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Teacher's Aide 

The Variogram Sill and the Sample Variance ~ 

Randal J. Barnes 2 

The relationship between the sill o f  the variogram and the sample variance is explored. The com- 
mon practice of  using the sample variance as an estimate of the variogram sill is questioned, and 
a conceptual framework for determining the appropriateness of this heuristic is constructed. 
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T H E  V A R I O G R A M  S I L L  

The variogram is commonly  defined to be the expected value of  a difference 
squared (e.g. ,  Isaaks and Srivastava, 1989, p. 222): 

23,(h) = E{[Z(x)  - Z(x + h)] 2} (1) 

If  the separation vector h is so large that Z(x)  and Z(x  + h) are uncorrelated 
(i .e. ,  h > range), nothing more than algebra is required to show that the height 
of  the variogram, ,y (h), equals the population variance. That is, the sill of  the 
underlying variogram equals the variance of  the underlying population. (This 
statement assumes that the random field model has certain nice proper t ies--e .g . ,  
a finite population variance, and a variogram with a finite range.) 

Starting with Eq. (1), then adding and subtracting the population mean 
within the inside brackets yields 

27(h)  = E{[Z(x)  - ~ - Z(x + h) + /z] 2} 

Next,  expanding the square produces 

= E{[Z(x)  - /z] 2 - 2[Z(x)  - /xl[Z(x + h) - /~] + [Z(x + h) - /~]2} 
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Breaking the expected value into three pieces allows for a significant simplifi- 
cation: 

= E{[Z(x) - /zl 2} - 2E{[Z(x) - #][Z(x + h) - ~1} 
+ E{Z(x + h) - #]2} 

Finally, recognizing that the first term is the population variance, the second 
term is twice the spatial covariance, and the third term is again the population 
variance, yields 

= o z - 2 coy [Z(h), Z(x + h)] + o 2 

If h is larger than the range of the variogram, values separated by a distance h 
are uncorrelated and the spatial covariance "cov  [Z(h), Z(x + h)]'" is equal to 
zero. Thus, the sill of the underlying variogram equals the true population 
variance: 

3'(hlh > range) = 02 (2) 

E S T I M A T I N G  T H E  V A R I O G R A M  SILL 

When dealing with real data, the underlying variogram and the true pop- 
ulation variance are not known. As such, the result presented in Eq. (2) is true, 
but it is not always useful. Unfortunately, confusion abounds throughout the 
practicing geostatistical community concerning this distinction. 

In the past, authors of geostatistics books and papers have suggested the 
following line of reasoning: the sample variance S 2 is a well-known estimator 
for the population variance; therefore, it seems reasonable to use the sample 
variance to estimate the variogram sill. For example, Joumel and Huijbregts 
(1978, p. 231) state: " . . .  The experimental dispersion variance 

N 
$2 1 Z (z(xi)  - z) 2 

N i = l  

can sometimes be used in fitting the sill . . . .  " .  
David (1977, p. 122) is more specific in his statement 

The sill of the variogram is equal to the variance of the samples in the deposit, which 
can be computed from the samples. 

Often, in the technical literature and in practice, a horizontal line is drawn 
on the experimental variogram plot at the value of  the sample variance. The 
modeled variogram sill is then forced to be equal to this value. Sometimes this 
approach is a valid and useful modeling heuristic; however, as presented in the 
next section of this paper, often, it is absolutely improper and will lead to im- 
proper variogram models. The final section of this paper discusses when it is 
safe to use this heuristic and when it must be avoided. 
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T H E  SAMPLE VARIANCE 

For this discussion, assume that there are " N "  available data sample val- 
ues at locations 

{xi:i  = 1 ,2  . . . . .  N} 

Let the set of available data values be given by 

{Z(xi): i = 1, 2 . . . . .  N} 

or for notational brevity, 

{Zi: i = 1, 2 . . . . .  N}  

The classical arithmetic mean and variance of N values are given in most intro- 
ductory statistics text (e.g., Benjamin and Cornell, 1970, p. 9-11) 

N 

1 ~ Z i  

and 
N 1 

S ~ = ~ ~=, (Zi - M)  2 (3) 

Now, consider the average value of the variogram between all N 2 pairs of 
available sample data (N data values will generate N 2 pairs when a value can 
be paired with itself). Notationally, call this value I'N. That is, 

N N 

~3 ~ "/(xi, xj) (4) I~N = ~ 2 i= j = l  

An equivalence between Eq. (3) and Eq. (4) will be developed in the following 
paragraphs. 

Substituting in the definition of the variogram, Eq. (1), into Eq. (4) yields 

N N 
l Z 

F N -  2N2i= j=t  

Adding and subtracting the sample arithmetic average within the inner paren- 
theses gives 

N N 

1 ~ ~ E{[(Zi - M)  - ( Z j  - M)] 2} 
- 2N 2 = j = 1 

Expanding the square within the braces { }, results in 

N N 

1 ~ j ~  E { ( Z  i M)  2 2(Zi M)(Zj  M)  + (Zj - M) 2} 
2N 2 i= i = 
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Since the expected value of a sum equals the sum of the component expected 
values, this can be rewritten with the expectation operator outside of the sum- 
mation 

= E Z N [(Zi - M)  2 - 2(Zi - M)(Z j  - M)  + (Zj - M):]I 
i = l j = l  

Breaking the sum inside the large brackets into three component sums allows 
for significant simplification 

[ ~ N  2 N N 1 ~ ~ = E ~ ~] (Z; - M) 2 (Z~ - M)(Zj - M) 
i = l j = l  - -  - ~  i = l  j = l  

1 N N ] 

These three components will now be considered individually and in turn. The 
first component is 

N N 

1 , Z  I ~ ( Z i -  M) 2 
"~;v,.,,2 .= j= t 

The terms within the parentheses are not functions o f j  and may thus be factored 
out of the summation over j ,  leaving 

N N 

1 ~', (Z i -  M) 2 Y'~ 1 
2N 2 i= ~ j = 

Since the sum o f "  1" over j  varying from 1 to N equals N, the first component 
of Eq. (5) is reduced to the simple expression 

N 

Z (Z i - M )  2 
2N ;=l 

The second component is 

N N 
1 

N --5i=~ ~ j~= ( Z i -  M ) ( Z j -  M)  

As before, (Zi - M )  is not a function o f j  and may thus be factored out of the 
summation over j ;  this yields 

N N 
1 

N--i_ ~ ( Z / -  M) ~ ( Z j -  M) 
"= j = l  

(6) 
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Interestingly, the right-hand summation in Eq. (6) is equal to zero. This fact is 
demonstrated as follows. 

N N N 

~] ( Z j - M )  = }-] Z j -  Z M 
j = ]  j = l  j = l  

N N N 

= Z Z j -  M Z 1 = ~] Zj - M N  
j = l  j = l  j = l  

N N 

= Z g - Z g = 0  
, =  j = t  j ! 

Thus, the contribution of the entire second component of Eq. (5) is zero. 
The third component is identical to the first (if the order of summation is 

exchanged). Therefore, Eq. (5) simplifies to 

I"  N = E Ni=, 

Comparing Eq. (7) to the formula for the sample variance, Eq. (3), one can see 
that the arithmetic average of the variogram between all N 2 pairs of available 
sample values equals the expected value of the sample variance. 

CONCLUSIONS AND CONSEQUENCES 

The summary of the preceding lengthy derivation is short. Under fairly 
general conditions 

N N 
1 

E[S2] = FN - N z i=~l j~l= y(xi, xj) (8) 

In a geostatistical setting, the expected value of the sample variance is a func- 
tion of the geographic data configuration and the entire variogram, not just the 
sill of the variogram. This is not a new result (e.g., Journel and Huijbregts, 
1978, p. 63-68), but its consequences are often ignored. 

There are a number of potential uses for the relationship of Eq. (8). For 
example, FN and S 2 can be compared to test the validity of a conjectured ex- 
perimental variogram model: ifFN and S 2 differ greatly, the experimental model 
is suspect. The specific definition of large difference is outside the scope of this 
paper; and further, the fundamental understanding to be gleaned from Eq. (8) 
is more important than merely another geostatistical hypothesis-testing result of 
questionable power. 

Equation (8) states that the expected value of the sample variance is equal 
to the average value of the variogram between all N z pairs of sample values. If 
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the N sample values are evenly distributed over an areal extent many times 
larger than the range of the variogram, then there will be significantly more 
pairs at long separation distances and fewer pairs at short separation distances. 
Thus, the average value of the variogram between all pairs, r N, will be the 
average of many values equal to the sill and a few values less than the sill. In 
this case, the sample variance is a reasonable first estimate for the variogram 
sill. This partially justifies Journel and Huijbregts' (1978, p. 231) statement 
that s 2 "can sometimes be used in fitting the sill.'" 

On the other hand, if most of the N sample values are collected from an 
area with dimensions equal to or less than the variogram range, r N will be the 
average of many values less than the sill and a few values equal to the sill. In 
this case, the sample variance is no t  a reasonable first estimate for the variogram 
sill. In this case, the sample variance will, on the average, significantly under- 
estimate the variogram sill. This refutes David's (1977, p. 122) statement that 
"the sill of  the variogram is equal to the variance of the samples." 

At the other extreme, if the sample values incorporate an otherwise insig- 
nificant low-scale trend and the samples are taken over a large area, then despite 
an apparent graphical emergence of a variogram sill, the sample variance will, 
on the average, significantly overestimate this apparent sill. 

Specifically, when is the sample variance a reasonable first estimate for 
the variogram sill, as suggested by David and Journel and Huijbregts? A rule- 
of-thumb is that the data must be somewhat evenly distributed over an area with 
dimensions greater than three times the range of the variogram. However, the 
conscientious geostatistician must consider the concept presented in Eq. (8) and 
its relationship with the specific data at hand (as discussed above). 

In general, if a sill is clearly presented by the experimental variogram plot, 
its value should be used as an estimate of the population variance, and the 
sample variance should not be used as an estimate of the variogram sill. 
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