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We propose a simple kinetic model in which two types of processes between
two reactants occur: diffusional processes for distances greater than ¢’ , the
"reaction” distance, and static quenching for distances smaller than «°,

This model might be useful in the studies of diffusion in membrane systems.

Bbsia peasioXeHa NpocTas KMHeTHYeCKas MOMENThb, 32KITioyaload B ceGe nsa Tuna
NPOHECCOB, MPOTEKAMIIMX MEXIY NBYMS peareHTamu: THcgdby3HOHHbBIE MPOLECCH AL
pacCTOAHUN, NPEeBHIINAIOUMX PacCCTOSAHHE ,,peaKlMu’ ¢’, M CTaTHYECKOE ralleHHe /Uit
DACCTOSTHMH, MEHBIIMX ¢’. DTa MOJeNTh MOXeT GbITh UCIIOIb30BaHa NIPH HCCIIE/TOBAHUM
mbdy3un B MeMGpaHHBIX CHCTEMaX.

INTRODUCTION

Diffusion controlled reactions have been studied by several authors who have
given both theoretical treatments and experimental results in various systems of
spherical symmetry /1-7/, With the extension of the formalism which is described
here, such reactions can be used for studying diffusion in systems which are effectively

two-dimensional, like lipid bilayer membranes.
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EQUATIONS OF DIFFUSION FOR CYLINDRICAL SYMMETRY

Let us consider a homogeneous population of molecules B dissolved in membranes
and the generation at the time t = 0 of reacting molecules A (produced by light
excitation, for example)

A+ B——>C

Let us assume that every encounter leads to a chemical reaction. Then, we

can determine the apparent rate constant of the reaction, ka(t) using the following

relation /5, 6/;
/]
—£ED L @4y =0 W

where
¢ — distribution function, ratio of the local concentration of B to the mean
concentration of B, < (B)> ,
r - distance between molecules A and B,
C}? - time evolution operator equal to - D vz,
D - sum of the diffusion coefficients of A and B for cylindical symmetry,

v2 - Laplace operator,

We propose here a diffusion model by considering two distinct areas in the
reacting system both centered on A towards which B diffuses,

(i) An area defined by two circles of radius & the time collisional distance and
o', the "reaction" distance wherein the chemical reaction occurs with a practically
infinite chemical rate constant, We assume that no diffusion occurs in this range:

(r,ty=0forr € (o, ¢’),

(ii) An external area (t > ¢’) in which no chemical reaction, but only diffusion
occurs,

Under these conditions, the value of the a pparent rate constant is expressed

by /2/:
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k() =2 aN ¢'D (M) a (2

or

where N represents the Avogadro number,

An analytical expression of eq, (1) has been reported, which is not routinely
useful /3/. A numerical solution has been proposed and an approximate relationship
of the form a + b/v/t has been obtained by seeking the best fitting curve by the
least squares method, If, after a Dirac excitation, a reaction occurs between
electronically excited molecules A and iphibitors B, excited molecules naturally
disappear from the region around B, The shorter the time, the more important is
the concentration of molecules B and, consequently, the rate of reaction between
A and B, Thus, a precise knowledge of ka(t) for short times is necessary for an
accurate determination of the reaction rate, The solution proposed in Ref. /4/ does
not exactly allow it,

Using the Laplace transform for the solution of the system, we have:

yoo = S e oo ) dT
: 0

=L =2
where p = — and = <7
1.,
and sy - 1 =y" +>y" withy (1,5) =0

The solution of the equation is:

1 [1 Ko(p\/?)}

- __.__.Ko( 7 (3)

y(p,s) = S

where Ko is a modified Bessel function,
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Fig, 1, Variations of y = /s X Kq(:/5)/K(V/s) versus /s, — calculated curve,
--- corresponding asymptote: 1/2 + /s

We finally arrive at:

& ] 1 K (V9 |
[dp w9y =T K (V9 )

The product of the function with s is displayed in Fig. 1.
Apparently, it approaches asymptotically a value equal to /s +1/2, leading

to a good approximation of (dy/dp). Therefore, eq. (2) may be given by:

2

k,(t) e 22 ND [-1— + sec”) &

-1
————| mol ~ dm
2 Vvt )

The true calculated ka (t) value (numerical integration with a computer) is
very close to ka (t) from eq, (5) for times smaller than about 1000 nsec in viscous
solvents, Relation (5) is therefore really suitable for quenching studies of electronically
excited singlet molecules with lifetimes shorter than 500 nsec. In contrast, for longer

times, relation (5) is less precise, but often remains useful,
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Fig. 2. Geometry of a pseudo two-dimensional diffusion reaction system

AMPLIFICATION FACTOR

The above relation leads to a ka (t) value expressed iq mol.1 dym2 sec-l.
However, we thought that ka (t) could be better expressed in classical units of
mol-'1 dm3 sec-l.

Considering Fig. 2, we can assume that a reaction occurs if the distance between
the planes which contain molecules A and B, respectively, is smaller than a, despite
the fact that diffusion coefficient D_1is zero in this region. Hence:

k; (t)=~ 2= Na'D[l +-—3=‘f=-J mol ™2 dm3 sec ) )]

NED

In fact, biological membranes constitute three-dimensional systems, Taking
into account the fact that Dz # 0, it may be assumed that a reaction occurs with
a number of molecules B greater than those found between planes located at a
distance d = * o* from molecule A. Especially, if DZ > D, all the molecules B
in the membranes will be able to react with A, Thus, there is an amplification of

the rate constant by a factor of f, Hence:

: . 20’ | _ 20"
ka(t)m2nN fD(l +m]—ko(1 +—7ﬁt) )
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CONSEQUENCES

Let us consider the scheme of deactivation of A by B after aDirac excitation (

( 6 function);

X = :-
A — natural relaxation
Kk’ (t)
A+B ——>C deactivation

If A is an emissive singlet state, it is possible to measure the quantum yield of
fluorescence in the absence ( qbo) and presence ( ¢ ) of B, all other experimental
parameters being equal,

As previously reported /5/, we c an determine the variations of ¢ with (B),
taking into account the fact that at time t = 0, the probability p of finding molecules

B inside the chemical reaction volume V1 is

v1 o n(o'2 - a2) 'f ®)

Then, we observe:
(i) A nearly instantaneous deactivation of A if at least one molecule B is to be
found in volume Vl'
(ii) A deactivation of A and B reaching ¢’ after diffusion,

As previously calculated /5/, p is given by:

p=exp [~ NV1 (B)] ©))

Then, if (A)O molecules are excited at t = 0, we get p(A)0 molecules after the
fast deactivation process,
For t > 0, the deactivation leads to:

&A)

) == [k + ka (t). (B)]
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and to;

(A) = (A) exp (-NV,B) exp l— [k +k (B) @ + 47 )] t] (10)

N

which leads to:

%o [1 +k (B)
—- = exp(WV;B) ——1717—] 1)
where
pet e 7T 2)
Va  [1+K 7(B)) /Dt
and
I(4) = T exp (- u- ).ul/z) du =
0
A 22 A
=1- = Vn exp (-4—- Exfc ‘?] /5,6/ 13)

For small quencher concentrations, the first and the second term of the Taylor

series of ¢°/¢ versus B are:

. %0 2¢°
T =% + [NV1 + kot(l +—E }(B)+... (14)

and all other terms of this expansion can be neglected,

CONCLUSIONS

Considering the fact that a more precise estimation of k;(t) is proposed for
short times and a term of steady~state inhibition is introduced, the calculations
presented here notably modify the results reported by other authors /4/. From

experimental data of partly diffusion controlled reactions in membrane systems,
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these results should allow the determination of the diffusion coefficient which rep-
resents an essential information in the understanding of numerous biological

phenomena,
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