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Incremental development and testing is widely cited as one advantage of the object- 
oriented paradigm. To date, most of the work in this area emphasizes incremental 
developraent at the "'macro" level, i.e., at the application or class hierarchy levels. We 
believe that incremental development should also be exploited at the individual class 
level. In particular, classes may contain a variety of methods that place objects of the 
class into relatively complex states. By organizing and developing an individual class in 
an incremental fashion, one can (a) develop and test "partial classes" and (b) generate 
simple states for test objects prior to generating more complex ones. This process 
realizes two benefits: it simplifies debugging by reducing the size of the search space 
when tracking down defects, and it makes regression testing more efficient. This paper 
reports on a development environment designed to support "micro-incremental" class 
development. This environment integrates several different components and techniques. 
We discuss each component of the environment individually, and then illustrate the use 
of the environment in a case study. 

1. Introduction 

Incremental  deve lopment  and testing is widely cited as one of the many ad- 

vantages in the object-oriented paradigm. However,  most previous work emphasizes 

incremental deve lopment  at the "macro"  level, i.e., at the application or class hier- 

archy levels [Harrold et aL 1992]. Because individual classes are themselves often 

nontrivial, we bel ieve that it is useful to define "micro-incremental"  techniques to 

be used when developing and testing individual classes. Such techniques allow the 
developer  to build and test subsets of  class operations, rather than waiting until after 
the class is written to begin testing (as is the case with most existing class testing 

methods [Doong and Frankl 1991; Gannon et al. 1981; Hoffman and Brealey 1989; 

Jalote 1989; Zweben  et aL 1992]). 
In this paper, we present an environment  to support micro-incremental  class 

development .  Our  environment  utilizes formal specifications, requiring that the class 

under test be algebraically specified [Guttag et aL 1985; Liskov and Guttag 1986]. The 
environment  uses a formal specification language called LOBAS [Doong and Frankl 

1991 ]. Our environment  synthesizes three major  components:  

© J.C. Baltzer AG, Science Publishers 



214 A. Parrish et al., Micro-incremental class development 

• a class generator, 

• a development ordering generator, and 

• a test oracle generator. 

The class generator produces a partial C++ class from a LOBAS specification. 
While the entire implementation is not produced, a structural template for the class is 
generated. The development ordering generator produces a recommended ordering of 
the class's methods, presenting the order in which the methods should be developed in 
order to maximize the amount of testing which can be performed during development. 
Finally, the test oracle generator produces a driver program which executes a series of 
test cases on the class, providing results in temas of whether a given test case "passes" 
or "fails." 

The remainder of this paper is organized as follows. Section 2 provides an 
overview of the basic framework used in class testing with algebraic specifications. 
Section 3 introduces the concept of micro-incremental development and presents some 
micro-incremental development techniques. Section 4 then introduces our environment 
and describes how the environment can be used to construct a debugged implementa- 
tion for a formally specified class. 

2. A basic framework 

2. I. Object-oriented programming and algebraic specifications 

Our model of object-oriented programming is similar to the model used in the 
object-oriented testing discussion in [Doong and Frankl 1991]. We use the term class 
to refer to the implementation of an abstract data type within an object-oriented lan- 
guage. An object is an instance of a class. A class implementation is defined in two 
parts: an interface consisting of a list of operations that can be performed on instances 
of the class, and a body consisting of the implementation of the operations. The im- 
plementation of an operation is sometimes called a method, and invoking an operation 
with respect to a given object is sometimes referred to as "sending a message" to the 
object, which responds to the message by executing its method. Additionally, every 
object has a state, which may be characterized by its history of method invocations. 

Numerous class testing techniques have been developed for classes that have 
been formally specified using algebraic specification techniques. The ordered list class 
in Table t is specified using a language called LOBAS [Doong and Frankl 1991]. 

The specification requires that all methods be categorized as either a constructor, 
transformer, or observer. Observer methods return a type other than that of the class 
itself; the purpose of an observer method is to query the contents of an object (e.g., 
IsEmpty, Length, Top). Constructor and transformer methods both return objects of 
the class itself. The distinction between constructors and transformers is somewhat 
subtle and is explained below. 
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Table 1 
Ordered integer list specification. 

class OrderedList 
export  

Create, Add, Delete, Head, Tail, Member, Length 

constructor 
Create ; 
Add(v:  I n t e g e r )  ; 

t r a n s f o r m e r  
Delete(v: Integer) ; 

Head ; 

Tail ; 
observer  

Member (v : Integer) : 

Length: Integer; 

var 

L: 0rderedList ; 

v, vl, v2: Integer; 

axiom 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

end 

Boolean; 

Create.Add(v).Head = v 

Create.Member(v) = FALSE 

Create.Add(v).Tail = Create 

L.Add(v).Head = if v > L.Head then v else L.Head 

L.Add(v).Tail = if v > L.Head then L else L.Tail.Add(v) 

L.Add(vl).Member(v2) = (vl = v2) or L.Member(v2) 

L.Add(v).Length = L.Length + 1 

Create,Delete(v) = Create 

L.Add(vl).Delete(v2) = if vl = v2 then L else L.Delete(v2).Add(vl) 

The axioms define the semantics of the class. Sequences of methods separated 
by dots are read left to right. For example, the sequence "Create .Add(lO).Tai l"  
means that Create is first executed; Add(lO) is then executed on the result returned by 

Create, and Ta i l  is executed on the result returned by Add(lO). (This interpretation 

is very much like the dot notation used in C++.) As an example, Axiom 3 states 
that executing the method Create, followed by Add(v), followed by Tai l  produces 
an object that should be (in a correct implementation) equivalent to the list object 

produced simply by executing Create. Similarly, Axiom 7 says that given a list 
object L, when executing Add(v) on L followed by Length, the result returned by 
Length should be the same as the result returned by executing Length on L and 

adding 1 to the result. 
Axioms may be used to derive one sequence from another. For example, 

the sequence "Create.  Add(lO).Add(20).Add(30).Delete(20)" may be reduced to 
Create. Add(10) .Add(30) by repeated applications of Axiom 9 using the following 

sequence of derivations: 
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Create. Add(lO).Add(20).Add(30).Delete(20) Create. Add(lO).Add(20). 
Delete(20).Add(30) 
Create.Add(lO).Add(30). 

By understanding derivations such as this one, it is possible to understand the 
difference between a constructor and transformer method. Constructors represent the 
"most primitive" sequences of methods that may be used to produce a particular 
object state. The axioms should be written in such a way that it is possible to rewrite 
sequences of constructors and transformers into sequences consisting of constructors 
only. In a correct implementation, it should be possible to produce states equivalent 
to every possible object state using only constructors. 

We now consider the notion of correctness of a class implementation (e.g., in 
C + + )  with respect to a given LOBAS specification. We say that two method se- 
quences are specification equivalent if the axioms may be used to derive one sequence 
from the other. For example, the sequences " C r e a t e . A d d ( 1 0 ) . A d d ( 2 0 ) . A d d ( 3 0 ) .  
Delete  (20)" and "Create .  Add ( :1.0). Add (30)"  are specification equivalent as a result 
of the derivation shown above. 

Given the above notion of specification equivalence, we now are able to provide 
an intuitive definition of the correctness of a class implementation. A class imple- 
mentation is said to be correct with respect to a given algebraic specification if/ for 
every pair (5'1, $2) of method sequences, SI is specification equivalent to 5'2 iff the 
executions of 5'1 and $2 within the implementation return "equivalent" values. Two 
possibilities exist for the types of the values returned by those sequences: 

• the values could be from a built-in type (e.g., integer, character, boolean, float), 

or 

• the values could be objects of a user-defined class. 

The notion of equivalence between values of built-in types is simple, and may 
be determined simply by using the built-in equality operator within the implementation 
language. The notion of equivalence between objects of user-defined classes is much 
more complicated. In [Doong and Frankl 1991], a formal, theoretical definition of 
object equivalence is given, known as observational equivalence. The basic idea is 
that two objects are observationally equivalent if those objects cannot be distinguished 
in client code. One possible heuristic for simulating observational equivalence is to 
implement an Equal method for the class, whose behavior is similar to that of an 
equality operator for built-in types. We discuss the use of such a heuristic in the next 
section. 

2.2. An algebraic spec(/~cation-based test execution model 

In this section, we consider a model for test execution based on algebraic 
specifications. We assume a model similar to that of the ASTOOT system [Doong 
and Frankl 1991]. In this model, a test case is a triple of the form (S1, $2, ta9), where 
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,_,el and 5'2 are method sequences and the tag is either "equivalent" or "inequivalent," 
depending on whether or not the sequences are specification equivalent. 

For the moment, we will assume that specific test cases have already been 
generated. (The problem of generating test cases will be addressed later in the paper.) 
Given that test cases have already been created, we identify the following basic testing 
process: 

1. For each test case, execute 5'1 and 5'2 and determine whether or not they 
return either "equivalent" values (the mechanism for assessing this equivalence 
is discussed below). 

2. If the test case is to be considered "OK" (unreveating of a defect), then either 
(a) the test case tag is "equivalent," and values returned by SI and 5'2 are 
actually "equivalent" or (b) the test case tag is "inequivalent" and the values 
returned by 5'I and 5"2 are actually "inequivalent." Otherwise, the test case 
reveals a defect. 

We now discuss the mechanism for assessing the equivalence of two sequences 
when executed as part of a given implementation. Provided that S1 and $2 return 
values of a built-in type, a test driver can be constructed that automatically compares 
return values and prints a message as to whether or not the test case reveals a defect. 
In particular, consider the test case (131, t32, equivatentL where /31 and /32 are as 

follows: 

(131) Create.Add(10).Add(20).Length 
(B2) Create.Add(10).Add(20).Add(30).Tail.Length 

It is easy to verify that B l and B2 are specification equivalent, which implies 
that the "equivalent" tag is valid for this (hypothetical) test case. Since Length returns 
an integer (which is a built-in type), a test for correctness is simply a test to determine 
whether the integers returned in both sequences are identical. Thus, we have the 
following test driver psuedocode: 

List a, b; 

a. Create(); b. Create(); 

a. Add(10); a. Add(20); 

b. Add(10); b. Add(20); b. Add(30); b.Tail(); 

if (a.length() == b.length()) 

output "Test case correct"; 

else 

output "Test case error"; 

The condition a .  l e n g t h ( )  == b . l e n g t h ( )  uses the built-in integer equality op- 
erator to determine whether or not the integer results of the two sequences are identical. 

On the other hand, if the two sequences both return objects, then a user-defined 
E q u a l  method must be used to measure equivalence, as was discussed in the previous 
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section. Unlike the built-in equality operator (which should not contain defects), this 
approach is not fool-proof, in that the user-defined Equal method may itself contain 
errors. However, the testing process will (ideally) reveal any such errors, e.g., if a test 
case fails and there is no defect in the methods that are explicitly a part of the test, 
the defect must be in Equal. 

The test driver constructed in a situation where the sequences return objects is 
conceptually the same as the test driver above. In particular, consider the test case 
(C1, C2, equivalent), where CI  and C2 are simple modifications of B1 and B2 
above ( length  has been removed): 

(CI)  Create.Add(lO).Add(20) 
(C2) Create. Add(lO).Add(20).Add(30).Tail 

C1 and C2 are indeed specification equivalent, given that both lists are ordered. 
Thus, the "equ iva len t "  tag in this test case is valid. Unlike BI  and B2, both C1 and 
C2 return lists, i.e., objects of a user-defined class. The driver will need to utilize a 
user-defined list equality method to compare the stack results. In C++, the ---= operator 
may be overloaded for the list class. After performing such overloading for class 
Lis t ,  the resulting test driver appears below: 

List a, b; 

a. Create(); b. Create(); 

a. Add(lO); a.Add(20); 

b. Add(lO); b. Add(20); b. Add(30); b.Tail(); 

if (a == b) // == is defined for class List 

output "Test case correct"; 

else 

output "Test case error"; 

Currently, our method for generating test cases (discussed in section 3) only 
generates test cases with equiva len t  tags. Because of this, we will drop the tag 
notation in the remainder of the paper, and express test cases as simple pairs of 
method sequences. As is noted in [Doong and Frankl 1991], this eliminates some 
test cases that may be useful in revealing defects. (The resulting model is actually 
similar in power to the DAISTS model [Gannon et al. 198I].) However, there are a 
number of useful test cases still available, and our method is not intended to be the 
final testing method used when validating a class, but is simply a tool to use during 
development to assist in defect elimination. 

3. Micro-incremental development 

Existing class testing techniques assume that the class under test has already 
been constructed. A completed class normally involves a plurality of methods. In a 
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good design, we would not expect individual methods to be complex [McGregor and 
Sykes 1992]. However, many methods are non-trivial, and methods (whether simple 
or complex) may interact to produce objects whose states are relatively complex. 
Moreover, under a typical development model, the number of failures that occur 
initially during testing is relatively high. Tracking down the sources of these failures 
among a large number of methods that are interacting in potentially subtle ways can 
prove to be extremely difficult. 

We believe that one of the keys to effective debugging support is in the idea of 
state simplification. When producing class objects for testing and debugging purposes, 
objects with simple states are easier to reason about than are objects with complex 
states. Not all defects are revealed by simple state objects; however, many defects 
revealed by complex state objects are also revealed by simple state objects. Thus, we 
are advocating an organization of the class testing process, where testing progresses 
from (initially) examining simple state objects to (eventually) examining objects with 
states that are more complex. 

We identify two possible "state complexity" dimensions around which to orga- 
nize an incremental class testing process: 

• Structural complexi~: The number of different methods that are invoked to 
produce a given state. 

• Behavioral complexi~: The number of method invocations producing a given 
state. 

For example, consider the state produced by invoking "Create.Add(10). 
Add(20) .Delete." The structural complexity of this state is 3, since there are three 
methods invoked to produce this state (Create, Add, and Delete). The behavioral 
complexity of this state is 4 (the length of the sequence). 

The goal of our incremental testing process can now be more precisely stated: 
To locate each class defect using the simplest possible state in terms of  both its 
structural and behavioral complexi~.. Our process may be characterized as follows: 

1. Execute a series of test cases, where the objects produced by the test are of 
progressively increasing complexity. 

2. When a test case in the series fails, cease testing until the defect is repaired. 

3. Repairing the defect involves modifying one or more methods. Repeat any 
previously executed test cases that involve modified methods. 

4. Continue testing in this manner until the next defect is revealed (at which point 
steps 2 and 3 are repeated) or testing is completed without revealing more 

defects. 

This process results in two tangible benefits: 

• Reasoning about the source of a defect may be conducted in the simplest pos- 

sible context. 
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• Regression testing resulting from defect repair is simplified, tn particular, if 
a defect is located and repaired in the simplest possible state, then the num- 
ber of methods that have to be re-executed when retesting simpler states is 
correspondingly reduced. 

We now address the actual mechanisms used to achieve our goal of producing 
test cases in increasing order of structural and behavioral complexity. First, to ensure 
a progression of increasing structural complexity during test case generation, we need 
to be able to test iteratively during the development process. That is, we want to be 
able to test subsets of methods as those methods are developed. With our (algebraic) 
specification-based testing model, the order in which methods are developed directly 
impacts the amount of testing that can take place prior to class completion. Thus, 
a technique is needed to generate the optimal ordering in which methods should be 
developed for a given class, if we wish to maximize testing during development. 

Second, to ensure test case generation is performed in increasing order of behav- 
ioral complexity, we need to be able to progressively increase the number of method 
invocations involved in test cases. Our method for generating test cases directly ad- 
dresses this. 

The remainder of this section is organized as follows. Section 3.1 discusses 
a method for generating an optimal ordering in which methods should be developed, 
thus addressing the structural complexity dimension. Section 3.2 discusses a method 
for generating test cases in increasing order of behavioral complexity, thus addressing 
the behavioral complexity dimension. Finally, section 3.3 discusses the integrating 
these techniques to define an overall testing methodology. 

3. I. Selecting a development ordering 

A development ordering is an arrangement of class methods that identifies the 
order in which the methods should be developed. As discussed above, the selection 
of such an ordering is determined using the goal of permitting as much testing as 
possible as early as possible. This allows testing to take place as (small) subsets of 
methods are written, as opposed to deferring testing until after all methods have been 
coded. 

Not all development orderings are equally good in terms of permitting periodic 
testing. To illustrate, consider the specification for a simple stack class in Table 2. 

Now consider the development ordering Create --6 Pop --~ Top --~ Push. In this 
case, no testing is permitted until all methods are complete. In order to construct test 
cases using a given axiom, all of the methods in that axiom must be present; however, 
Push is present in every axiom. Thus, it is impossible to construct any executable test 
cases for the class until after all methods are completed (since Push is constructed 
last). Create ---+ Push ~ Pop --+ Top would be a much better development ordering, 
in that there are opportunities for testing earlier (and more often) in the development 
process. With this ordering, the developer could: 

1. Develop Create and Push and then construct test cases using Axiom 1. 
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Table 2 
Integer stack specification. 

class Stack 
export 

Create, Push, Pop, Top 
constructor 

Create; 
Push(v: Integer); 

transformer 
Pop; 

observer 
Top: Integer; 

var 

s: Stack; 
v: Integer; 

axiom 
(I) not (s.Push(v) = Create) 

(2) s.Push(v).Pop = s 

(3) s.Push(v).Top = v 

2. Test the methods Create and Push. 

3. Develop Pop and then construct test cases for Create, Push and Pop using 
Axioms 1 and 2. 

4. Test the method pop, and perform additional tests on Create and Push. (Addi- 
tional testing on Create and Push might be necessary because of the new states 
generated by including pop in the test cases.) 

5. Develop Top and then construct test cases for all four methods using all three 
axioms. 

6. Test all methods in the class. 

More generally, given a development ordering Ml, M2, M 3 , . . . ,  34,,, we at- 
tempt to maximize: 

1. the number of Mis for which new testing is possible (i.e,, testing that was not 
possible to perform after constructing Mi_l), and 

2. for each Mi after which testing is permitted, the number of axioms available 
for constructing test cases. 

Item (1) deals with maximizing the number of opportunities in which testing 
may occur, while item (2) deals with maximizing the amount of testing that can take 
place at a given opportunity. We call an opportunity to test a test point. A test point at 
position i in a development ordering means that it is possible to construct and execute 
test cases after developing the ith method that were not executable after the (i - 1)th 
method in the ordering. In the stack example, with the ordering Create --+ Push --+ 
Pop -+ Top, there are test points after Push, Pop and Top; each method introduces 
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new testing opportunities, as additional axioms may be used in the production of test 
cases. There is no test point after Crea te  because no test cases can be produced from 
the axioms with just the Crea te  method. 

By developing methods in an order which maximizes both the number of test 
points and the amount of testing which may occur at a given test point, we are able 
to design the testing process so that testing can take place on subsets of the methods. 
This allows us to test in the context of reduced structural complexity. As methods are 
added, we increase the structural complexity of our test cases in a gradual, orderly 
fashion. 

We now provide a simple greedy-style algorithm to select development order- 
ings in this fashion. To define this algorithm, we first have the notion of an axiom- 

method table. This table is simply a dynamic table of those methods that appear in 
each axiom that have not yet been selected for the recommended development order- 
ing. That is, position ( l )  in the table initially contains those methods that appear in 
Axiom 1; position (2) initially contains the methods that appear in Axiom 2, etc. 

In order to conduct any testing at all using our model, it is necessary to have 
two special methods: a method that returns objects "from scratch" and an equality 
operator. We call methods that return objects without requiring an input object a base 
constructor. I We assume that a base constructor and an equality operator are both 
developed first, and thus omit them from the axiom-method table. To avoid confusion, 
we call the base constructor Create  and the equality operator Equal, although in 
our target implementation language, it is possible to implement both as overloaded 
operators (EQUAL as ==, and Crea te  as a C + +  constructor). We consider this issue 
further in section 4. 

To illustrate the axiom-method table, we reconsider the ordered list specification 
from Table 1. In this case, the only base constructor is Create.  Although no equality 
operator is specified, one must still be developed to test this class using our test 
execution model. However, neither Crea te  nor the equality operator will appear in 
the axiom-method table for this class. Each position in the table contains the methods 
that appear in the the axiom corresponding to that position (minus Create).  The initial 
value of the axiom-method table appears in Table 3(a). 

The second important concept that we must introduce is the notion of a method 

table. The method table contains a record for each method with three attributes: (1) 
the method name; (2) the method's test point contribution and; (3) the method's axiom 

contribution. A method's test point contribution is simply "yes" or "no," depending on 
whether a test point is created if that method is chosen. A method's axiom contribution 
is the sum of the contributions that the method makes to each axiom in which it is 
used. The notion of  "contribution to an axiom" is explained below. The method 
table is also dynamic, in that once a method is selected for a development ordering, 

The term base constructor is used to distinguish such methods from the LOBAS notion of a constructor, 
which is slightly different. Base constructors are very much like the C++ notion of a constructor. 
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Table 3(a) 
Ordered list axiom-method table. 

Table 3(b) 
Ordered list method table. 

Axiom Methods Method TC AC 
(I) Add, Head 
(2) Member 
(3) Add, Tail 
(4) Add, Head 
(5) Add, Head, Tail 
(6) Add, Member 
(7) Add, Length 
(8) Delete 
(9) Add, Delete 

Add no 3.33 
Delete yes 1.50 
Head no 1.33 
Tail no 0.83 
Member yes 1.50 
Length no 0.50 

the method table is updated to reflect changes that have occurred with respect to the 
contribution of the other methods. 

The initial value of the method table for the ordered list class is shown in 
Table 3(b). 

As discussed above, test point contributions (TC) are obtained by noting which 
methods would result in test points, if chosen as the next method in the development 
ordering. Member and Delete both result in a test point so the test point contribution 
for both of these methods is "yes". On the other hand, Add, Head,  Tai l  and L e n g t h  

would not result in a test point if chosen first, so their test point contributions are "no." 
Axiom contributions (AC) are based on the cumulative contributions of that method 
to each axiom. For example, Head (which appears in 3 axioms) receives a 1.33, based 
on the sum of: 

• 0.5 from Axiom 1, because it is one of two methods present (and represents 
one-half of the methods remaining to be implemented in order to test using 
Axiom 1), 

• 0.5 from Axiom 4, because it is one of two methods present (and represents 
one-half of the methods remaining to be implemented in order to test using 
Axiom 4), 

• 0.33 from Axiom 5, because it is one of three methods present (and represents 
one-third of the methods remaining to be implemented in order to test using 
Axiom 5). 

We then have two selection criteria for the next method: 

• First, identify methods that make test point contributions, thus permitting an 
oppomanity to test after that method is constructed. For the above method 
table, this rule implies we should only consider Delete and Member as the next 
method. 

• Second, for the methods identified in the previous step, choose the next method 
based on the highest axiom contribution, thus maximizing the amount of testing 
that can be conducted at a given opportunity. If two methods both define a new 
test point and both contribute equally, an arbitrary choice can be made. In this 
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example,  both De l e t e  and Member have the same axiom contribution (1.5), and 
so we can make an arbitrary choice between the two. 

We choose D e l e t e  for the first method (arbitrarily). We then revise tile axiom- 
method table and the method table, as is shown below. The method chosen (in this 
case De le t e )  is removed from the axiom-method table. In addition, the method table 
is revised as follows: (a) De l e t e  is removed from the table and; (b) the axiom and 
test point contributions are revised accordingly. The new axiom-method and method 
tables are then shown in Table 4(a). 

Of  the entries in the revised method table that make a test point contribulion, 
Add has the highest axiom contribution. Consequently, we take Add to be the next 
method: the revised tables are illustrated in Table 4(b). 

At this point, Head has the highest axiom contribution of  those methods making 
a test point contribution, so it is chosen next. Repeatedly applying this same procedure 
to the remaining methods, the final ordering (including Crea t e  and Equal) is Crea t e  
-+ Equal -+ Delete -+ Add -+ Head -+ Tail -+ Member -+ Length. 

This process focuses primarily on subsets of  the methods in which it is still 
possible to conduct  testing, thus allowing us to initially test in the context of  struc- 
turally simple states involving a limited number of methods. This testing using simple 
states may then gradually transition to testing that involves more complex states. 

Table 4 
(a) Tables after selecting method Delete, 

Axiom-Method Table Method Table 
Axiom Methods Method TC AC 
(1) Add, Head Add yes 3.83 
(2) Member Head no 0.83 
(3) Add, Tail Tail 11o ().83 
(4) Add, Head Member yes 1.50 
(5) Add, Head, Tail Length no 0.50 
(6) Add, Member 
(7) Add, Length 

(8) 
(9) Add 

(b) Tables alier selecting method Add. 

Axiom-Method Table Method Table 
Axiom Methods Method TC AC 
( 1 ) Head 
(2) Member 
(3) Tail 
(4) Head 
(5) Head, Tail 
(6) Member 
(7) Length 
(8) 
(9) 

Head yes 2.50 
Tail  yes t.50 
Member yes 2.00 
Length yes 1.00 
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3.2. Generating test cases 

Our method for generating test cases involves generating "object states", and 
then using those states as inputs to axioms from the specification. Thus, we divide the 
test case generation problem into two parts: the problem of generating object states 
and then the problem of actual test case construction, using the object states as inputs. 

In [Parrish et at. 1994] we first described a relatively simple scheme for gener- 
ating object states. The basic idea is to identify those methods that have an effect on 
the object state. In LOBAS terms, these are the constructor and transformer methods. 
In the case of the ordered list class, those methods are Create and Add (constructors) 
and Delete, Head and Tai l  (transformers). It is useful to further subdivide this group 
of methods in a slightly different way. Recall from section 3.1 that a method is a 
base constructor if it produces an object from scratch, i.e., without taking an object 
as input. To develop our state generation approach, we will need to segregate base 
constructors from other constructofftransformer methods. We call the other construc- 
tofftransfbrmer methods mod(/iers, in that they take an object as input and modify the 
object to produce a result. 

It is then possible to systematically generate a series of increasingly complex 
object states. These states may be used as input to the axioms during testing, as is 
described later in this section. To organize the state generation process, we utilize 
what we call a state tree. Each node in the tree represents a particular state. The 
character strings at each node represent the method sequences used to generate the 
state (e.g., CAD refers to the state generated by executing Create, followed by Add, 
followed by Delete). A partial state tree for our list class is shown in Figure 1. 

The states in the tree are generated as follows. First, the base constructor 
method is executed to generate the initial (root) state. Next, the states at Level I are 
generated, from left to right, by invoking the methods at each node. Following the 
generation of Level I states, the states at each successive level are generated in similar 

fashion. 
It should be noted that other information is needed to generate states than 

simply the order of method invocations as defined within the state tree. In particular, 
the sequence CAD indicates that Create, Add and Delete are to be executed on some 
defined list object. In C++ syntax, the object is written in front of the method in 
an invocation (e.g., the L in L.Add(v)). However, each of these methods (Create, 

C 

CA CD 

CAA CAD CAT CDA CDD CDT 

CT 

CTA CTD CTT 

Figure 1, State tree for ordered lisl class. 
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Add, De l e t e ,  and T a i l )  may take other "secondary" parameters. For example, Add 
and Dele te  take a specific element value that is to be added or deleted (e.g., the v 
in L.Add(v)) .  In general, there are three types of secondary parameters that can be 
expected in a given implementation: 

• Parameters of built-in types, such as integer, character, real, boolean, e tc .  

• Parameters of a class other than the class under test. 

• Parameters of the class under test. In the case of a "binary" method (e.g., 
concatenate, which takes two string objects), one of the two parameters may be 
viewed as the primary parameter and the other one as the secondary parameter 
(e.g., s l .  concat  (s2),  where s2 is the secondary parameter). Note that in C++, 
operator overloading may eliminate the syntactic distinction between primary 
and secondary parameters (e.g., s l  + s2). 

Our current implementation builds a state tree for the primary object parame- 
ter, and randomly produces values for secondary parameters. For built-in types, this 
essentially involves using a random number generator; for class objects, this involves 
generating random constructor and transformer method sequences. Although this in- 
troduces an element of randomness to an otherwise systematic process, we can at 
least ensure that at least one parameter of the class under test is being systematically 
manipulated by method invocation sequences of steadily increasing complexity. 

States produced by this process are used as parameters to the axioms to generate 
test cases. Specifically, if there is a variable in an axiom of the type of the class 
under test, then states from the state tree are used to produce values for the variable 
in constructing test cases. For example, consider Axiom 7 from the ordered list 
specification in Table I: 

L.Add(v).Length = L.Length + 1 

Producing test cases from this axiom involves generating a succession of values 
for L and v. Using our state tree generation strategy, we can have the following 
sequence of values that may be substituted for L (the first three levels of the state 
tree): 

L1 C r e a t e  
L2 Crea t e .Add( lO)  
L3 C r e a t e . D e l e t e ( 6 5 4 0 )  
L4 C r e a t e . T a i l  
L5 C r e a t e .  Add(lO).Add(564) 
L6 C r e a t e . A d d ( l O ) . D e l e t e ( 4 3 0 )  
L7 C r e a t e .  A d d ( l O ) . T a i l  
L8 C r e a t e . D e l e t e ( 6 5 4 0 ) . A d d ( 5 4 3 )  
L9 C r e a t e . D e l e t e ( 6 5 4 0 ) . D e l e t e ( 5 4 9 8 7 )  
LIO C r e a t e . D e l e t e ( 6 5 4 0 ) . T a i l  
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Lll Create.Tail.Add(237) 

L12 Create.Tail.Delete(lO) 

LI3 Create.Tail.Tail 

Note that once a value is randomly generated for a parameter, that value is 
retained for the parameter within a given subtree. For example, the first invocation of 
Add in every node of the subtree rooted at CA receives the parameter value "10" (i.e., 
in L2, L5, L6 and L7 in the table above). 

The object values from the above table may then be substituted back into the 
axiom to create a series of test cases: 

(Li.Add(lO3).Length, LI.Length + i) 

(L2.Add(653).Length, L2.Length + I) 

(L3.Add(9403).Length,L3.Length + I) 

(L4.Add(120).Length, L4.Length + i) 

(L5.Add(4ST),Length, LS.Length + I) 

etc. 

The progression of states from the state tree is substituted for the leftmost list 
variable to appear in each axiom. Substitutions for all other variables are made at 
random. However, by using the progression of states generated by our state tree to 
make at least one substitution, we normally meet our goal of ensuring that test cases 
steadily increase in complexity. We acknowledge, however, that due to the randomness 
of the remaining substitutions, there will be some exceptions. 

The same substitution process takes place for the remaining axioms to generate 
additional test cases. We note that, for branching axioms (i.e., axioms that contain an 
i f  or some type of conjunction with multiple exclusive parts), there is no guarantee of 
testing all branches of the axiom; testing both branches will normally require that the 
random values generated for various variables be appropriate to ensure such coverage. 

For example, consider the axiom: 

L.Add(v).Head = if v > L.Head then v else L.Head 

Testing both branches for the right hand side requires that values be generated 
for v and L such that v > L. Head and v <= L. Head. It is possible that (eventually) such 
values will be generated simply by generating a large number of test cases. However, 
since this cannot be guaranteed, our environment (as discussed in section 4) produces 
information regarding which branches of the branching axioms have been tested. In 
this way, the developer can monitor whether additional testing is needed. 

A final question which surfaces involves determining when to stop testing. 
As we discuss in section 4.1, the developer must specify two things when using 
our environment to generate test cases: (a) the number of levels in the state tree and 
(b) which base constructors to use in generating state trees (as it is possible to generate 
a distinct state tree for every base constructor). However, the testing technique does 
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not provide any guidance regarding how to make these two choices; effectively, there is 
no stopping criterion built into the testing technique. We would expect that a necessary 
condition for stopping would be coverage of all branching axioms, as discussed above. 
This is consistent with the approach used by DAISTS [Gannon et at. 1981 ]. However, 
we certainly do not feel that this is a sufficient condition. 

On the other hand, we are not suggesting that this method should be the only 
testing method applied to a class, where a decision would have to be made based 
solely on our results regarding whether or not the class had been tested adequately. 
Instead, this method is a development and debugging-oriented approach that makes 
an initial pass at testing classes in an organized fashion during development. Once 
the class is completely developed, a more rigorous testing method with a definite 
completion point could still be applied to the completed class (such as the technique 
from [Doong and Frankl 1991]). Further investigation is needed to determine how 
extensively testing should be conducted during development, as well as to determine 
ways of refining or modifying our test generation strategy. One of the advantages of 
our overall framework is that it is possible to modify the test generation strategy (or 
the development ordering generation strategy) and still retain the overall benefit of 
incremental development within a general framework. 

3.3. An overall development and testing methodology 

Our method for generating test cases (m section 3.2) may be combined with 
our method for generating development orderings (in section 3.1) to create an overall 
testing approach in the context of development. In particular, suppose that you have 
the following development ordering for the ordered list class as defned in section 3.1 
(Equal -+ Create -+ Delete -+ Add -+ Head -+ Tail --+ Member -+ Length). A 

general development and testing process would be as follows: 

1. Develop Equal, Create and Delete and generate test cases using Axiom 8 and 
state tree generation restricted to these two methods. In particular, the state 
tree would be linear, with Delete  the only modifier method in the tree (the 
generated states would be C, CD, CDD, CDDD, CDDDD, etc.). 

2. Develop Add and generate test cases using Axioms 8 and 9. In this case, the 
state tree would be binary, with Add and Delete as modifiers and Create as the 
base constructor. States are produced such as C, CA, C0, CAA, CAD, CDA, and CDD 
(the first three levels in the state tree in breadth-first order). 

3. Develop Head and generate test cases using Axioms 1,4, 8 and 9. At this point, 
we have three modifier methods (Add, Delete  and Head), and so the state tree 
is ternary. States produced include c, CA, CD, CH, CAA, CAD, CAH, CDA, CDD, CDH, 
CHA, CHD, CHH (again, the first three levels in breadth-first order). 

4. Develop Tai l  and generate test cases using Axioms I, 3, 4, 5, 8 and 9. Now 
we have four modifier methods (Add, Delete,  Head, and Tail),  and the state 
tree is extended appropriately. 
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. Develop Member and generate test cases using Axioms 1, 2, 3, 4, 5, 6, 8 and 9. 
Although we are able to conduct testing using additional axioms beyond the 
previous step, the state tree does not change from before, since Member is not a 
modifier method. 

. Develop Length and generate test cases using all of the axioms. Again, the 
state tree remains as before; however, we are able to generate additional test 
cases via the use of Axiom 7. 

Thus, we achieve our first goal of incremental structural complexity by "testing 
as we go," before all of the methods are written, limiting the number of methods that 
can appear in test cases to just those which have been written. We achieve our second 
goal of incremental behavioral complexity by utilizing a progression of states from a 
state tree as object inputs to the axioms in constructing test cases. 

4. An integrated development environment 

4. I. Environment fimctionali~ and architecture 

An integrated environment which supports the class development paradigm 
described in section 3 is presently under construction; we currently have a working 
prototype that we are using for experimental purposes. In our environment, LOBAS 
specifications are used as input to generate three separate items: 

• a development ordering for the class, 

• a "template" for a (partial) class (using C++), and 

• a test driver program for a (partial) class. 

The notion of a development ordering was discussed extensively in section 3. 
A test driver program is just a program that executes the test cases generated for the 
class using the techniques of section 3,2. The notion of a class template is discussed 

below. 
Let us first consider the sketch of the environment's X-Windows interface found 

in Figure 2. Figure 2 assumes that we have loaded the stack specification from Table 2 
(section 3.1). We can generate the development ordering by clicking o n  the[0rdering]  

button, thus resulting in the configuration shown in Figure 3. 
Now we are in a position to begin development. We begin by clicking the 

buttons containing the names of the methods that we wish to develop from the top 
of the screen. Clicking on ~ and ~ indicates that we wish to develop 
these two methods first (as the ordering suggests). Once we have clicked on both 
methods, Axiom 1 shifts from the "Inactive" to "Active" windows. Figure 4 shows the 
configuration of the development manager at this point. This configuration indicates 
visually that we have a "partial specification" consisting of Axiom 1 now available 
for test generation purposes. Thus, once Create and Push are actually written, we can 
conduct testing using Axiom 1 to generate test cases. 
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(1) not (s.Push(v) = Create) 

(2) s.Push(v).Pop = s 

(3) s.Push(v).Top = v 

S T A T U S  

F igu r e  2. Initial conf igura t ion .  

~!iii~iii~iiiiiiii~ii~iiiii~iiii~ii~i~i~i!!!!~i~i~i!!iiiiiiiii~iiiiiiii~i!iiiii~iii!iii~iii~iii!ii~i~!!!iii~i~iiiii~i~i~ ~!iii~ii~i~iii~!i:~i!~i~ii!~!~i~!!i!iii~!!~i!~!~i~!~i~i~!ii~ii~!i!i~i~i!!!!~i~!!~i~!~!!z~:~i!~i!!~ii~!~iii~!~!i~:i~i~:ij 
I I Crea'o ~--~ Pu'h ~ 

(1) not (s,Push(v) = Create) 

(2) s.Push(v).Pop = s 

(3) s.Push(v).Top = ;, 

S T A T U S  

F igu r e  3. Af t e r  g e n e r a t i n g  d e v e l o p m e n t  o rder ing .  
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! Croa'e  --fSgN I 

( 1 ) not (s.Push(v) = Create) (2) s.Push(v).Pop = s 

(3) s.Push(v).Top = v 

S T A T U S  

Figure  4. Al ter  select ing Create and Push .  

To assist in writing Create and Push, we first click on the l c++ code] button. 
This generates a "template" for the C++ class, based on information found in the 
LOBAS specification, as follows: 

class Stack{ 
private: 

// Fill in implementation here 
public : 

void Create(void) ; 
void Push(int v) ; 

}; 

void Stack : : Create (void) { 
// Fill in implementation here 

} 

void Stack::Push(int v){ 
// Fill in implementation here 

} 
Our current implementation simply takes the method names from the LOBAS 

specification and generates the C++ template accordingly. However, it should also 

be possible to specify mappings from LOBAS names to C++ names. For example, 
it would be appropriate to implement Create as a C-~- constructor rather than as a 

method called Create. We are currently working on an enhancement to the prototype 

that provides the facility to specify such mappings. 
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[i.. i i ::, 

Push 
Pop 

] : : :~CEE [ [ : VIEW j 

Figure 5. Defining implementation dependencies. 

At this point, the developer must provide an implementation for the actual data 
representation for class Stack, and then implement Create and Push. Once bodies are 
written for these methods, testing may begin. Clicking on [Tes t  Driver] generates 
another window, where the user is asked to specify two things: 

• the base constructors for which it is desired to generate state trees (effectively, 
how many different state trees should be generated), and 

• the number of levels in each state generation tree that should be generated. 

Once this information is provided, a test driver is generated. This driver exe- 
cutes the test cases produced by combining the state trees with the axioms, as described 
in section 3.2. For every test case, the driver executes the two sequences found in 
the test case, and then compares the results of those sequences to determine whether 
or not the test case passes (as discussed in earlier sections). Information regarding 
any test cases that fail is shown in a separate window. Also, whenever a test case is 
executed that involves a branching axiom, information regarding which branch of the 
axiom is actually tested is also output to the separate window. 

Once Create and Push have been debugged, the tester can click on additional 
methods. Clicking on [ - ~  causes Axiom 2 to become active, meaning that more 

testing can now be performed. Clicking on ]c++ Code]extends the existing class with 
(a) a prototype for the pop method and (b) a function definition for Pop with an empty 
body. The developer may fill in the contents of Pop, click on [Test Driver], and 
continue testing as before. 

The only remaining button not discussed so far is the ]Dependencies]button. 

Clicking on[Dependencies]al lows the developer to define implementation dependen- 
cies among the methods. For example, suppose the developer wishes to implement 
Top by invoking pop on a local copy of the stack and returning the value that is 
removed. Consequently, there is a dependency in the implementation (not present 
within the specification) that needs to be specified. Figure 5 contains the window 
where implementation dependencies are defined. 
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By specifying this dependency, the development ordering generator will not 
allow an ordering to be constructed that contains Top before pop. The actual imple- 
mentation simply will not set Top's test point contribution to "yes" until pop has been 
selected. It should be pointed out that such an implementation may cause the develop- 
ment ordering algorithm to fail, because there may be a case where the only method 
making a test point contribution depends on some method that hasn't been developed 
yet. In such a case, the developer is told of the conflict and the reasons for it, and 
is given the opportunity to resolve the conflict by either changing the specification 
or removing the implementation dependency. Failure to resolve the conflict simply 
means that testing will have to be deferred until the class is completed. 

4.2. Case study: Building a list implementation 

As an example illustrating the utility of this environment, we developed a C++ 
implementation of the ordered list class. For demonstration purposes, we elected 
to generate test cases utilizing an eight-level state tree. As already discussed, the 
development ordering generated by the environment (based on our algorithm from 
section 3.1)was Create --~ Equal --> Delete --> Add -+ Head --+ Tail -+ Member 

-+ Length. 

Our development was completed by one of the authors in a relatively non- 
contrived setting. In particular, the author was handed the specification and was given 
the development environment, with no preparation regarding expected outcomes. The 
mistakes made were not deliberately contrived, but were in fact real. A log of the 
development process appears as follows: 

1. The initial step was to build the first methods in the ordering: Create, Equal 
(implemented as ==) and Delete.  No testing was possible until after Delete 
was completed, as Delete constituted the first test point in the ordering, At this 
point, we were able to generate test cases using Axiom 8 and an eight-level 
state tree (i.e., c, co, CDD, CDDD, etc., up to eight levels). All test cases passed. 

2. The method Add was developed, allowing test cases to be generated using Ax- 
ioms 8 and 9 and an eight-level state tree produced by Create (base constructor) 
and Delete and Add (modifiers). All test cases passed. 

3. The method Head was developed, allowing us to generate test cases with Axioms 
1, 4, 8 and 9 (and an eight-level state tree). Executing the test driver resulted 
in a segmentation fault, which upon subsequent examination, was found to be 
caused by an uninitialized pointer. The defect was repaired. 

4. The test cases from step (3) were repeated. The result was that one of the Axiom 
4-based test cases, (Create.  Add(27).Add(540).Head, 540), failed. Because of 
our incremental approach, it can be inferred that the defect is in one of three 
methods: Create, Add or Head (the only methods involved in the construction 
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and execution of  the test case). 2 The cause turned out to be the Add method, in 
that it did not insert elements in the proper order, but rather simply maintained 
the list in random order. This defect was repaired. 

5. The test cases from step (3) were again repeated. Again, a similar test case 
(based on Axiom 4) to the one from step (4) failed, although with different ran- 
dom number integer inputs. Similar inferences can therefore be made regarding 
the source of  the defect. The cause was that Add now inserted the elements into 
the list in the wrong order (ascending, rather than descending). 

6. The test cases from step (3) were again repeated, again with a failure on a test 
case like the one in step (4) above. The problem this time was that the special 
case of inserting an element at the head of the list was not handled properly. 
The defect was repaired and the tests repeated with no failures. 

7. At this point, the T a i l  method was added, allowing test cases to be generated 
with Axioms 3 and 5 (in addition to Axioms 1, 4, 8 and 9, which were already 
available). Running the test cases revealed a failure in an Axiom 5-based test 
case where the integer parameter to Add equaled the item already at the head of 
the list. (This test case is too complex to specify here, given that generating a 
parameter to Add that was already at the head of the list was a random event and 
did not occur early in the sequence of test cases.) This test case was created 
and executed using Create ,  Add, Head, T a i l  and Equal. Thus, Dele te  was 
not examined for the defect, nor were Member and Length (which are not even 
written yet). It was eventually concluded that the defect was the result of an 
incorrect assumption that if an existing element was to be added again to the 
list it should not be duplicated. The axioms, however, imply that elements may 
be duplicated. Thus, Add was modified accordingly. 

8. Although Dele te  was not examined directly in the previous step, we realized at 
this point that a change to Dele te  was necessary. The original implementation 
of Dele te  removed all elements in the list of a given value, while the revised 
implementation only removes one such element if there are multiple copies. 
After making these changes and re-running the test cases from the previous 
step, no failures were observed. 

9. The method Member was added next, allowing test cases to be produced using 
all of the axioms except Axiom 7. Test cases were then produced using an 
eight-level state tree and Axioms 1-6 and 8-9. No failures were observed 
when executing any of the test cases. 

'-Note that for some test cases, the class equality operator is also involved in executing the test case; 
however, the built-in integer equality operator was used in this test case because the two sides of the 
test case had integer results. 
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10. Finally, the method Length was added, allowing test cases using all of the 
axioms to be generated. Testing was performed using all axioms and all states 
in an eight-level state tree. No failures were observed. 

The important observation to make about this process is that, cumulatively 
speaking, there were actually six separate defects ultimately observed in this class. 
Although two of the defects could not have arisen simultaneously (the Add defects 
where the list was first unordered and then ordered in the wrong direction), five of 
the defects could have co-existed within an initial version of the class. Isolating and 
eliminating defects (even relatively straightforward defects such as these) would have 
been extremely difficult in such a context. Our incremental approach provides the 
advantage of "divide-and-conquer" when locating and removing defects, which is not 
available if testing is deferred until the class is complete. 

To appreciate the difference between incremental and "post-developmenC class 
testing, consider the fact that there were test cases involving two different axioms that 
failed in the above testing scenario (Axioms 4 and 5). This allowed us to restrict our 
attention to analyzing only those axioms, and only the methods involved in producing 
test cases with those axioms. With post-development testing, the various defects in 
the Add method would have caused failures to occur in most of the axioms where 
Add is present (possibly Axioms 4, 5, 6, 7, and 9). In particular, the failure to add 
an element properly to the head of the list would have resulted in definite failures in 
test cases based on Axioms 6 and 7 (the axioms which specify Member and Length). 
Thus, the developer might have wasted time looking for defects in Member and Length 
when none existed. Instead, we eliminated the Add defect before test cases based on 
Axioms 6 and 7 were even constructed and executed. 

5. Conclusion 

In this paper, we have identified an incremental development process for object- 
oriented class development. We call this type of process "micro-incremental" to reflect 
the idea that it is incremental with respect to developing the internals of a single class. 
We believe that this type of process is both natural and important to the development 
of classes, which may contain methods that interact in complex ways. Identifying 
an incremental process of this type simplifies regression testing and makes the defect 
removal process more efficient. 

Future work will involve the development of additional development ordering 
and test case generation strategies as alternatives to our current strategies. We ac- 
knowledge that there are limitations to the current strategies, and intend to consider 
alternatives that fit within this paradigm. Our development environment is constructed 
to provide an overall framework where other testing strategies may be substituted 
without sacrificing any of the advantages of incremental development. A primary 
goal of our future work is to experimentally evaluate a number of different incremen- 
tal development strategies over a wide variety of classes; our environment provides a 
framework for such evaluation. 
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