
Annals of Software Engineering 2 (1996) 213-236 213

An environment to support micro-incremental class
development

Allen Parrish, David Cordes and Dennis Brown

The Universit 3, of Alabama, Department of Computer Science, Box 870290, Tuscaloosa.
AL 35487, USA

Incremental development and testing is widely cited as one advantage of the object-
oriented paradigm. To date, most of the work in this area emphasizes incremental
developraent at the "'macro" level, i.e., at the application or class hierarchy levels. We
believe that incremental development should also be exploited at the individual class
level. In particular, classes may contain a variety of methods that place objects of the
class into relatively complex states. By organizing and developing an individual class in
an incremental fashion, one can (a) develop and test "partial classes" and (b) generate
simple states for test objects prior to generating more complex ones. This process
realizes two benefits: it simplifies debugging by reducing the size of the search space
when tracking down defects, and it makes regression testing more efficient. This paper
reports on a development environment designed to support "micro-incremental" class
development. This environment integrates several different components and techniques.
We discuss each component of the environment individually, and then illustrate the use
of the environment in a case study.

1. Introduction

Incremental deve lopment and testing is widely cited as one of the many ad-

vantages in the object-oriented paradigm. However, most previous work emphasizes

incremental deve lopment at the "macro" level, i.e., at the application or class hier-

archy levels [Harrold et aL 1992]. Because individual classes are themselves often

nontrivial, we bel ieve that it is useful to define "micro-incremental" techniques to

be used when developing and testing individual classes. Such techniques allow the
developer to build and test subsets of class operations, rather than waiting until after
the class is written to begin testing (as is the case with most existing class testing

methods [Doong and Frankl 1991; Gannon et al. 1981; Hoffman and Brealey 1989;

Jalote 1989; Zweben et aL 1992]).
In this paper, we present an environment to support micro-incremental class

development . Our environment utilizes formal specifications, requiring that the class

under test be algebraically specified [Guttag et aL 1985; Liskov and Guttag 1986]. The
environment uses a formal specification language called LOBAS [Doong and Frankl

1991]. Our environment synthesizes three major components:

© J.C. Baltzer AG, Science Publishers

214 A. Parrish et al., Micro-incremental class development

• a class generator,

• a development ordering generator, and

• a test oracle generator.

The class generator produces a partial C++ class from a LOBAS specification.
While the entire implementation is not produced, a structural template for the class is
generated. The development ordering generator produces a recommended ordering of
the class's methods, presenting the order in which the methods should be developed in
order to maximize the amount of testing which can be performed during development.
Finally, the test oracle generator produces a driver program which executes a series of
test cases on the class, providing results in temas of whether a given test case "passes"
or "fails."

The remainder of this paper is organized as follows. Section 2 provides an
overview of the basic framework used in class testing with algebraic specifications.
Section 3 introduces the concept of micro-incremental development and presents some
micro-incremental development techniques. Section 4 then introduces our environment
and describes how the environment can be used to construct a debugged implementa-
tion for a formally specified class.

2. A basic framework

2. I. Object-oriented programming and algebraic specifications

Our model of object-oriented programming is similar to the model used in the
object-oriented testing discussion in [Doong and Frankl 1991]. We use the term class
to refer to the implementation of an abstract data type within an object-oriented lan-
guage. An object is an instance of a class. A class implementation is defined in two
parts: an interface consisting of a list of operations that can be performed on instances
of the class, and a body consisting of the implementation of the operations. The im-
plementation of an operation is sometimes called a method, and invoking an operation
with respect to a given object is sometimes referred to as "sending a message" to the
object, which responds to the message by executing its method. Additionally, every
object has a state, which may be characterized by its history of method invocations.

Numerous class testing techniques have been developed for classes that have
been formally specified using algebraic specification techniques. The ordered list class
in Table t is specified using a language called LOBAS [Doong and Frankl 1991].

The specification requires that all methods be categorized as either a constructor,
transformer, or observer. Observer methods return a type other than that of the class
itself; the purpose of an observer method is to query the contents of an object (e.g.,
IsEmpty, Length, Top). Constructor and transformer methods both return objects of
the class itself. The distinction between constructors and transformers is somewhat
subtle and is explained below.

A. Parrish et al., Micro-incremental class development 215

Table 1
Ordered integer list specification.

class OrderedList
export

Create, Add, Delete, Head, Tail, Member, Length

constructor
Create ;
Add(v: I n t e g e r) ;

t r a n s f o r m e r
Delete(v: Integer) ;

Head ;

Tail ;
observer

Member (v : Integer) :

Length: Integer;

var

L: 0rderedList ;

v, vl, v2: Integer;

axiom
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

end

Boolean;

Create.Add(v).Head = v

Create.Member(v) = FALSE

Create.Add(v).Tail = Create

L.Add(v).Head = if v > L.Head then v else L.Head

L.Add(v).Tail = if v > L.Head then L else L.Tail.Add(v)

L.Add(vl).Member(v2) = (vl = v2) or L.Member(v2)

L.Add(v).Length = L.Length + 1

Create,Delete(v) = Create

L.Add(vl).Delete(v2) = if vl = v2 then L else L.Delete(v2).Add(vl)

The axioms define the semantics of the class. Sequences of methods separated
by dots are read left to right. For example, the sequence "Create .Add(lO).Tai l"
means that Create is first executed; Add(lO) is then executed on the result returned by

Create, and Ta i l is executed on the result returned by Add(lO). (This interpretation

is very much like the dot notation used in C++.) As an example, Axiom 3 states
that executing the method Create, followed by Add(v), followed by Tai l produces
an object that should be (in a correct implementation) equivalent to the list object

produced simply by executing Create. Similarly, Axiom 7 says that given a list
object L, when executing Add(v) on L followed by Length, the result returned by
Length should be the same as the result returned by executing Length on L and

adding 1 to the result.
Axioms may be used to derive one sequence from another. For example,

the sequence "Create. Add(lO).Add(20).Add(30).Delete(20)" may be reduced to
Create. Add(10) .Add(30) by repeated applications of Axiom 9 using the following

sequence of derivations:

216 A. Parrish et al., Mictv-incremental class development

Create. Add(lO).Add(20).Add(30).Delete(20) Create. Add(lO).Add(20).
Delete(20).Add(30)
Create.Add(lO).Add(30).

By understanding derivations such as this one, it is possible to understand the
difference between a constructor and transformer method. Constructors represent the
"most primitive" sequences of methods that may be used to produce a particular
object state. The axioms should be written in such a way that it is possible to rewrite
sequences of constructors and transformers into sequences consisting of constructors
only. In a correct implementation, it should be possible to produce states equivalent
to every possible object state using only constructors.

We now consider the notion of correctness of a class implementation (e.g., in
C + +) with respect to a given LOBAS specification. We say that two method se-
quences are specification equivalent if the axioms may be used to derive one sequence
from the other. For example, the sequences " C r e a t e . A d d (1 0) . A d d (2 0) . A d d (3 0) .
Delete (20)" and "Create . Add (:1.0). Add (30)" are specification equivalent as a result
of the derivation shown above.

Given the above notion of specification equivalence, we now are able to provide
an intuitive definition of the correctness of a class implementation. A class imple-
mentation is said to be correct with respect to a given algebraic specification if/ for
every pair (5'1, $2) of method sequences, SI is specification equivalent to 5'2 iff the
executions of 5'1 and $2 within the implementation return "equivalent" values. Two
possibilities exist for the types of the values returned by those sequences:

• the values could be from a built-in type (e.g., integer, character, boolean, float),

or

• the values could be objects of a user-defined class.

The notion of equivalence between values of built-in types is simple, and may
be determined simply by using the built-in equality operator within the implementation
language. The notion of equivalence between objects of user-defined classes is much
more complicated. In [Doong and Frankl 1991], a formal, theoretical definition of
object equivalence is given, known as observational equivalence. The basic idea is
that two objects are observationally equivalent if those objects cannot be distinguished
in client code. One possible heuristic for simulating observational equivalence is to
implement an Equal method for the class, whose behavior is similar to that of an
equality operator for built-in types. We discuss the use of such a heuristic in the next
section.

2.2. An algebraic spec(/~cation-based test execution model

In this section, we consider a model for test execution based on algebraic
specifications. We assume a model similar to that of the ASTOOT system [Doong
and Frankl 1991]. In this model, a test case is a triple of the form (S1, $2, ta9), where

A. Parrish et al., Micro-incremental class development 217

,_,el and 5'2 are method sequences and the tag is either "equivalent" or "inequivalent,"
depending on whether or not the sequences are specification equivalent.

For the moment, we will assume that specific test cases have already been
generated. (The problem of generating test cases will be addressed later in the paper.)
Given that test cases have already been created, we identify the following basic testing
process:

1. For each test case, execute 5'1 and 5'2 and determine whether or not they
return either "equivalent" values (the mechanism for assessing this equivalence
is discussed below).

2. If the test case is to be considered "OK" (unreveating of a defect), then either
(a) the test case tag is "equivalent," and values returned by SI and 5'2 are
actually "equivalent" or (b) the test case tag is "inequivalent" and the values
returned by 5'I and 5"2 are actually "inequivalent." Otherwise, the test case
reveals a defect.

We now discuss the mechanism for assessing the equivalence of two sequences
when executed as part of a given implementation. Provided that S1 and $2 return
values of a built-in type, a test driver can be constructed that automatically compares
return values and prints a message as to whether or not the test case reveals a defect.
In particular, consider the test case (131, t32, equivatentL where /31 and /32 are as

follows:

(131) Create.Add(10).Add(20).Length
(B2) Create.Add(10).Add(20).Add(30).Tail.Length

It is easy to verify that B l and B2 are specification equivalent, which implies
that the "equivalent" tag is valid for this (hypothetical) test case. Since Length returns
an integer (which is a built-in type), a test for correctness is simply a test to determine
whether the integers returned in both sequences are identical. Thus, we have the
following test driver psuedocode:

List a, b;

a. Create(); b. Create();

a. Add(10); a. Add(20);

b. Add(10); b. Add(20); b. Add(30); b.Tail();

if (a.length() == b.length())

output "Test case correct";

else

output "Test case error";

The condition a . l e n g t h () == b . l e n g t h () uses the built-in integer equality op-
erator to determine whether or not the integer results of the two sequences are identical.

On the other hand, if the two sequences both return objects, then a user-defined
E q u a l method must be used to measure equivalence, as was discussed in the previous

218 A. Parrish et al., Micro-incremental class development

section. Unlike the built-in equality operator (which should not contain defects), this
approach is not fool-proof, in that the user-defined Equal method may itself contain
errors. However, the testing process will (ideally) reveal any such errors, e.g., if a test
case fails and there is no defect in the methods that are explicitly a part of the test,
the defect must be in Equal.

The test driver constructed in a situation where the sequences return objects is
conceptually the same as the test driver above. In particular, consider the test case
(C1, C2, equivalent), where CI and C2 are simple modifications of B1 and B2
above (length has been removed):

(CI) Create.Add(lO).Add(20)
(C2) Create. Add(lO).Add(20).Add(30).Tail

C1 and C2 are indeed specification equivalent, given that both lists are ordered.
Thus, the "equ iva len t " tag in this test case is valid. Unlike BI and B2, both C1 and
C2 return lists, i.e., objects of a user-defined class. The driver will need to utilize a
user-defined list equality method to compare the stack results. In C++, the ---= operator
may be overloaded for the list class. After performing such overloading for class
Lis t , the resulting test driver appears below:

List a, b;

a. Create(); b. Create();

a. Add(lO); a.Add(20);

b. Add(lO); b. Add(20); b. Add(30); b.Tail();

if (a == b) // == is defined for class List

output "Test case correct";

else

output "Test case error";

Currently, our method for generating test cases (discussed in section 3) only
generates test cases with equiva len t tags. Because of this, we will drop the tag
notation in the remainder of the paper, and express test cases as simple pairs of
method sequences. As is noted in [Doong and Frankl 1991], this eliminates some
test cases that may be useful in revealing defects. (The resulting model is actually
similar in power to the DAISTS model [Gannon et al. 198I].) However, there are a
number of useful test cases still available, and our method is not intended to be the
final testing method used when validating a class, but is simply a tool to use during
development to assist in defect elimination.

3. Micro-incremental development

Existing class testing techniques assume that the class under test has already
been constructed. A completed class normally involves a plurality of methods. In a

A. Parrish et al., Micro-incremental class development 219

good design, we would not expect individual methods to be complex [McGregor and
Sykes 1992]. However, many methods are non-trivial, and methods (whether simple
or complex) may interact to produce objects whose states are relatively complex.
Moreover, under a typical development model, the number of failures that occur
initially during testing is relatively high. Tracking down the sources of these failures
among a large number of methods that are interacting in potentially subtle ways can
prove to be extremely difficult.

We believe that one of the keys to effective debugging support is in the idea of
state simplification. When producing class objects for testing and debugging purposes,
objects with simple states are easier to reason about than are objects with complex
states. Not all defects are revealed by simple state objects; however, many defects
revealed by complex state objects are also revealed by simple state objects. Thus, we
are advocating an organization of the class testing process, where testing progresses
from (initially) examining simple state objects to (eventually) examining objects with
states that are more complex.

We identify two possible "state complexity" dimensions around which to orga-
nize an incremental class testing process:

• Structural complexi~: The number of different methods that are invoked to
produce a given state.

• Behavioral complexi~: The number of method invocations producing a given
state.

For example, consider the state produced by invoking "Create.Add(10).
Add(20) .Delete." The structural complexity of this state is 3, since there are three
methods invoked to produce this state (Create, Add, and Delete). The behavioral
complexity of this state is 4 (the length of the sequence).

The goal of our incremental testing process can now be more precisely stated:
To locate each class defect using the simplest possible state in terms of both its
structural and behavioral complexi~.. Our process may be characterized as follows:

1. Execute a series of test cases, where the objects produced by the test are of
progressively increasing complexity.

2. When a test case in the series fails, cease testing until the defect is repaired.

3. Repairing the defect involves modifying one or more methods. Repeat any
previously executed test cases that involve modified methods.

4. Continue testing in this manner until the next defect is revealed (at which point
steps 2 and 3 are repeated) or testing is completed without revealing more

defects.

This process results in two tangible benefits:

• Reasoning about the source of a defect may be conducted in the simplest pos-

sible context.

220 A. Parrish et al., Micro-incremental class development

• Regression testing resulting from defect repair is simplified, tn particular, if
a defect is located and repaired in the simplest possible state, then the num-
ber of methods that have to be re-executed when retesting simpler states is
correspondingly reduced.

We now address the actual mechanisms used to achieve our goal of producing
test cases in increasing order of structural and behavioral complexity. First, to ensure
a progression of increasing structural complexity during test case generation, we need
to be able to test iteratively during the development process. That is, we want to be
able to test subsets of methods as those methods are developed. With our (algebraic)
specification-based testing model, the order in which methods are developed directly
impacts the amount of testing that can take place prior to class completion. Thus,
a technique is needed to generate the optimal ordering in which methods should be
developed for a given class, if we wish to maximize testing during development.

Second, to ensure test case generation is performed in increasing order of behav-
ioral complexity, we need to be able to progressively increase the number of method
invocations involved in test cases. Our method for generating test cases directly ad-
dresses this.

The remainder of this section is organized as follows. Section 3.1 discusses
a method for generating an optimal ordering in which methods should be developed,
thus addressing the structural complexity dimension. Section 3.2 discusses a method
for generating test cases in increasing order of behavioral complexity, thus addressing
the behavioral complexity dimension. Finally, section 3.3 discusses the integrating
these techniques to define an overall testing methodology.

3. I. Selecting a development ordering

A development ordering is an arrangement of class methods that identifies the
order in which the methods should be developed. As discussed above, the selection
of such an ordering is determined using the goal of permitting as much testing as
possible as early as possible. This allows testing to take place as (small) subsets of
methods are written, as opposed to deferring testing until after all methods have been
coded.

Not all development orderings are equally good in terms of permitting periodic
testing. To illustrate, consider the specification for a simple stack class in Table 2.

Now consider the development ordering Create --6 Pop --~ Top --~ Push. In this
case, no testing is permitted until all methods are complete. In order to construct test
cases using a given axiom, all of the methods in that axiom must be present; however,
Push is present in every axiom. Thus, it is impossible to construct any executable test
cases for the class until after all methods are completed (since Push is constructed
last). Create ---+ Push ~ Pop --+ Top would be a much better development ordering,
in that there are opportunities for testing earlier (and more often) in the development
process. With this ordering, the developer could:

1. Develop Create and Push and then construct test cases using Axiom 1.

A. Parrish et al., Micro-incremental class development 221

Table 2
Integer stack specification.

class Stack
export

Create, Push, Pop, Top
constructor

Create;
Push(v: Integer);

transformer
Pop;

observer
Top: Integer;

var

s: Stack;
v: Integer;

axiom
(I) not (s.Push(v) = Create)

(2) s.Push(v).Pop = s

(3) s.Push(v).Top = v

2. Test the methods Create and Push.

3. Develop Pop and then construct test cases for Create, Push and Pop using
Axioms 1 and 2.

4. Test the method pop, and perform additional tests on Create and Push. (Addi-
tional testing on Create and Push might be necessary because of the new states
generated by including pop in the test cases.)

5. Develop Top and then construct test cases for all four methods using all three
axioms.

6. Test all methods in the class.

More generally, given a development ordering Ml, M2, M 3 , . . . , 34,,, we at-
tempt to maximize:

1. the number of Mis for which new testing is possible (i.e,, testing that was not
possible to perform after constructing Mi_l), and

2. for each Mi after which testing is permitted, the number of axioms available
for constructing test cases.

Item (1) deals with maximizing the number of opportunities in which testing
may occur, while item (2) deals with maximizing the amount of testing that can take
place at a given opportunity. We call an opportunity to test a test point. A test point at
position i in a development ordering means that it is possible to construct and execute
test cases after developing the ith method that were not executable after the (i - 1)th
method in the ordering. In the stack example, with the ordering Create --+ Push --+
Pop -+ Top, there are test points after Push, Pop and Top; each method introduces

222 A. Parrish et al., Micro-incremental class development

new testing opportunities, as additional axioms may be used in the production of test
cases. There is no test point after Crea te because no test cases can be produced from
the axioms with just the Crea te method.

By developing methods in an order which maximizes both the number of test
points and the amount of testing which may occur at a given test point, we are able
to design the testing process so that testing can take place on subsets of the methods.
This allows us to test in the context of reduced structural complexity. As methods are
added, we increase the structural complexity of our test cases in a gradual, orderly
fashion.

We now provide a simple greedy-style algorithm to select development order-
ings in this fashion. To define this algorithm, we first have the notion of an axiom-

method table. This table is simply a dynamic table of those methods that appear in
each axiom that have not yet been selected for the recommended development order-
ing. That is, position (l) in the table initially contains those methods that appear in
Axiom 1; position (2) initially contains the methods that appear in Axiom 2, etc.

In order to conduct any testing at all using our model, it is necessary to have
two special methods: a method that returns objects "from scratch" and an equality
operator. We call methods that return objects without requiring an input object a base
constructor. I We assume that a base constructor and an equality operator are both
developed first, and thus omit them from the axiom-method table. To avoid confusion,
we call the base constructor Create and the equality operator Equal, although in
our target implementation language, it is possible to implement both as overloaded
operators (EQUAL as ==, and Crea te as a C + + constructor). We consider this issue
further in section 4.

To illustrate the axiom-method table, we reconsider the ordered list specification
from Table 1. In this case, the only base constructor is Create. Although no equality
operator is specified, one must still be developed to test this class using our test
execution model. However, neither Crea te nor the equality operator will appear in
the axiom-method table for this class. Each position in the table contains the methods
that appear in the the axiom corresponding to that position (minus Create). The initial
value of the axiom-method table appears in Table 3(a).

The second important concept that we must introduce is the notion of a method

table. The method table contains a record for each method with three attributes: (1)
the method name; (2) the method's test point contribution and; (3) the method's axiom

contribution. A method's test point contribution is simply "yes" or "no," depending on
whether a test point is created if that method is chosen. A method's axiom contribution
is the sum of the contributions that the method makes to each axiom in which it is
used. The notion of "contribution to an axiom" is explained below. The method
table is also dynamic, in that once a method is selected for a development ordering,

The term base constructor is used to distinguish such methods from the LOBAS notion of a constructor,
which is slightly different. Base constructors are very much like the C++ notion of a constructor.

A. Parrish et al., Micro-incremental class development 223

Table 3(a)
Ordered list axiom-method table.

Table 3(b)
Ordered list method table.

Axiom Methods Method TC AC
(I) Add, Head
(2) Member
(3) Add, Tail
(4) Add, Head
(5) Add, Head, Tail
(6) Add, Member
(7) Add, Length
(8) Delete
(9) Add, Delete

Add no 3.33
Delete yes 1.50
Head no 1.33
Tail no 0.83
Member yes 1.50
Length no 0.50

the method table is updated to reflect changes that have occurred with respect to the
contribution of the other methods.

The initial value of the method table for the ordered list class is shown in
Table 3(b).

As discussed above, test point contributions (TC) are obtained by noting which
methods would result in test points, if chosen as the next method in the development
ordering. Member and Delete both result in a test point so the test point contribution
for both of these methods is "yes". On the other hand, Add, Head, Tai l and L e n g t h

would not result in a test point if chosen first, so their test point contributions are "no."
Axiom contributions (AC) are based on the cumulative contributions of that method
to each axiom. For example, Head (which appears in 3 axioms) receives a 1.33, based
on the sum of:

• 0.5 from Axiom 1, because it is one of two methods present (and represents
one-half of the methods remaining to be implemented in order to test using
Axiom 1),

• 0.5 from Axiom 4, because it is one of two methods present (and represents
one-half of the methods remaining to be implemented in order to test using
Axiom 4),

• 0.33 from Axiom 5, because it is one of three methods present (and represents
one-third of the methods remaining to be implemented in order to test using
Axiom 5).

We then have two selection criteria for the next method:

• First, identify methods that make test point contributions, thus permitting an
oppomanity to test after that method is constructed. For the above method
table, this rule implies we should only consider Delete and Member as the next
method.

• Second, for the methods identified in the previous step, choose the next method
based on the highest axiom contribution, thus maximizing the amount of testing
that can be conducted at a given opportunity. If two methods both define a new
test point and both contribute equally, an arbitrary choice can be made. In this

224 A. Parrish et al., Micro-i.cremental class development

example, both De l e t e and Member have the same axiom contribution (1.5), and
so we can make an arbitrary choice between the two.

We choose D e l e t e for the first method (arbitrarily). We then revise tile axiom-
method table and the method table, as is shown below. The method chosen (in this
case De le t e) is removed from the axiom-method table. In addition, the method table
is revised as follows: (a) De l e t e is removed from the table and; (b) the axiom and
test point contributions are revised accordingly. The new axiom-method and method
tables are then shown in Table 4(a).

Of the entries in the revised method table that make a test point contribulion,
Add has the highest axiom contribution. Consequently, we take Add to be the next
method: the revised tables are illustrated in Table 4(b).

At this point, Head has the highest axiom contribution of those methods making
a test point contribution, so it is chosen next. Repeatedly applying this same procedure
to the remaining methods, the final ordering (including Crea t e and Equal) is Crea t e
-+ Equal -+ Delete -+ Add -+ Head -+ Tail -+ Member -+ Length.

This process focuses primarily on subsets of the methods in which it is still
possible to conduct testing, thus allowing us to initially test in the context of struc-
turally simple states involving a limited number of methods. This testing using simple
states may then gradually transition to testing that involves more complex states.

Table 4
(a) Tables after selecting method Delete,

Axiom-Method Table Method Table
Axiom Methods Method TC AC
(1) Add, Head Add yes 3.83
(2) Member Head no 0.83
(3) Add, Tail Tail 11o ().83
(4) Add, Head Member yes 1.50
(5) Add, Head, Tail Length no 0.50
(6) Add, Member
(7) Add, Length

(8)
(9) Add

(b) Tables alier selecting method Add.

Axiom-Method Table Method Table
Axiom Methods Method TC AC
(1) Head
(2) Member
(3) Tail
(4) Head
(5) Head, Tail
(6) Member
(7) Length
(8)
(9)

Head yes 2.50
Tail yes t.50
Member yes 2.00
Length yes 1.00

A. Parrish et al., Micro-incremental class development 225

3.2. Generating test cases

Our method for generating test cases involves generating "object states", and
then using those states as inputs to axioms from the specification. Thus, we divide the
test case generation problem into two parts: the problem of generating object states
and then the problem of actual test case construction, using the object states as inputs.

In [Parrish et at. 1994] we first described a relatively simple scheme for gener-
ating object states. The basic idea is to identify those methods that have an effect on
the object state. In LOBAS terms, these are the constructor and transformer methods.
In the case of the ordered list class, those methods are Create and Add (constructors)
and Delete, Head and Tai l (transformers). It is useful to further subdivide this group
of methods in a slightly different way. Recall from section 3.1 that a method is a
base constructor if it produces an object from scratch, i.e., without taking an object
as input. To develop our state generation approach, we will need to segregate base
constructors from other constructofftransformer methods. We call the other construc-
tofftransfbrmer methods mod(/iers, in that they take an object as input and modify the
object to produce a result.

It is then possible to systematically generate a series of increasingly complex
object states. These states may be used as input to the axioms during testing, as is
described later in this section. To organize the state generation process, we utilize
what we call a state tree. Each node in the tree represents a particular state. The
character strings at each node represent the method sequences used to generate the
state (e.g., CAD refers to the state generated by executing Create, followed by Add,
followed by Delete). A partial state tree for our list class is shown in Figure 1.

The states in the tree are generated as follows. First, the base constructor
method is executed to generate the initial (root) state. Next, the states at Level I are
generated, from left to right, by invoking the methods at each node. Following the
generation of Level I states, the states at each successive level are generated in similar

fashion.
It should be noted that other information is needed to generate states than

simply the order of method invocations as defined within the state tree. In particular,
the sequence CAD indicates that Create, Add and Delete are to be executed on some
defined list object. In C++ syntax, the object is written in front of the method in
an invocation (e.g., the L in L.Add(v)). However, each of these methods (Create,

C

CA CD

CAA CAD CAT CDA CDD CDT

CT

CTA CTD CTT

Figure 1, State tree for ordered lisl class.

226 A. ParHsh et al., Micro-incremental class development

Add, De l e t e , and T a i l) may take other "secondary" parameters. For example, Add
and Dele te take a specific element value that is to be added or deleted (e.g., the v
in L.Add(v)) . In general, there are three types of secondary parameters that can be
expected in a given implementation:

• Parameters of built-in types, such as integer, character, real, boolean, e tc .

• Parameters of a class other than the class under test.

• Parameters of the class under test. In the case of a "binary" method (e.g.,
concatenate, which takes two string objects), one of the two parameters may be
viewed as the primary parameter and the other one as the secondary parameter
(e.g., s l . concat (s2), where s2 is the secondary parameter). Note that in C++,
operator overloading may eliminate the syntactic distinction between primary
and secondary parameters (e.g., s l + s2).

Our current implementation builds a state tree for the primary object parame-
ter, and randomly produces values for secondary parameters. For built-in types, this
essentially involves using a random number generator; for class objects, this involves
generating random constructor and transformer method sequences. Although this in-
troduces an element of randomness to an otherwise systematic process, we can at
least ensure that at least one parameter of the class under test is being systematically
manipulated by method invocation sequences of steadily increasing complexity.

States produced by this process are used as parameters to the axioms to generate
test cases. Specifically, if there is a variable in an axiom of the type of the class
under test, then states from the state tree are used to produce values for the variable
in constructing test cases. For example, consider Axiom 7 from the ordered list
specification in Table I:

L.Add(v).Length = L.Length + 1

Producing test cases from this axiom involves generating a succession of values
for L and v. Using our state tree generation strategy, we can have the following
sequence of values that may be substituted for L (the first three levels of the state
tree):

L1 C r e a t e
L2 Crea t e .Add(lO)
L3 C r e a t e . D e l e t e (6 5 4 0)
L4 C r e a t e . T a i l
L5 C r e a t e . Add(lO).Add(564)
L6 C r e a t e . A d d (l O) . D e l e t e (4 3 0)
L7 C r e a t e . A d d (l O) . T a i l
L8 C r e a t e . D e l e t e (6 5 4 0) . A d d (5 4 3)
L9 C r e a t e . D e l e t e (6 5 4 0) . D e l e t e (5 4 9 8 7)
LIO C r e a t e . D e l e t e (6 5 4 0) . T a i l

A. Parrish et al., Micro-incremental class development 227

Lll Create.Tail.Add(237)

L12 Create.Tail.Delete(lO)

LI3 Create.Tail.Tail

Note that once a value is randomly generated for a parameter, that value is
retained for the parameter within a given subtree. For example, the first invocation of
Add in every node of the subtree rooted at CA receives the parameter value "10" (i.e.,
in L2, L5, L6 and L7 in the table above).

The object values from the above table may then be substituted back into the
axiom to create a series of test cases:

(Li.Add(lO3).Length, LI.Length + i)

(L2.Add(653).Length, L2.Length + I)

(L3.Add(9403).Length,L3.Length + I)

(L4.Add(120).Length, L4.Length + i)

(L5.Add(4ST),Length, LS.Length + I)

etc.

The progression of states from the state tree is substituted for the leftmost list
variable to appear in each axiom. Substitutions for all other variables are made at
random. However, by using the progression of states generated by our state tree to
make at least one substitution, we normally meet our goal of ensuring that test cases
steadily increase in complexity. We acknowledge, however, that due to the randomness
of the remaining substitutions, there will be some exceptions.

The same substitution process takes place for the remaining axioms to generate
additional test cases. We note that, for branching axioms (i.e., axioms that contain an
i f or some type of conjunction with multiple exclusive parts), there is no guarantee of
testing all branches of the axiom; testing both branches will normally require that the
random values generated for various variables be appropriate to ensure such coverage.

For example, consider the axiom:

L.Add(v).Head = if v > L.Head then v else L.Head

Testing both branches for the right hand side requires that values be generated
for v and L such that v > L. Head and v <= L. Head. It is possible that (eventually) such
values will be generated simply by generating a large number of test cases. However,
since this cannot be guaranteed, our environment (as discussed in section 4) produces
information regarding which branches of the branching axioms have been tested. In
this way, the developer can monitor whether additional testing is needed.

A final question which surfaces involves determining when to stop testing.
As we discuss in section 4.1, the developer must specify two things when using
our environment to generate test cases: (a) the number of levels in the state tree and
(b) which base constructors to use in generating state trees (as it is possible to generate
a distinct state tree for every base constructor). However, the testing technique does

228 A. Parrish et al., Micro-incremental class development

not provide any guidance regarding how to make these two choices; effectively, there is
no stopping criterion built into the testing technique. We would expect that a necessary
condition for stopping would be coverage of all branching axioms, as discussed above.
This is consistent with the approach used by DAISTS [Gannon et at. 1981]. However,
we certainly do not feel that this is a sufficient condition.

On the other hand, we are not suggesting that this method should be the only
testing method applied to a class, where a decision would have to be made based
solely on our results regarding whether or not the class had been tested adequately.
Instead, this method is a development and debugging-oriented approach that makes
an initial pass at testing classes in an organized fashion during development. Once
the class is completely developed, a more rigorous testing method with a definite
completion point could still be applied to the completed class (such as the technique
from [Doong and Frankl 1991]). Further investigation is needed to determine how
extensively testing should be conducted during development, as well as to determine
ways of refining or modifying our test generation strategy. One of the advantages of
our overall framework is that it is possible to modify the test generation strategy (or
the development ordering generation strategy) and still retain the overall benefit of
incremental development within a general framework.

3.3. An overall development and testing methodology

Our method for generating test cases (m section 3.2) may be combined with
our method for generating development orderings (in section 3.1) to create an overall
testing approach in the context of development. In particular, suppose that you have
the following development ordering for the ordered list class as defned in section 3.1
(Equal -+ Create -+ Delete -+ Add -+ Head -+ Tail --+ Member -+ Length). A

general development and testing process would be as follows:

1. Develop Equal, Create and Delete and generate test cases using Axiom 8 and
state tree generation restricted to these two methods. In particular, the state
tree would be linear, with Delete the only modifier method in the tree (the
generated states would be C, CD, CDD, CDDD, CDDDD, etc.).

2. Develop Add and generate test cases using Axioms 8 and 9. In this case, the
state tree would be binary, with Add and Delete as modifiers and Create as the
base constructor. States are produced such as C, CA, C0, CAA, CAD, CDA, and CDD
(the first three levels in the state tree in breadth-first order).

3. Develop Head and generate test cases using Axioms 1,4, 8 and 9. At this point,
we have three modifier methods (Add, Delete and Head), and so the state tree
is ternary. States produced include c, CA, CD, CH, CAA, CAD, CAH, CDA, CDD, CDH,
CHA, CHD, CHH (again, the first three levels in breadth-first order).

4. Develop Tai l and generate test cases using Axioms I, 3, 4, 5, 8 and 9. Now
we have four modifier methods (Add, Delete, Head, and Tail), and the state
tree is extended appropriately.

A. Parrish et al., Micro-incremental class development 229

. Develop Member and generate test cases using Axioms 1, 2, 3, 4, 5, 6, 8 and 9.
Although we are able to conduct testing using additional axioms beyond the
previous step, the state tree does not change from before, since Member is not a
modifier method.

. Develop Length and generate test cases using all of the axioms. Again, the
state tree remains as before; however, we are able to generate additional test
cases via the use of Axiom 7.

Thus, we achieve our first goal of incremental structural complexity by "testing
as we go," before all of the methods are written, limiting the number of methods that
can appear in test cases to just those which have been written. We achieve our second
goal of incremental behavioral complexity by utilizing a progression of states from a
state tree as object inputs to the axioms in constructing test cases.

4. An integrated development environment

4. I. Environment fimctionali~ and architecture

An integrated environment which supports the class development paradigm
described in section 3 is presently under construction; we currently have a working
prototype that we are using for experimental purposes. In our environment, LOBAS
specifications are used as input to generate three separate items:

• a development ordering for the class,

• a "template" for a (partial) class (using C++), and

• a test driver program for a (partial) class.

The notion of a development ordering was discussed extensively in section 3.
A test driver program is just a program that executes the test cases generated for the
class using the techniques of section 3,2. The notion of a class template is discussed

below.
Let us first consider the sketch of the environment's X-Windows interface found

in Figure 2. Figure 2 assumes that we have loaded the stack specification from Table 2
(section 3.1). We can generate the development ordering by clicking o n the[0rdering]

button, thus resulting in the configuration shown in Figure 3.
Now we are in a position to begin development. We begin by clicking the

buttons containing the names of the methods that we wish to develop from the top
of the screen. Clicking on ~ and ~ indicates that we wish to develop
these two methods first (as the ordering suggests). Once we have clicked on both
methods, Axiom 1 shifts from the "Inactive" to "Active" windows. Figure 4 shows the
configuration of the development manager at this point. This configuration indicates
visually that we have a "partial specification" consisting of Axiom 1 now available
for test generation purposes. Thus, once Create and Push are actually written, we can
conduct testing using Axiom 1 to generate test cases.

2 3 0 A. Parrish et al., Micro-incremental class development

~iiii!!~i~ii~iiiiiii~iiiiii~ii!!~i~i!~iii!i~iiiiii~iiiiiiiiii~iiiiiii~iii~iiii~i~iiiii~iiiii!~iiiiiiiiii ~i~ii!~~i~i~i!iii~!ii!iii~i~i~i~!!!!~i~iiiii~i~i~iii~i~!i~i~ii~ii~ii~i!i~ii~!~iiii~!~iii!~i~i~

(1) not (s.Push(v) = Create)

(2) s.Push(v).Pop = s

(3) s.Push(v).Top = v

S T A T U S

F igu r e 2. Initial conf igura t ion .

~!iii~iii~iiiiiiii~ii~iiiii~iiii~ii~i~i~i!!!!~i~i~i!!iiiiiiiii~iiiiiiii~i!iiiii~iii!iii~iii~iii!ii~i~!!!iii~i~iiiii~i~i~ ~!iii~ii~i~iii~!i:~i!~i~ii!~!~i~!!i!iii~!!~i!~!~i~!~i~i~!ii~ii~!i!i~i~i!!!!~i~!!~i~!~!!z~:~i!~i!!~ii~!~iii~!~!i~:i~i~:ij
I I Crea'o ~--~ Pu'h ~

(1) not (s,Push(v) = Create)

(2) s.Push(v).Pop = s

(3) s.Push(v).Top = ;,

S T A T U S

F igu r e 3. Af t e r g e n e r a t i n g d e v e l o p m e n t o rder ing .

A. Parrish et al., Micro-incremental class development 231

! Croa'e --fSgN I

(1) not (s.Push(v) = Create) (2) s.Push(v).Pop = s

(3) s.Push(v).Top = v

S T A T U S

Figure 4. Al ter select ing Create and Push .

To assist in writing Create and Push, we first click on the l c++ code] button.
This generates a "template" for the C++ class, based on information found in the
LOBAS specification, as follows:

class Stack{
private:

// Fill in implementation here
public :

void Create(void) ;
void Push(int v) ;

};

void Stack : : Create (void) {
// Fill in implementation here

}

void Stack::Push(int v){
// Fill in implementation here

}
Our current implementation simply takes the method names from the LOBAS

specification and generates the C++ template accordingly. However, it should also

be possible to specify mappings from LOBAS names to C++ names. For example,
it would be appropriate to implement Create as a C-~- constructor rather than as a

method called Create. We are currently working on an enhancement to the prototype

that provides the facility to specify such mappings.

232 A. Parrish et al., Micro-incrementat class development

[i.. i i ::,

Push
Pop

] : : :~CEE [[: VIEW j

Figure 5. Defining implementation dependencies.

At this point, the developer must provide an implementation for the actual data
representation for class Stack, and then implement Create and Push. Once bodies are
written for these methods, testing may begin. Clicking on [Tes t Driver] generates
another window, where the user is asked to specify two things:

• the base constructors for which it is desired to generate state trees (effectively,
how many different state trees should be generated), and

• the number of levels in each state generation tree that should be generated.

Once this information is provided, a test driver is generated. This driver exe-
cutes the test cases produced by combining the state trees with the axioms, as described
in section 3.2. For every test case, the driver executes the two sequences found in
the test case, and then compares the results of those sequences to determine whether
or not the test case passes (as discussed in earlier sections). Information regarding
any test cases that fail is shown in a separate window. Also, whenever a test case is
executed that involves a branching axiom, information regarding which branch of the
axiom is actually tested is also output to the separate window.

Once Create and Push have been debugged, the tester can click on additional
methods. Clicking on [- ~ causes Axiom 2 to become active, meaning that more

testing can now be performed. Clicking on]c++ Code]extends the existing class with
(a) a prototype for the pop method and (b) a function definition for Pop with an empty
body. The developer may fill in the contents of Pop, click on [Test Driver], and
continue testing as before.

The only remaining button not discussed so far is the]Dependencies]button.

Clicking on[Dependencies]al lows the developer to define implementation dependen-
cies among the methods. For example, suppose the developer wishes to implement
Top by invoking pop on a local copy of the stack and returning the value that is
removed. Consequently, there is a dependency in the implementation (not present
within the specification) that needs to be specified. Figure 5 contains the window
where implementation dependencies are defined.

A. Parrish et al., Micro-incremental class development 233

By specifying this dependency, the development ordering generator will not
allow an ordering to be constructed that contains Top before pop. The actual imple-
mentation simply will not set Top's test point contribution to "yes" until pop has been
selected. It should be pointed out that such an implementation may cause the develop-
ment ordering algorithm to fail, because there may be a case where the only method
making a test point contribution depends on some method that hasn't been developed
yet. In such a case, the developer is told of the conflict and the reasons for it, and
is given the opportunity to resolve the conflict by either changing the specification
or removing the implementation dependency. Failure to resolve the conflict simply
means that testing will have to be deferred until the class is completed.

4.2. Case study: Building a list implementation

As an example illustrating the utility of this environment, we developed a C++
implementation of the ordered list class. For demonstration purposes, we elected
to generate test cases utilizing an eight-level state tree. As already discussed, the
development ordering generated by the environment (based on our algorithm from
section 3.1)was Create --~ Equal --> Delete --> Add -+ Head --+ Tail -+ Member

-+ Length.

Our development was completed by one of the authors in a relatively non-
contrived setting. In particular, the author was handed the specification and was given
the development environment, with no preparation regarding expected outcomes. The
mistakes made were not deliberately contrived, but were in fact real. A log of the
development process appears as follows:

1. The initial step was to build the first methods in the ordering: Create, Equal
(implemented as ==) and Delete. No testing was possible until after Delete
was completed, as Delete constituted the first test point in the ordering, At this
point, we were able to generate test cases using Axiom 8 and an eight-level
state tree (i.e., c, co, CDD, CDDD, etc., up to eight levels). All test cases passed.

2. The method Add was developed, allowing test cases to be generated using Ax-
ioms 8 and 9 and an eight-level state tree produced by Create (base constructor)
and Delete and Add (modifiers). All test cases passed.

3. The method Head was developed, allowing us to generate test cases with Axioms
1, 4, 8 and 9 (and an eight-level state tree). Executing the test driver resulted
in a segmentation fault, which upon subsequent examination, was found to be
caused by an uninitialized pointer. The defect was repaired.

4. The test cases from step (3) were repeated. The result was that one of the Axiom
4-based test cases, (Create. Add(27).Add(540).Head, 540), failed. Because of
our incremental approach, it can be inferred that the defect is in one of three
methods: Create, Add or Head (the only methods involved in the construction

234 A. Parrish et al., Mictv-incremental class development

and execution of the test case). 2 The cause turned out to be the Add method, in
that it did not insert elements in the proper order, but rather simply maintained
the list in random order. This defect was repaired.

5. The test cases from step (3) were again repeated. Again, a similar test case
(based on Axiom 4) to the one from step (4) failed, although with different ran-
dom number integer inputs. Similar inferences can therefore be made regarding
the source of the defect. The cause was that Add now inserted the elements into
the list in the wrong order (ascending, rather than descending).

6. The test cases from step (3) were again repeated, again with a failure on a test
case like the one in step (4) above. The problem this time was that the special
case of inserting an element at the head of the list was not handled properly.
The defect was repaired and the tests repeated with no failures.

7. At this point, the T a i l method was added, allowing test cases to be generated
with Axioms 3 and 5 (in addition to Axioms 1, 4, 8 and 9, which were already
available). Running the test cases revealed a failure in an Axiom 5-based test
case where the integer parameter to Add equaled the item already at the head of
the list. (This test case is too complex to specify here, given that generating a
parameter to Add that was already at the head of the list was a random event and
did not occur early in the sequence of test cases.) This test case was created
and executed using Create , Add, Head, T a i l and Equal. Thus, Dele te was
not examined for the defect, nor were Member and Length (which are not even
written yet). It was eventually concluded that the defect was the result of an
incorrect assumption that if an existing element was to be added again to the
list it should not be duplicated. The axioms, however, imply that elements may
be duplicated. Thus, Add was modified accordingly.

8. Although Dele te was not examined directly in the previous step, we realized at
this point that a change to Dele te was necessary. The original implementation
of Dele te removed all elements in the list of a given value, while the revised
implementation only removes one such element if there are multiple copies.
After making these changes and re-running the test cases from the previous
step, no failures were observed.

9. The method Member was added next, allowing test cases to be produced using
all of the axioms except Axiom 7. Test cases were then produced using an
eight-level state tree and Axioms 1-6 and 8-9. No failures were observed
when executing any of the test cases.

'-Note that for some test cases, the class equality operator is also involved in executing the test case;
however, the built-in integer equality operator was used in this test case because the two sides of the
test case had integer results.

A. Parrish et al., Micro-incremental class development 235

10. Finally, the method Length was added, allowing test cases using all of the
axioms to be generated. Testing was performed using all axioms and all states
in an eight-level state tree. No failures were observed.

The important observation to make about this process is that, cumulatively
speaking, there were actually six separate defects ultimately observed in this class.
Although two of the defects could not have arisen simultaneously (the Add defects
where the list was first unordered and then ordered in the wrong direction), five of
the defects could have co-existed within an initial version of the class. Isolating and
eliminating defects (even relatively straightforward defects such as these) would have
been extremely difficult in such a context. Our incremental approach provides the
advantage of "divide-and-conquer" when locating and removing defects, which is not
available if testing is deferred until the class is complete.

To appreciate the difference between incremental and "post-developmenC class
testing, consider the fact that there were test cases involving two different axioms that
failed in the above testing scenario (Axioms 4 and 5). This allowed us to restrict our
attention to analyzing only those axioms, and only the methods involved in producing
test cases with those axioms. With post-development testing, the various defects in
the Add method would have caused failures to occur in most of the axioms where
Add is present (possibly Axioms 4, 5, 6, 7, and 9). In particular, the failure to add
an element properly to the head of the list would have resulted in definite failures in
test cases based on Axioms 6 and 7 (the axioms which specify Member and Length).
Thus, the developer might have wasted time looking for defects in Member and Length
when none existed. Instead, we eliminated the Add defect before test cases based on
Axioms 6 and 7 were even constructed and executed.

5. Conclusion

In this paper, we have identified an incremental development process for object-
oriented class development. We call this type of process "micro-incremental" to reflect
the idea that it is incremental with respect to developing the internals of a single class.
We believe that this type of process is both natural and important to the development
of classes, which may contain methods that interact in complex ways. Identifying
an incremental process of this type simplifies regression testing and makes the defect
removal process more efficient.

Future work will involve the development of additional development ordering
and test case generation strategies as alternatives to our current strategies. We ac-
knowledge that there are limitations to the current strategies, and intend to consider
alternatives that fit within this paradigm. Our development environment is constructed
to provide an overall framework where other testing strategies may be substituted
without sacrificing any of the advantages of incremental development. A primary
goal of our future work is to experimentally evaluate a number of different incremen-
tal development strategies over a wide variety of classes; our environment provides a
framework for such evaluation.

236 A. Parrish et al., Micro-incremental class development

References

Doong, R. and E Frankl (1991), "Case Studies on Testing Object-Oriented Programs," In Proceedings of
the Fourth Symposimn on Software Testing, Analysis and Veri[~cation, pp. 165-177.

Gannon, J., P. McMullin and R. Hamlet (1981), "Data Abstraction, Implementation, Specification and
Testing," ACM Transactions on Programming Languages and Systems 3, 211-223.

Guttag, J., J. Homing and J. Wing (1985), "The Larch Family of Specification Languages," IEEI-Software
4, 5, 24-36.

Harrold, M., J. McGregor and K. Fitzpatrick (1992), "Incremental Testing of Object-Oriented Class
Structures," In Proceedings of the h~ternational Conference on Software Engineering.

Hoffman, D. and C. Brealey (1989), "Module Test Case Generation," Ptvceedings of the A CM SIGSOFT
'89 Third Symposium on Software Testing, Analysis and Verification, pp. 97-102.

Jalote, P. (1989), "Testing the Completeness of Specifications," IEEE Transactions on Software Engi-
neering 15, 526-531.

Liskov, B. and J. Guttag (1986), Abstraction and Specification in Program Development, McGraw-Hill,
New York.

McGregor, J. and D. Sykes (1992), Object-Oriented Software Developmem: Engineering Software for
Reuse, Van Nostrand Reinhold, 1992.

Parrish, A., D. Cordes and H. Dyal (1995), "Incremental Testing of Algebraically Specified Object-
Oriented Software Modules," Departrnent of Computer Science Technical Report, The University of
Alabama.

Parrish, A., D. Cordes and M. Govindarajan (1994), "Systematic Defect Removal from Object-Oriented
Software Modules," In Proceedings of the Seventh hzternational Software Quality Week Cor(ference,
San Francisco.

Zweben, S., W. Heym and J. Kimmich (1992), "'Systematic Testing of Data Abstractions Based on
Software Specifications," Journal of Software Testing, Verification and Reliability I, 4, 39-55.

