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We propose a simple kinetic model in which two types of processes between 
two reactants occur: diffusional processes for distances greater than a ' ,  the 
"reaction" distance, and static quenching for distances smaller than ~ ' .  
This model might be useful in the studies of diffusion in membrane systems. 

Ebma npe~no~eHa npocTa~ mmeTHqecxa~ MO~e~I~, 3a lOl io t l am~ B ce6e ~sa THna 
llpoI1eCCOB, npOTeKaIOU~HX Me)K~y D~Byl~I peareHTaMH: RI4d~yzHOIiHMe IIpoReCCH 
pac~o~zwa~, npeBMmamm~ax paccTomme ,,peaKmm" o', H c-raTeqecxoe ramem~e ~_s  
DaCCTO~HH~, MeHMIIHX o'. ~Ta MO~e~l~ Mo)KeT 6MTI, HCIIOYII~OBaHa npH HCCHeRoBaHHH 
HJ4(~y3HH B MeM6paHHMX CHCTeMax. 

INTRODUCTION 

Diffusion controlled reactions have been studied by several authors who have 

given both theoretical treatments and experimental results in various systems of 

spherical symmetry/1- ' / / .  With the extension of the formalism which is described 

here, such reactions can be used for studying diffusion in systems which are effectively 

two-dimensional, like lipid bilayer membranes. 
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EQUATIONS OF DIFFUSION FCR CYLINDRICAL SYMMETRY 

Let us consider a homogeneous population of molecules  B dissolved in membranes 

and the generation at the  t ime  t = 0 of react ing molecules  A (produced by l ight 

exci ta t ion,  for example)  

A+ B ~C 

Let us assume that  every encounter leads to a chern ica l  reaction.  Then, we 

can de t e rmine  the apparent  rate constant of the  reaction,  ka(t) using the following 

r e l a t i o n / 5 ,  6/:  

where 

d ~ ( r , t )  + ~ r  (1) 
6 t  

- distribution function, ratio of the local  concentrat ion of B to the mean  

concentrat ion of B, < ( B ) ~  , 

r - distance between molecules  A and B, 

- t ime  evolution operator equal to - D V 2, 

D - sum of the diffusion coeff ic ients  of. A and B for cy l ind ica l  symmetry,  

V 2 _ Laplace operator.  

We propose here a diffusion model  by considering two distinct areas in the 

reacting system both centered on A towards which B diffuses. 

(i) An area defined by two circles of radius d the time collisional distance and 

#', the "reaction" distance wherein the chemical reaction occurs with a practically 

infinite chemical rate constant. We assume that no diffusion occurs in this range: 

( r , t ) =  0 for r ~ ( ~ ,  ~ ' ) .  

(ii) An external  area (t > a '  ) in which no chemica l  reaction,  but only diffusion 

occu r s .  

Under these conditions,  the  value of the apparent  rate constant is expressed 

by 121: 
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ka(t) = 2 
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where N represents t he  Avogadro number.  

An analytical expression of eq. (1) has been reported, which is not routinely 

useful/3/. A numerical solution has been proposed and an approximate relationship 

of the form a + b/x/~-has been obtained by seeking the best fitting curve by the 

least squares method. If, after a Dirac excitation, a reaction occurs between 

electronically excited molecules A and inhibitors B, excited molecules naturally 

disappear from the region around B. The shorter the time, the more important is 

the concentration of molecules B and, consequently, the rate of reaction between 

A and B. Thus, a precise knowledge of ka(t) for short times is necessary for an 

accurate determination of the reaction rate. The solution proposed in Ref. /4/ does 

not exactly allow it. 

Using the Laplace transform for the solution of the system, we have: 

oo 

y(p. s)= f e'Srr z)dz 
o 

r Dt 
where p = - -  and z = - -  a* a'2 

I y, 
and sy - 1 = y" +-- with y (1,s) = 0 

P 

The. solution of the  equation is: 

1[ 
y(p,s) = -- 1 

s 

K o (o x/~) 
Ko(~/~) I (3) 

where K 
o 

is a modified Bessel function. 
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Fig. 1. Variations of y = VtS x Kl(x/s)/Ko(X]s ) versus V~, -- calculated curve, 
--- corresponding asymptote: I/2 + ~/s- 

We finally arrive at: 

dy_ (p, s) ] 1 K z (x/s) 
dp I-X/i K (~/~) 

O 

(4) 

The product of the function with s is displayed in Fig. 1. 

Apparently, it approaches asymptotically a value equal to V/s'+ 1/2, leading 

to a good approximation of (dy/dp), Therefore, eq. (2) may be given by: 

k a ( t ) ~ 2 ~  ND §  tool -1 dm 2see  (5) 

The true calculated k a (t) value (numerical integration with a computer) is 

very close to k a (t) from eq. (5) for times smaller than about 1000 nsec in viscous 

solvents. Relation (5) is therefore really suitable for quenching studies of electronically 

excited singlet molecules with lifetimes shorter than 500 nsec. In contrast, for longer 

times, relation (5) is less precise, but often remaim useful, 
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6'~ "{~" Q " Reaction 

6" i @(~) ~'~r ~< 6" Reaction 

(~) , > 6 ~, No .~octio~ 

| 

Hg. 2. Geometry of a pseudo two-dimensional diffusion reaction system 

AMPLIFICATION FACTOR 

The above relation leads to a k a (t) value expressed in tool "1 drn 2 sec "I. 

However, we thought that k a (t) could be better expressed in classical units of 

tool "1 dm 3 sec "1, 

Considering Fig. 2, we can assume that a reaction occurs if the distance between 

the planes which contain molecules A and B, respectively, is smaller than a', despite 

the fact that diffusion coefficient D is zero in this region. Hence: 

2~ '  I dm 3 -1 k ' ( t ) = ~ 2 =  Na'D I +~%/=Dt) m~ sec a 
(6) 

In fact, biological membranes constitute three-dimensional systems. Taking 

into account the fact that D # 0, it may be assumed that a reaction occurs with 
Z 

a number of molecules B greater than those found between planes located at a 

distance d = + # ' from molecule A. Especially, if D ~- D. all the molecules B 
z 

in the membranes will be able to react with A. Thus, there is an amplification of 

the rate constant by a factor of f. Hence: 

k'a(t)~2~N 'fDZ+~ --k oz ~1 (7) 
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CONSEQUENCES 

Let us consider the scheme of deactivation of A by B after aDirac excitation ( 

( d function): 

1 
k = w  

r 
A �9 natural  relaxation 

k '  (t) 
a 

A + B >C deact iva t ion  

If A is an emissive singlet state,  i t  is possible to measure the  quantum yie ld  of 

f luorescence in the  absence ( #o ) and presence ( # ) of B, a l l  other exper imenta l  

parameters  being equal,  

As previously r e p o r t e d / 5 / ,  we c an determine  the variations of # with (B), 

taking into account the  fact that at  t i m e  t = 0, the  probabil i ty p of finding molecules  

B inside the chemical reaction volume V 1 is 

,2 21 , f  a (8) v I ~=(o - a 

Then, we observe:. 

(i) A nearly instantaneous deactivation of A if at least one molecule B is to be 

found in volume V 1, 

(ii) A deactivation of A and B reaching a' after diffusion. 

As previously calculated/5/, p is given by: 

p = exp [ -  NV 1 (S)] (9) 

Then. if  (A) ~ molecules  are  exci ted at  t = 0, we get  p(A) ~ molecules  after the 

fast deact iva t ion  process. 

For t ~ O, the  deact ivat ion leads to: 

d(A) :- [k+k' (t). (B)] 
(A) a 
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and to: 

(A)=(A)oeXp(-NVIB)exp - k+ko(B )(1+~) t (i0) 

which leads to: 

~o I I + k o  T(B) I 
= exp (NVIB) I (~)  (11) 

where 

and 

k T (B) ~. 
4 o 

'~ : v~ " [.I +k ~(B):~ ~/~ " ~/'~-~" 0.o.) 
o 

I(~) = -~S exp(- u- ;.u 1"2) / du = 
0 

= 1 - ~ X/= exp Erfc /5.6/ (13) 

For small quencher concentrations, the first and the second term of the Taylor 

series of ~o/~ versus B are: 

~o 
= I + NV 1 ~. ko~ + - - - - ~  (B)+~  (14) 

and aU other terms of this expansion can be neglected. 

CONCLUSIONS 

Considering the fact that a more precise estimation of k' (t) is proposed for a 

short times and a term of steady-state inhibition is introduced, the calculatLons 

presented here notably modify the re, suits repotted by other authors/4/ .  From 

experimental data of partly diffusion controlled reactions in membrane systems, 
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these resuRs should allow the determination of the diffusion coefficient which rep- 

resents an essential information in the understanding of numerous biological 

phenomena. 
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