thermal 
vibrations in true annealing). 

4. The perturbation (thermal vibration) is accepted if the energy is de- 
creased; it is accepted with a certain probability if the energy is increased 
(the Boltzmann probability distribution of  true annealing). Technically 
the name "simulated annealing" only applies when the acceptance prob- 
ability is based on the Boltzmann distribution (Aarts and Korst, 1989; 
Kirkpatrick et al., 1983). Through common usage, however, the name 
"anneal ing" is used to describe the entire family of methods that are 
based on the principle of  stochastic relaxation. 

5. The perturbation procedure is continued while reducing the probability 
with which unfavorable swaps are accepted (lower the temperature pa- 
rameter of the Boltzman distribution) until a low energy state is achieved. 

Low energy states correspond to plausible 3-D numerical models of the reser- 
voir. 

At first glance this approach appears terribly inefficient; millions of per- 
turbations may be required to obtain an image having the desired spatial struc- 
ture. These methods, however, are more efficient than they might seem as long 
as few arithmetic operations are required to update the objective function after 
a perturbation; virtually all conventional spatial statistics (e.g.,  covariances/ 
correlations) may be updated locally (considering a few locations) after a per- 
turbation rather than globally recalculated (considering all locations). 

The objective function is defined as some measure of difference between a 
set of reference properties and the corresponding properties of a candidate re- 
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alization. The reference properties could consist of any quantified geological, 
statistical, or engineering property. Some examples include two-point transition 
probabilities (Farmer, 1992; Deutsch and Journel, 1991), seismic data (Doyen, 
1988), multiple-point statistics (Deutsch, 1992a), and well test-derived effective 
properties (Deutsch, 1992b). Traditional two-point semi-variogram/covariance 
functions and correlation coefficients with secondary attributes will be consid- 
ered in this paper. The real advantage of  annealing, however, is the ability to 
integrate many disparate sources of  data. 

The public domain sasim source code documented in (Deutsch and Journel, 
1992) was taken and modified for the examples presented below. 

FAST UPDATING 

Annealing techniques rely on many perturbations to achieve a final ac- 
ceptable realization. This implies that each component of  the objective function 
must be reasonably simple for fast updating after each perturbation. Also, there 
should not be too many components nor conflicting components. 

For example, consider the semi-variogram at a specific lag h: 

1 Nm~ 

3'(h) - ~ [z(u) - z(u + h)] 2 (I) 
2N(h) i= 1 

The number of pairs N(h) contributing to that semi-variogram value depends 
on the size of the grid and the separation vector h. In the case of a unit vector 
h in the x-direction of  a square ltr = 200 by ny = 200 grid, a global calculation 
of 3'(h) would require an evaluation of N(h) = (nx - 1) • ny = 39800 pairs 
of values when only two pairs in 3,(h) must be updated. This is illustrated on 
Fig. 1 with a small 5 by 5 grid: regardless of how large the grid is, the updating 
of 3'(h) for a specific lag requires an updating of only two of the pairs that 
contribute to that lag. 

Small  Grid 
0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

] ~ Separation vector" 

• Perturbed g[id node location 

0 Unchanged grid node location 

Fig. l. An example of the two pairs that require updating after perturbing a grid 
node location. Only the two lags (+h and -h) require updating regardless of how 
large the grid network. 
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When the value of one node location z(u) is perturbed to z' (u) the semi- 
variogram is updated to %~w(h) from %~a(h) by: 

%ew(h) = 7old(h) -- [Z(U) -- Z(U + h)] 2 - [z(u - h) - z(u)] 2 

+ [z '(u) - z(u + h)] 2 + [z(u - h) - z ' (u)]  2 (2) 

Even when the objective function is updated efficiently the large number 
of  perturbations required by annealing techniques c a n  consume a vast amount 
of  CPU time. Therefore, it is desirable to restrict the number and complexity 
of components entering the objective function. This may, however, be contrary 
to the goal of  integrating a maximum amount of prior data. A slow technique 
is preferred if it accounts for more prior information. Given the exponential 
increase in computer speed over the past few years and projected future increases 
there is no reason to limit the development of annealing programs to overly 
simplistic objective functions. 

P E R T U R B A T I O N  M E C H A N I S M  

The annealing algorithm calls for the image to be perturbed in a way that 
simulates thermal agitation. Swapping the values of  two randomly chosen nodal 
locations is the perturbation mechanism presently most commonly used in geo- 
statistical applications (Deutsch, 1992a; Farmer, 1992). A number of other 
perturbation mechanisms have been considered such as swapping sets of values 
or changing any single grid node value according to some local probability 
distribution function. 

The following perturbation mechanisms did n o t  lead to an improvement 
over the standard approach: 

1. Randomly select a node and consider replacing its value with a random 
selection from the global histogram. There is no direct control on the 
histogram of  the final realization and no speed or convergence advan- 
tages were obtained. 

2. During real annealing, the entire alloy is at the same temperature and 
thermal agitations occur simultaneously throughout the alloy. In simu- 
lated annealing, however, we can process only one agitation/perturba- 
tion at a time. By choosing both nodal locations at random, some areas 
could remain unchanged longer than other areas. To ensure that all 
nodes are visited more or less regularly we could select the first node 
in the pair to be swapped according to a random path that sequentially 
visits each node once. A new random path would then be established 
after visiting all the nodes at least once. The authors have not found 
any speed or convergence advantages. 
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The recommended perturbation mechanism is to swap values at two randomly 
selected grid node locations (conditioning data are not selected, see later sec- 
tion). 

A N N E A L I N G  S C H E D U L E  

Another practical concern when applying simulated annealing is "when  do 
we change the temperature?" The t iming and magnitude of the temperature 
reductions are jointly known as the annealing schedule. The following empirical 
annealing schedule has been used by others (Farmer, 1992; Press et al. ,  1986) 
and the authors with success. 

The initial objective function is rescaled to 1.0 so that a dimensionless 
annealing schedule can be used. The total number  of nodes (n,,~e~) is used in 
the following definitions to keep them independent of  the grid size. The concept 
is to start with an initial high temperature to and lower it by some multiplicative 
factor h whenever enough perturbations have been accepted (Kuccept " nn,~es) or 
tOO many have been tried (K,,,,,x • nn,,a~). The algorithm is stopped when efforts 
to lower the objective function become sufficiently discouraging, i.e., when 
Kin, ~ has reached a certain number  (S) or the objective function has reached a 
low value Omm. Table 1 gives parameters for typical annealing schedules. 

C O R R E C T I N G  E D G E  E F F E C T S  

Figure 2 illustrates typical artifacts that can be generated by annealing- 
based simulation approaches. These edge effects are particularly noticeable when 
using a fast annealing schedule or when the univariate distribution is skewed: 
the univariate distribution for the realization shown on Fig. 2 is lognormal with 
mean 10 and a high coefficient of  variation of 1.5. 

Extreme values are pushed to the edges because, in the standard way of 
computing semi-variograms, they contribute only once to the semi-variogram 
calculation, as opposed to a value in the center of  the grid which enters the 
semi-variogram calculation twice, 

[z(u) - z(u + h)] 2 + [z(u) - z(u - h)] 2 (3) 

Table I. Recommended Dimensionless Annealing Schedules 

Schedule t~ h K, .... K;,~¢¢I. S O, .... 

Quench 0.0 0.0 -- -- -- 0.001 
Very fast 0.5 0.0t 10 2 3 0.001 
Fast 1.0 0.05 50 5 3 0.00 l 
Default 1.0 0.10 100 10 3 0.001 
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Fig. 2. A realization of a Iognormal field (mean = 10, standard deviation = 15) generated 
with no allowance for weighting the semi-variogram pairs near the border. The 2-D re- 
alization is 100 grid units on each side. The isotropic semi-variogram reproduction is 
shown on the right. 

Thus, the objective function is lowered by swapping any extreme value from 
the center of  the grid to the borders of  the grid. Edge effects in one form or 
another are also encountered in the physical process o f  annealing. 

An obvious fix is to " w r a p "  the grid so that a vector  that leaves the grid 
on one side enters on the other. This is done routinely in geophysics and image 
processing. The problem, however ,  is that the spatial distribution becomes cor- 
related across the edges making it more difficult to model border trend effects. 
Another way of  correcting this problem is to increase the weight on the pairs 
where the corresponding - h  or  + h vector is not in the grid. 

The semi-variogram for a specific lag is weighted as follows: 

wi • [Z(U~) - z (u i  + ht)] 2 
3'(h/) = i= I (4) 

n l  

2 "  ~ ] w  i 
i = 1  

where both z (u  i) and z ( u  i + hi) are in the grid, w i is 1.0 if z(ui - h i) is in the 
grid, and wi is some user specified weight greater than 1.0 if  z(u~ - ht) is 
outside the grid. Intuitively, this weight should be 2.0, however ,  we found a 
value of  wi = 4.0 to be more efficient. The higher value of  w~ accounts for the 
effect of  comer  regions where values enter the objective function less than half  
o f  the time; for a vector at 45 ° there are no pairs to weight.  

A realization with this border weighting is shown on Fig. 3. Note that the 
semi-variogram is no longer reproduced exactly because pairs are weighted 

differently in the simulation and in the semi-variogram calculation. 
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Fig. 3. A realization generated under the same conditions as those shown on Fig. 2 except 
the border pairs have been weighted. The semi-variogram reproduction is shown on the 
right, The reproduction is not exact since the border pairs were weighted during the 
simulation but not weighted when the experimental semi-variogram was calculated. 

C O N D I T I O N I N G  T O  L O C A L  D A T A  

One simple way to honor local data in the simulated realizations is to never 
perturb them. This scheme often produces discontinuities next to the condition- 
ing data. This occurs because the condit ioning data do not contribute equally to 
the global objective function since they have no opportunity to be perturbed. 

One proposed correction (Deutsch and Joumel,  1991, 1992) is to split the 
objective function into two parts: 

O = f i  {[%.(hD - 3'm,,d~l(hD] ~" + [3%(ht) - 3'model(hD] 2} (5) 
I = |  

where n / i s  the number  of  lags in the objective function, ")'mod~l (ht) is the model 
semi-variogram, and ~/$(h/) and ",fc(ht) are the semi-variograms of  the realiza- 
tion. The subscript s denotes pairs of  data where each endpoint is a simulated 
node and the c subscript indicates pairs where at least one endpoint is a con- 
ditioning data. 

This approach unduly constrains the outcomes near the condit ioning data. 
A more satisfactory approach is to maintain a one-part objective function: 

O = f i  h ' (h t )  - ~'model(h/)] 2 (6) 
I = 1  

where the pairs contributing to the semi-variogram value 3'(ht) are weighted 
according to whether or not condit ioning data are included in the pair, similar 
to Eq. (4). In this case, w i = 1.0 if both z(u~) and z ( u  i + ht) are simulated 
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nodes and wi > 1 if either z(ui) or z(ui + ht) are conditioning data. Testing 
to date has shown that no apparent discontinuities are generated with wi = 15 
for pairs that include conditioning data. 

An example is shown on Fig. 4. The top illustration shows two strings of  
conditioning data; the gray is sandstone and the black is shale. The middle 
illustration shows a stochastic realization generated by straight annealing (with- 
out a two-part objective function). Note the discontinuities next to the data 
locations. The bottom illustration shows a stochastic realization generated where 
the pairs involving a conditioning datum have been weighted by w~ = 15.0. 

W E I G H T I N G  C O M P O N E N T  OBJECTIVE FUNCTIONS 

In general, the objective function O is made up of the weighted sum of C 
components: 

C 

0 = ~ w,:.O,. (7) 
C = I  

where w,. and Oc are the weights and component objective functions, respec- 
tively. The component objective functions measure how certain features of the 
simulated image differ from the desired control or reference properties: For 
example, one component could be a measure of  difference between a semi- 
variogram model and the semi-variogram of  the realization, a second component 
could measure reproduction of  a specific short scale spatial pattern quantified 
by a particular four-point (quadrivariate) statistic, while a third component could 
measure the fidelity to a secondary attribute through reproduction of a correlation 
coefficient. 

Each component objective function 0 c could be expressed in widely dif- 
ferent units of  measurement. For example, a component measuring semi- 
variogram departure may be in units of  variance squared ( >  1000), while a 
component measuring the reproduction of  a correlation coefficient may be quite 
small (<0 .5 ) .  Weighting components equally causes the component with the 
largest magnitude to dominate the global objective function. 

The weights w c allow equalizing the contributions of each component in 
the global objective function. All decisions of whether to accept or reject a 
pe~urbation are based on the change to the objective function, 

AO = One w - Oold, with 

C C 

zxo = Z w,.[o .... - o ~ , j  = ~ w~/,o,. (8) 
c = l  c = l  

The weights w o c = 1 . . . . .  C are established so that, on average, each 
component contributes equally to the change in the objective function AO. That 
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Fig. 4. The top illustration shows two.strings of conditioning 
data; the gray represents sandstone and the black represents 
shale. The middle illustration shows a stochastic realization 
generated by straight annealing (the conditioning data are 
simply not perturbed). Note the discontinuities next to the 
well locations. The bottom illustration shows a stochastic 
realization generated where the pairs involving a conditioning 
datum have been weighted by 15. 

is, each weight w,. is made inversely proportional to the average change in 
absolute value of  its component objective function: 

1 
c = 1 . . . . .  C (9) w c -  lao, l' 

In practice, the average change of  each component l,'xO,.I may not be 
computed analytically; it can, however, be numerically approximated by eval- 
uating the average change due to a certain number M (say 1000) of  independent 
perturbations: 

M 
1 

lao,.I = ~,,,Zo, Io' , :  °'  - o , .1 ,  c = 1 . . . . .  c ( ~ o )  

where IAO,.[ is the average change for component c, 0~,~ "~ is the perturbed 
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objective value, and 0,. is the initial objective value. Each of  the M perturbations 
m = 1 . . . . .  M arises from the perturbation mechanism that will be employed 
for the annealing simulation. 

The overall objective function is finally written as, 
C 

1 
0 = 0 ~°--5 ,.=l~ w< • 0,. (11) 

The objective function O is normalized by its initial value, O ~°~, so that it always 
starts at 1.0 and a dimensionless annealing schedule may be used (see earlier 
section). 

In addition to weighting each component on the basis of its average change 
(IAO,,[) one could also consider the relative importance of each component. For 
example, it may be more desirable to have a good semi-variogram match than 
to reproduce partial quadrivariate information obtained from a questionable train- 
ing image. Unequal weighting is particularly useful in cases where the objective 
function cannot be lowered close to zero, e.g., due to conflicting components. 

Another question is whether the components should receive the same weight 
for the entire duration of the optimization procedure. At the beginning, coarse 
features could be established, e.g., by preferentially weighting large-scale two- 
point statistics, then, toward the end, small-scale multiple-point statistics could 
be given more weight to establish the small scale details. 

Numerical precision problems should be avoided. Each component objec- 
tive function O,. and statistic entering the objective function (e.g., 3' (hD) must 
be stored with enough precision so that round off errors do not accumulate with 
incremental changes. The authors have found that double precision is necessary 
(only for updating the statistics, not for the grid of values) on most machines 
when simulating grid networks with more than one million grid nodes. 

As an example of annealing with a two component objective function, 
consider the case where a secondary variable is available. The secondary vari- 
able could be geophysical measurements that are correlated with the attribute 
being mapped. Any good conditional simulation technique must integrate all 
relevant information. Integrating information from a secondary attribute is pos- 
sible in an interpolation mode with cokriging approaches (Doyen, 1988; Zhu, 
t991) or some type of trend model (Marechal, 1984); it is also possible to 
perform such integration with annealing in a stochastic simulation mode. 

An essential piece of information needed to account for a Y-secondary 
attribute is a measure of correlation between the Z-primary and Y-secondary 
attribute. When the Z-Ypoint to point correlation is very good, stochastic images 
of the primary Z-attribute will resemble the map of the secondary attribute 
rescaled to the Z-units. 

In many cases, the Z-Y relationship is summarized by the linear correlation 
coefficient: 
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Coy (Z, Y) 
p - (12) 

a z • o v 

This correlation coefficient could then be considered as a component in the 
objective function of  an annealing simulation, i.e., 

Oc = [ Pc~lib,~tio, -- P,~,iz,tion] 2 (13) 

Recall that the key criterion for a quantity to enter the objective function 
is that it must be locally updateable. The correlation coefficient meets this cri- 
teflon. Consider the following computational formula, 

e { z .  Y} - e{z}. e{v}  
(14) 

P = 4 ( E { Z .  Z}  - E{Z} • E{Z}) • (E{Y-  Y} - E { Y }  • E{Y}) 

where the expected values are replaced by discrete summations over the N 
locations in the area of  interest, e.g., E { Z  • Y}  is evaluated by ( (1/N) EN=, 

zi • Yi). 
The correlation coefficient of  the N simulated nodes, Orealization, is locally 

updateable by updating each of the five summations involved in Eq. (14). Given 
a change from z °i~ to z~ ~'* the ( l / N )  Y:/U= I zi " Yi summation is updated as 
follows: 

~ zi Yi Z zi Y i j  [(z:?ld ,,ew . . . . .  '..i ) " Y i ]  (15) 
i = 1  i = 1  

The other four summations are similarly updated. Moreover, if the annealing 
perturbation mechanism is swapping, only the first term (~,N= t Z, " y~) needs to 
be updated. The measured y-values (conditioning data) never change and, in the 
case of swapping, the univariate distribution of the z-values does not change. 

Public domain data published with the GSLIB software (Deutsch and Jour- 
nel, 1992) have been used below to demonstrate the implementation of such a 
two-component objective function. There are 29 data informing a 2-D square 
area and 50 by 50 (2500) secondary data over the same area (Fig. 5). The actual 
underlying distribution of  the primary variable is shown on Fig. 6; this is used 
to check the simulation results. The scatterplot of  the 29 collocated primary and 
secondary data are shown on Fig. 8. The corresponding linear correlation coef- 
ficient (Ocalibration) is 0.493. The sample normal scores semi-variogram and its 
model are shown on Fig. 9. 

The conditional simulation exercise is to generate realizations of the pri- 
mary Z-variable that honor locally the 29 primary data and the previous corre- 
lation coefficient. The stochastic realizations should also honor the Z-sample 
histogram and semi-variogram model. Conventional simulation without account- 
ing for the Z - Y  correlation would yield realizations like the two shown on Fig. 
10. 
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Location Map of Sample Data Secondary A t t r i b u t e  
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Fig. 5. A map of the 29 primary data locations (left side) and a gray scalc map of the 2500 
secondary data values. 
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Fig. 6. A gray scale map of the truth. 
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The sasim program was set up to simulate the prima D, attribute with the 
objective function: 

N 

O = k i ~ ['yn,,~aei(ht) - 2tr~jizali.n(hi)] 2 + ~-'[Pc~,tibr~ti,~n -- P~,tiza.,~n]-' (16)  
i = l  

The N = 40 separation vectors h, are defined by the most compact  arrangement 

of  40 tags (see Fig. 7). The P~,lib~,t~,,, = 0.493 is taken from the calibration 
scatterplot shown on Fig. 8. The weights were established on the basis of  the 
average changes of  each component  objective function. For the semi-variogram 

the weight k, = 24.6 was based on an average change of  IAO,[ = 0.0407; for 

the correlation coefficient the weight k z = 2481.4 was based on an average 

change of  ]AO2] = 0.000403. 
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Fig. 7. A polar plot of the lag vectors entering the annealing ol~iective 
function. 

r ~"kl,~N'* I" 
l l ' l~P p I~ I 

Fig. 8. A scatterplot of the 29 collocated pri- 
mary and secondary data values• 
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Two realizations were generated with the objective function (16). Both 
component objective functions reach zero at the end of  the annealing procedure. 
A useful diagnostic plot is the component objective functions versus the number 
of attempted swaps (analogous to time). Such a plot for the first realization is 
shown on Fig. 1 I. The component objective functions associated to the semi- 
variogram and correlation coefficient start at about 0.7 and 0.3 respectively (due 
to the scaling). The vertical dashed lines are times at which the temperature is 
lowered. After about 90,000 swaps both component objective functions reach 
0.0. 

Figure 12 shows two corresponding simulated realizations. These realiza- 
tions appear as plausible images of  the Z-variable; they are closer to the truth 
(Fig. 6) than the realizations which did not consider the secondary variable (Fig. 
10). These realizations correctly reflect the ring of  high values at the top right. 
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Fig. 9. The normal scores semi-';cariogram provided with 
the primary variable (Deutsch and Joumel, 1992). 

Annealing Realization 

Fig. 10. Two realizations conditional to the primary data only• 
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Fig. I I .  The component objective functions associated to the semi-variogram (starling 
at 0.7) and the correlation coefficient (starting at 0,3)• The vertical dashed lines denote 
temperature changes. 



Stochastic Simulation 81 

Fig. 12. Two realizations conditional to the primary data and the correlation with 
the secondary data. 

The annealing algorithm can integrate many disparate data as long as these 
data can be quantified to enter a global objective function. Two-point transition 
probabilities (Farmer, 1992; Deutsch and Journel, 1991), seismic data (Doyen 
and Guidish, 1990), multiple-point statistics (Deutsch, 1992a), and well test- 
derived effective properties (Deutsch, 1992b), could be considered as compo- 

number of  practical problems have been addressed in this paper: 

• The statistics included in the objective function should be locally up- 
dateable at each step of  the perturbation mechanism. 

• The perturbation mechanism should be as random as possible. We rec- 
ommend swapping the values in two randomly selected grid node loca- 
tions. 

• Pair contributions must be weighted near the borders of the grid. This 
avoids artifact edge effects where extreme values occur more frequently 
near the edges of the grid. 

• Pair contributions where one endpoint is a conditioning datum must also 
be weighted to ensure that there are no artifact discontinuities near the 
conditioning data. 

• Each component in the objective function must be weighted to allow 
them an equal opportunity to be reduced to zero in the annealing. 

This paper has documented some of the important tradecraft issues essential for 
the successful application of  annealing. Although annealing requires some trial- 
and-error to fine tune the objective function and annealing schedule, it offers 
unique flexibility in integrating data; a feature not easily achieved with more 
traditional algorithms. 

REMARKS AND CONCLUSIONS 

nents. 
A 
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A C K N O W L E D G M E N T S  

T h e  a u t h o r s  w o u l d  l ike to t h a n k  t h e  m a n a g e m e n t  o f  E x x o n  P r o d u c t i o n  

R e s e a r c h  C o m p a n y  for  p e r m i s s i o n  to p u b l i s h  th i s  p a p e r  and  M a r s h a l l  Gran t  for  

h is  h e l p f u l  c o m m e n t s .  
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