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Abstract 

This paper focuses on Benders decomposition techniques and Monte Carlo sampling 
(importance sampling) for solving two-stage stochastic linear programs with recourse, 
a method first introduced by Dantzig and Glyrm [7]. The algorithm is discussed and 
further developed. The paper gives a complete presentation of the method as it is 
currently implemented. Numerical results from test problems of different areas are 
presented. Using small test problems, we compare the solutions obtained by the algorithm 
with universe solutions. We present the solutions of large-scale problems with numerous 
stochastic parameters, which in the deterministic formulation would have billions of 
constraints. The problems concern expansion planning of electric utilities with uncertainty 
in the availabilities of generators and transmission lines and portfolio management with 
uncertainty in the future returns. 

1. Introduction 

A stochastic linear program is a linear program whose parameters (coefficients, 
right-hand sides) are uncertain. The uncertain parameters are assumed to be known 
only by their distributions. This means that the values of some functions are numerical 
characteristics of random phenomena, e.g. mathematical expectations of functions 
dependent on decision variables and random parameters. 

Suppose a function z = EC(V) is an expectation of a function C(v°'), co ~ f2. 
V is a random parameter which has outcomes v °'. f~ is the set of all possible random 
events. It can be finite, infinite, discrete or continuous. In the continuous case, the 
computation of the expected value requires the solution of the integral: 

EC(V) = fc(v~)e(dco), 

with P being the probability measure. 
In a general case, V would consist of several components, e.g. V = (V1 . . . . .  Vh) 

with outcomes uo,, which we also will denote only by lower case letters, e.g. 
= (vl . . . . .  Vh) and p(v  °') alias p(v)  would denote the corresponding density 
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function. We assume the components of V to be independent. In addition, we will 
construct f~ by crossing the sets of outcomes f~i for vector entry t~i, i = 1 . . . . .  h 
a s  

D. = ~1 x f~z x . . . ~ h .  

In this case, the above-mentioned integral takes the form of a multiple integral: 

e c ( v )  = f . . . f c ( v ) p ( v ) d v ~ .  . .duh. 

In the case of f~ being discrete and finite, the expectation can be computed 
by a multiple sum: 

e c ( v )  = • c ( v ) p ( t , ) .  

v'l "oh 

The main difficulties in stochastic linear programming deal with the evaluation 
of the multiple integral or the multiple sum. The numerical computation of the 
expectation requires a large number of function evaluations, and each function evaluation 
means a linear program to be solved. Different approaches attack this problem, e.g. 
Birge [3], Birge and Wets [5], Birge and Wallace [4], Frauendorfer [ 12], Frauendorfer 
and Kall [13], Ermoliev [10], Higle and Sen [18], KaU [20], Pereira et al. [26], 
Rockafellar and Wets [27], Ruszczynski [28], Wets [30], and others. See Ermoliev 
and Wets [11] for references. We follow the concept of Dantzig et al. [8] and Dantzig 
and Glynn [7]. 

2. Two-stage stochastic linear program 

An important class of models concerns dynamic linear programs. Variables 
which describe activities initiated at time t have coefficients at time t and 
t + 1. Deterministic dynamic linear programs appear as staircase problems. The 
simplest staircase problem is that with two stages: X denotes the first, Y the second- 
stage decision variables, A, b represent the coefficients and right-hand sides of 
the first-stage constraints, and D, d concem the second period constraints 
together with B which couples the two periods, c , f  are the objective function 
coefficients. 

In the deterministic case, c, f, A, b, B, D, d are known with certainty to the 
planner. In the stochastic case, the parameters of the second stage are not known 
to the planner at time t = 1, but will be known at time t = 2. At time t = 1, only 
the distributions of these parameters are assumed to be known. The second-stage 
parameters can be seen as random variables which obtain certain outcomes with 
certain probabilities. We denote a certain outcome of these parameters with o~ and 
the corresponding probability with p~', co ~ f~, the set of  possible outcomes. 
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minimize Z = cX + E W ( f Y  a') 

subject to A X  = b, 

_ Ba,X + D Y  ~ = d ~', 
(1) 

X, ya, >0 ,  ¢oEfl.  

In (1), a two-stage staircase problem is transformed into a two-stage stochastic 
linear program, with the parameters d and B being random variables. Given the two- 
stage stochastic linear program, one wants to make a decision X which is feasible 
for all scenarios and has the minimum expected costs. 

We consider the case of f~ being discrete and finite, e.g. ~ = (1 . . . . .  K), the 
parameter to takes on K values. Then we can formulate an equivalent deterministic 
problem to the stochastic linear problem. This is tractable if K is small. For K 
scenarios, the deterministic equivalent problem is given in (2). 

Minimize 

subject to 

Z = cX + p l f  y1 + p 2 f  y2 + . . .  + p r f  y r  

AX = b ,  

_ B 1 X  + D Y  1 = d 1, 

- BEx + DY  E = d 2, 

_ B K x  + D y  K = d K, 

X, y1, y2 yr, > O. 

(2) 

Two-stage stochastic linear programs were first studied in Dantzig [6] and 
then developed by many authors. The method which we want to apply here uses 
Benders [2] decomposition. Van Slyke and Wets [29] suggested expressing the 
impact of the second period by a scalar 0 and "cuts", which are necessary conditions 
to the problem and are expressed only in terms of the first period variables X and 
0. Benders decomposition splits the original problem into a master problem and a 
subproblem which decomposes into a series of independent subproblems, one for 
each co ~ f~. According to the L-shaped method the master problem, the subproblems 
and the cuts are represented in (3), (4) and (5). 

The master problem: 

minimize Zu = cX + 0 

subject to A X  = b, 

- G t X  + atO> g t, / = 1  . . . . .  L, 
(3) 

X, 0 >0 .  
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The subproblems: 

minimize zOJ = pO~fyO~ 

subject to p%r a~ : D Y  ca = d °~ + B°JX, 

Y°J > 0, t o ~ f l ,  e.g. n =  {1, 2 . . . . .  K}, 

(4) 

where p°~Tr°'* is the optimal dual solution of subproblem to. 
The cuts: 

g = ~ p°~r°~*d°~ = E(lr°~*dt°), 
CO 

G = ~ pt°~t°*BO = E(~r°J*Bt°); 
o, (5) 

a t = 0 feasibility cut, 

Of I = 1 optimality cut. 

By solving the master problem, we obtain a solution X. Given X, we can solve 
K subproblems 09 ~ f2 to compute a cut. The cut is a lower bound on the expected 
value of the second-stage costs represented as a function of X. Cuts are sequentially 
added to the master problem and new values of X are obtained until the optimality 
criterion is met. We distinguish between two types of cuts: feasibility cuts and 
optimality cuts. The first refers to infeasible subproblems for a given X and the 
latter to feasible and optimum subproblems, given X. 

If the expected values z, G, and g are computed exactly, that is, by evaluating 
all scenarios to ~ ~ ,  we refer to this as the universe case. As we will see later, the 
number of  scenarios easily gets out of  hand, and it is not always possible to solve 
the universe case. Therefore, methods are sought which guarantee a satisfying 
solution without solving the universe case. 

3. Monte Carlo sampling 

Each iteration of Benders decomposition requires the computation of  expected 
values, e.g. the subproblem costs, the coefficients and the right-hand sides of the 
cuts. For each outcome to q f2, a linear program has to be solved. The expected 
value of  the subproblem costs is denoted by 

z = E C( o t°) = E f Y  *t°, o9 ~ f2, 

with y*o, being the optimum solution of subproblem to. The number of elements of 
f2 is determined by the dimensionality of the stochastic vector V = (V1 . . . . .  Vh). 
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Typically, the dimension h of V is quite large. For example, in expansion planning 
problems of electric power systems, one component of V denotes the availability 
of one type of generators or one demand of power in a node of a multi-area supply 
network, or the availability of one type of transmission line connecting two nodes. 
Consider several nodes and arcs and one demand and some options of generators 
at each node. The number of scenarios K in the universe case quickly gets out of 
hand, even if the distribution of each component of V is determined by just a small 
number K i of discrete points. Suppose, for example, h = 20 and K i = 5, i = I . . . . .  20. 
Then the total number n u m ~ r  of terms in the expected value calculations is 
K = 520 -- 1014, which is not practically solvable by direct summation. Monte Carlo 
methods appear promising to compute multiple integrals or multiple sums for h 
large [9]. See Hammersly and Handscomb [16] for a description of Monte Carlo 
sampling techniques. 

3.1. CRUDE MONTE CARLO 

Suppose v ~, to = 1 . . . .  , n are scenarios, sampled independently from their 
joint probability mass function, then C°'= C(v ~') are independent random variates 
with expectation z. 

/ I  

= ( I /n)  ~ C ~ (6) 
~o--1 

is an unbiased estimator of z and its variance is 

(7 2 = Cr2 / n, 

0 "2 -- v a l " ( C ( V ) ) .  

Thus, the standard error is decreasing with sample size n by n -°'5. The convergence 
rate of ~ to z is independent of the dimension h of the random vector V. 

3.2. IMPORTANCE SAMPLING 

We rewrite 

C( u~)p( ua~)q( t/°) 
z = ~_~ C(l~a~)p(1) ~) = ~ q(1)°J ) 

by introducing a probability mass function q(va'). We can view q as a probability 
mass function of a random vector W; therefore, by a change of variables, 

z = E c ( w ) p ( W )  
q ( W )  



74 G. lnfanger, Monte Carlo sampling 

We obtain a new estimator of z, 

1 C(w ')p(w 
-£ = n q (w  °~ ) 

to=l 

which has a variance of 

2 
1 ,~ ( C ( w ° ~ ) p ( w  °J) z q(w°J). 

var(~) = n ~oe"~n~, q(w °~) - 

Choosing 

q* (w °~) = C(w°°)P( w°~ ) 
Zo, a C(w°')p(w 

would lead to var(~) = 0; that means we could obtain a perfect estimate of the 
multiple sum by just one single observation. However, this is practically useless, 
since to sample C .  p/q we have to know q, and to determine q we need to know 
z = Eo~eta C( wc°)p(w°~), which we eventually want to compute. Nevertheless, this 
result helps us to derive heuristics of how to choose q: it should be approximately 
proportional to the product C(w°')p(w ~') and have a form which can be integrated 
analytically. For instance, using the additive (separable in the components of the 
stochastic vector) approximation 

h 

c(v) = G ( v , . )  

i=I 

could be a possible way to compute a proper q: 

C(w° )p(w 
q(wC°) --" ~h----I ]~coeta Ci(wt°) " 

In this case, one has to solve only h one-dimensional sums instead of one h- 
dimensional sum. Depending on how well the additive model approximates the 
original cost surface, the above-mentioned estimator will lead to smaller variances 
compared to crude Monte Carlo sampling. Of course, if the original cost surface has 
the property of additivity (separability), no sampling is required, since the multiple 
sum is computed exactly by h one-dimensional sums. 

The advantage of  this approach lies in the fact that even if the additive model 
is a poor approximation to the cost surface, the method works. The price that has 
to be paid is a high sample size. The variance reduction compared to crude Monte 
Carlo will be small. For the theory of importance sampling, we refer the reader to 
Glynn and Iglehard [15]. See also Dantzig and Glynn [7]. 



G. Infanger, Monte Carlo sampling 75 

Entriken and Nakayama in [8] developed an importance sampling scheme 
using an additive model to approximate the cost function EC(V). In fact, C(v) is 
approximated by a marginal cost model, considering marginal costs in each dimension 
i of V and a base case, the point from which the approximation is developed. We 
will use this approach here. As we employ importance sampling within the Benders 
decomposition algorithm, the costs C(v,  X), the approximationof the costs F (v ,  X), 

^ 

and thus the importance distribution q(v ,  X), depend also on X, the current solution 
of the master problem. Introducing the costs of the base case C(~:, 2 )  makes the 
model more sensitive to the impact of the stochastic variables V. 

h 

c ( v ,  2)  = r ( v ,  2)  = c(~, 2)  + ~, Mi(~, 2), 
i=l 

Mi (Vi, 2)  = C(rl . . . . .  vi-l,V~, ~i+1 . . . . .  Zh, 2)  - C(v, 2). 
(7) 

~'= ('rl . . . . .  'rh) can be any arbitrarily chosen point out of the set of values vi, 
i = 1 . . . . .  h. For example, we choose 'rl as that outcome of II/which leads to the 
lowest costs, ceteris paribus. These values can be found easily. Note that the second- 
stage costs are computed by a linear program, where the uncertain parameters 
appear on the right-hand side. Therefore, the second-stage costs are convex in the 
stochastic parameters V. The sign of the dual variables associated with the stochastic 
parameter indicates the direction to lowest costs. In the context of expansion planning 
of power systems, this means selecting, respectively, lowest demands and highest 
availabilities of generators and transmission lines. 

Defining 

and 

"Mi(2) = EMi(Vi,2) = ~ Mi(1)w,2)p(u w) (8) 
¢o e ~ i  

^ ^ 

^ c ( v ° ~ , x )  - c ( z , x )  F(vw,X) = 
Zh__l Mi (I~°, X) 

where we assume that 

h 

~.~ Mi(u~°,2) > O, 
i=l 

(9) 

thatmeans atleastone Mi(1)~ ,2) > O, 

we can express the expected value of the costs in the following form: 

h h 
z (2 )  = C ( ' r , 2 ) + ~ _ . M / ( 2 )  E F(vW'2) Mi(--~-~'2)1-IPJ('°~ )" (10) 

i=I wef~ Mi(X) j=l 

Note that this formulation consists of a constant term and a sum of h expectations. 
Given a fixed sample size n, we partition n into h sub-samples, with sample sizes 
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ni, i = 1 . . . . .  h such that Yni  = n and ni > I, i = 1 . . . . .  n and ni being approxi- 
mately proportional to Mi. The h expectations are separately approximated by 
sampling using marginal densities. The ith expectation corresponds of course to the 
ith component of V. Generating sample points in the ith expectation, we use the 
importance density (p iMi /Mi)  for sampling the ith components of V and the original 
marginal densities for any other components. Denoting 

= 
ni j=l 

(11) 

the estimate of the ith sum, we obtain 

h 

r(2) = c(z, 2) + 
i=I 

(12) 

the estimated expected value of the second-stage costs ~ (2 ) .  
Let ~ 2 ( 2 )  be the estimated sample variance of the ith expectation, where 

2 ^ 0-i (X) = 0 if ni = 1. The estimated variance of the mean 0 -2 ( 2 )  is then given by 

o (x)=Z 
i=1  tZi 

(13) 

Using importance sampling, one can achieve significant variance reduction. 
The experiment of Nakayama in [8] claims a variance reduction of 1 : 20000 using 
importance sampling versus crude Monte Carlo sampling: for a given and optimal 
X, the second-stage costs of a multi-area expansion planning model with 192 
universe scenarios were sampled with a sample size of 10 using both methods and 
the results compared. 

The above derivation concerned the estimation of the expected second-stage 
costs z(X). To derive a cut, we use the same framework analogously. Note that a 
cut is defined as an outer linearization of the second-stage costs represented as a 
function of X, the first-stage variables. At X, the value of the cut is exactly the 
expected second-stage costs z(X). Note also that any choice of  q is a valid choice. 
Since we do not want to derive different importance distributions for the coefficients 
and the right-hand side of a cut, we use the q already at hand from the cost 
estimation. Therefore, we employ directly the cost approximation scheme and the 
importance distribution to compute the gradient and the right-hand side of  a cut. 
With B(vto) := Bto and d ( t f  °) := dto being the outcome of B and d in scenarios 

* tO ¢0" ^ to, o9 ~ ~ and n: (v , 2 )  := n: (X), the optimum dual solution in scenario w, we 
define 

* to * F a ( v o j , 2 )  = 7r (V ,2)B(v°~)  - z~ ( ' f ,X)B( ' f )  
h M , ' (14) 

Zi=l i( vP 2) 
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FS(vw, j~) = (l~w,X)d(1) w) - / r  ('t', J~)d(~') 
Z/h=l Mi (v/o, 2) , (15) 

and compute 
h h 

G(X) = g*(z, X)B(~:) + Z M/()~) ~ F°(uw , f~ )  M,(.~_v?.X) I-I PJ(V~ °), (16) 
i=1 W e l l  Mi(X) j=l  

h 

g(X) = It* ('¢, J~)B('¢) + ~ M/(X')i=I w~f~'~FS(ow'ff) Mi(v[°)Mi(ff) ITh PJ(1)~)' 
j=l 

(17) 

the coefficients and the right-hand side of a cut. We estimate the expected values 
again by sampling, using the same sample points as at hand from the computation 
of z. 

Using Monte Carlo sampling, we obtain r(X), ~(J~), ~'(J~), which are 
approximations of the expected values z(X), G(X), g(X). We also obtain the 
estimated variance of the mean of the second-stage costs err(X). The impact of 
using approximations instead of the exact parameters on the Benders decomposition 
algorithm is analyzed in the following section. 

4. Benders decomposition 

In the following, we will derive the main steps of Benders decomposition 
algorithm for two-stage stochastic linear programs considering the "universe" case, 
which gives the exact solution of the equivalent deterministic problem ("certainty 
equivalent"). We will then analyze the impact of sampling of subproblems on 
Benders decomposition. See Geoffrion [14] for a derivation of Benders decomposition 
algorithm. 

Given the equivalent deterministic problem in (2) and assuming K scenarios 
describe the universe case, we rewrite the problem applying projection onto the X 
variables and obtain (18). We assume for simplicity that (2) is feasible and has a 
finite optimum solution. 

Minimize Z = c X + m i n [ f f Y  1 + p 2 f y 2  + . . .  +pKfyK];  

AX = b DY 1 = d 1 + B1X, 

X >-- 0 DY 2 = d 2 + B2X, 

• . .  • : 

Dy K = d r + BKx, 

(18) 

y1, y2 ..... yK >_ O. 
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The infimal value function in (18) corresponds to the following primal linear 
problem (19): 

minimize Zp = pl f y 1  + p2 f y 2  + . . . + pK f y r  = E t o ( f y t O ) ;  

pln:l : DY 1 = d I + BIx ,  

p2zc2 : DY 2 = d 2 + B2X, 

• . .  : • 

pXlrK : DY K = d K + BrX, 

y l ,  y2  . . . . .  y r  > 0; 

(19) 

and to the dual linear problem (20): 

maximize z D = pl~1(dl  + B1X) + p2~2(d2 + B2X) + . . . + p r ~ r ( d r  + B r x ) ;  

lr2 D 

<f, 

<-f, 

<_f. 

Om@ 

~K D 

The primal problem is parameterized in the right-hand side by X. The 
assumption (2) being finite implies that (19) is finite for at least one value of X for 
which X >_ 0 and AX = b. Applying the Duality Theorem of Linear Programming, we 
state that (20) has to be feasible. The feasibility conditions 

~°JD - f _< 0 

indicate that the feasible region {n:°[ zc~°D-f< 0} is independent of X and co, and 
just repeated for each scenario co ~ f~. 

The assumption (2) being feasible requires feasibility of the primal problem 
(19) for at least one X for which X > 0 and AX = b. We define n: := (xl, ~ . . . . .  nx) 
to be the vector of  dual variables of problem (20). By the Duality Theorem again 
(20) has to be finite. Let n: i, j = 1 . . . . .  p be the extreme points and n: i, 
j = p + 1 . . . . .  p + q be representatives of the extreme rays of the feasible region of 
(20), where n: j := (n: U, ~ J  . . . . .  n'xi). Problem (20) is finite if and only if 

zc ~y(d °~+B°~X)<-O, j = p + l  . . . . .  p + q ,  o9E~.  (21) 

Constraints (21) may be appended to problem (18) to ensure that the problem 
is bounded. 
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Next, we outer linearize the infimal value function in (18), whose value is 
exactly 

maximum ]~ po'n°~J (d°~ + BO'X). (22) 
j=l  . . . . .  p o ' e ~  

By expressing the infimal value function by the outer linearized dual problem 
and using 0as the smallest upper bound, the problem can be represented in the 
following form: 

minimize Z = cX + O; 

AX =b,  

X >0, 

0 >- ~_~ po'~ro'J(d 0" + BO'X), 

~rJ (do" + BO'X) < O, 

j = l  . . . . .  p, 

j = p + l  . . . . .  p + q ,  (.0 E ~ .  

(23) 

Relaxation is applied to solve problem (23) since we do not want to know 
all trJ, j = 1, . . . .  p + q in advance: given a solution (X, 0) from the master problem, 
one solves problem (19) or problem (20) in fact by solving the individual problems 
(4) or the dual problems (24) of these: 

zo'*(3~) = max z~ = lro'(d ~ + Bo',~); 

~ro'D < f ,  o 9 ~ .  
(24) 

We call ~ro" (X) the optimum dual solution vector. If primal infeasibility or 
dual unboundedness is detected, with lr °~" (X) denoting the corresponding extreme 
ray, a feasibility cut 

0"° (do' + n° 'x)  _ 0 (25) 

is added to the master problem. If all primal problems are feasible or all dual 
problems are bounded, an optimality cut 

0 >- ~.~ pa'tro" ( X ) .  (at° + bo'X) (26) 
O'E~ 

is added to the master problem. We call 

L(X):= "~ po'rco'* (fQ . (do" + BO'X) 
o ' e ~  

(27) 
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an outer linearization of the second-stage costs, which are defined by 

= ,Y=., z '°" ( :¢) .  
a)  (~ .0. 

The relation 

(28) 

L ( X )  < z ( X )  (29) 

formulates the main property of the outer linearization. Any cut independent of 
from which it was originally derived is a valid cut as long as it does not violate 
the main property of outer linearization. 

Benders decomposition algorithm provides upper and lower bounds to the 
solution in each iteration. 

In the lth iteration 

LBI: = cf( t + 0 l, (30) 

" l with X , 01 being the optimum solution of the master problem, is defined to be a 
lower bound and 

UB t := min {UB t-l ,  cf~ t + z (X t) }, UB ° = ,,,,, (31) 

with z(X l) the second-stage costs, to be an upper bound to the solution of the 
problem. If 

UB t - LBt ) /LB t < TOL, (32) 

where TOL is a given tolerance, the problem is said to be solved with a sufficient 
accuracy. 

4.1. PROBABILISTIC CUTS 

Employing Monte Carlo sampling techniques means not to solve all problems 
co ~ ~,  but solving problems co ~ S, S being a subset of ~. Instead of the exact 
expected values z(~'), G(X), g(,~), we compute the estimates r(X),  G'(2),  ~-(2) 
by importance sampling. We also estimate the error of the estimation of z ( X )  by 
the variance var(r(X))  = cr2(,~). Thus, e.g. in the case of the second-stage costs, 
the estimation results in an estimated mean with some error distribution. There is 
good reason to assume the error being normally distributed [9]. We define if(X) to 
be random, normally distributed with mean r (X)  and variance tr2(~'): 

.= N ( r ( 2 ) ,  (33) 

A cut obtained by sampling differs in general from a cut computed by solving the 
universe scenarios. The outer linearizations L ( X )  = G ( X ) X  + g ( X )  with respect to 
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the universe case, and L ( X )  = G'(2)X + ~'(2) with resflect to the estimation, differ 
in the gradient and the right-hand side. At X = X, where L ( X ) =  z ( X ) a n d  
E(X) = ~'(2), we substitute the variable 0 for ~7,(2) when defining a cut. By this 
substitution, 0 takes on the distribution of £; therefore, 0 := N(O, o -2 ). This is only 
true at X = X. However, we assume this error distribution to be constant with 
respect to X. This means we see the error mainly concentrated on the right-hand side 
of the cut and we assign the variance o-r(X) also to the right-hand side and define 

g ( X ) : =  N(~(2 ) ,  o-r(2)) (34) 

to be the random right-hand side of the cut, normally distributed with mean g ( 2 )  
2 " and o-[ (X). We can expect that in the final solution, cuts will be binding at an X 

very close to X, where they were originally derived. The assumption of a constant 
error distribution of 0 is therefore intuitively plausible. See also Dantzig and 
Glynn [7] in this respect. In general, S is a sufficiently large subset of f2 so that 
the variance 0 .2 is small. 

Cuts computed by sampling do not necessarily meet the condition of outer 
linearization. Violating this condition, a cut intersects and separates parts of the 
feasible region of the second-stage problem. A sampled cut is therefore not a valid 
CUt. 

4.2. UPPER AND LOWER BOUNDS 

For random second-stage costs ~,(2 t) and random right-hand sides ~ ,  
l = 1 . . . . .  L, the upper and lower bounds of the problem as provided by Benders 
decomposition algorithm are probabilistic. 

The upper bounds 

~IB ! : =  C~I + ~(~1), l = 1 . . . . .  L (35) 

are random parameters, normally distributed with means U'B t and variances o-r(;~ t): 

O B  l := N ( U ' B I , O - 2 ( X I ) ) ,  l = 1 . . . . .  L. (36) 

We define the lowest upper bound to be the upper bound with the lowest mean 

OB~in: U'BmLin := min {U'B t} (37) 
l=l ..... L 

with corresponding variance 4 B ~ , .  
The lower bounds are obtained from the solution of the master problem. 

To determine the distribution of a lower bound, consider the master problem at 
iteration L: 
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LB L ~*L = z u  = m i n ~ , ~ =  cX + O, 

subjectto pO. AX = b, 

pl . _ G I x  + 0 >- ~1, 

pL . _ G t . X  + 0 >. ~L, 

X, 0 > 0 ,  

where L optimality cuts have been added to the originally relaxed master problem. 
We do not consider feasibility cuts for the following argument, since they are exact. 
The vector/9o and the scalars pl, 1 = 1 . . . . .  L, denote the dual prices. The right- 
hand sides ~l, 1 = 1 . . . . .  L, are independent stochastic parameters, normally distributed. 
We assume independence since the cuts are generated from independent samples, 
neglecting the dependency that ~t ,  I = 1 . . . . .  L, are weakly connected by Benders 
decomposition algorithm. 

With the random parameters gl, l = 1 . . . . .  L, on the right-hand side, also the 
optimum solution ~M will be random. We define the optimum solution of the master 
problem 

z n = N , var ~, (39) 

to be a random parameter, normally distributed, with mean z~ and variance var(z~t L). 
Hence, one could experimentally obtain the distribution of ~,~L by randomly varying 
the right-hand sides according to N samples, j = 1 . . . . .  N, drawn from the normal 
distributions of ~t, 1 = 1 . . . . .  L, and by solving the master problem for all N 
samples. One could estimate the mean and the variance of the distribution from the 
samples j = 1 . . . . .  N. Since this is a very expensive way to obtain an estimate of 
the lower bound distribution, we proceed instead in the following way. We have 
already stated that we choose a sample size ISI, such that the variances a t ,  l = 1 . . . . .  L, 
are small. If the variances are small, we can assume that for all outcomes of the 
random right-hand sides ~t, l = 1 . . . . .  L, the optimum solution of the master problem 
has the same basis. Then we can compute the mean of  the lower bound estimate 

-*L z M =rain z M =  cX + 0 ,  

subject to pO. AX = b, 

D 1 " - G I X  + 0 > ~1, 

p t . .  _ G t . X  + 0 > ~t., 

X,  0 > 0 ,  
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by substituting the means ~-1, I = 1 . . . . .  L, for the random parameters gt, 1 = 1 . . . . .  L, 
and the variance var(z-~t) by using the dual solution 

L var(zM)-* = p 12 var(~/) = ~ pt2(r2(x t ) .  (41) 
ill l=l 

As the lower bound means increase monotonically with the number of iterations, 
we obtain the largest lower bound by L B  L -*t, = z M and LB  L ' =  N ( E B L , v a r ( L B L ) ) .  

4.3. STOPPING RULE 

In analogy to the deterministic Benders decomposition algorithm, we stop if 
the upper and lower bound are sufficiently close. In the case of probabilistic bounds, 
the algorithm has to be stopped if the upper and lower bound are indistinguishable 
in distribution. We check this condition by using Student's t-test to determine if 
s t >  0 with 95% probability, where 

s t = U'B t - -LB t + TOL  (42) 

and T O L  being a given tolerance. 
The employment of Student's t-test requires independency of the upper and 

lower bound distributions. Since independency is not ensured in the first place as 
an upper bound and a binding cut in the master problem could be obtained from 
the same set of samples, we obtain independency by resampling the lowest upper 
bound before employing Student's t-test. The X corresponding to the lowest upper 
bound and the corresponding importance distribution have to be stored. If upper and 
lower bounds are close to each other, which is checked by using Student's t-test 
without fulfilling the independence requirement, we use new samples to compute 
an independent upper bound. Now we check if s t > 0 by Student's t-test. 

4.4. CONFIDENCE INTERVAL 

After passing the Student's t-test in the last iteration, which means that the 
upper and lower bound means are indistinguishable, we obtain the optimum solution 
~L, 0 from the master problem. We derive from the distributions /.,B L and (JB L 
a 95% confidence interval: on the left-hand side by using the lower bound distribution 
and on the right-hand side by using the upper bound distribution. We define 

Cleft = 1.964var(/,BL), C,ight = 1.964vari¢~'BL), 

and obtain the confidence interval 

L-B - Cleft < Z* < UB + Cright 

(43) 

(44) 

for the final solution Z*. 
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If (Cleft + Cright)/'LB t" < Ctoi, where Cto I is a predefined quality criteria for 
the confidence interval, the obtained solution is satisfactory. Otherwise, the sample 
size has to be increased and the problem has to be solved again with the increased 
sample size. 

4.5. IMPROVEMENT OF THE SOLUTION 

Suppose the solution with a certain sample size was not satisfactory. Instead 
of starting from the beginning with an increased sample size, we want to use the 
information that we have already collected. To do this, we look for the binding cuts 
in the final solution, increase the sample size and recompute the binding cuts at the 
same ~l they were originally computed. This of course means that one has to store 
the values of ~l and the associated importance distributions, or recompute the 
latter. The enlarged sample size leads to smaller variances of the binding cuts and 
eventually to a smaller confidence interval of the final solution. Berry-Essden, e.g. 
Hall [17], give upper bounds on the rates of convergence in the central limit 
theorem. Solving the master problem again with the improved binding cuts will not 
in general result in an indistinguishable lower and upper bound. Therefore, some 
more iterations may be necessary to obtain the optimal solution according to the 
increased sample size. This improvement procedure could be employed iteratively 
until a satisfactory solution is obtained. It is a possible way to improve a non- 
satisfactory solution. It may not be very efficient and there may be better ways to 
do so. In general, we choose a sample size such that the obtained confidence 
interval is satisfactory. We can now state the algorithm as follows. 

Step 1 

Step 3 

Step 3 

4.6. THE ALGORITHM 

Step 0 Initialize: 

1=0, 0 B °  = **. 

Solve the relaxed master problem and obtain a lower bound: 

^ ^ l  L B  t = cX + O . 

l = l + l .  

Solve subproblems and obtain an upper bound: 

~ B  t = min  { ~ B  t - l ,  cX 1 + ~(~t ) }, compute and add a cut to the master problem 
using Monte Carlo (importance) sampling. 

Solve the master problem and obtain a lower bound: 

E B  l = c ~  l + "G i. 
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Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

Step 9 

s = UB t - "LB t + TOL 

If s > 0 (Student's t-test), go to step 2. 

Compute the confidence interval and obtain a solution: Z*, 3~, 0. Stop. 

Improvement  o f  the solution: 

If (Cleft + Cdght)/ LB <_ Ctol, stop; 
otherwise, go to step 7. 

Increase sample size and initialize 0"B ° = -0. 

Recompute binding cuts. 

Upper bound: U'B t = min{U'B t-l, CX + ~-(~t). 

Go to step 3. 

5. Numerical results 

The method has been implemented. The FORTRAN code for solving general 
large-scale two-stage stochastic linear problems with recourse using Benders 
decomposition and importance sampling uses MINOS [24], which has been adapted 
for this purpose, as a subroutine for solving the linear programs of the master 
problem and the subproblems. Alternatively, the code can also use a modified 
version of Tomlin's [31] LPMI code of the revised simplex method as a subroutine. 
Versions of  the code are installed on several computers, such as IBM-3090, a 
Microvax workstation, and on personal computers. All the following test results 
were computed on a Toshiba laptop personal computer T5200. First, we present an 
illustrative example, a toy problem of expansion planning of power systems, which 
we discuss in detail. Then we derive numerical results from other small test problems. 
Eventually, we demonstrate the solution of large-scale test problems with numerous 
stochastic parameters. 

The illustrative example, test problem APLIP, is a model of a simple power 
network with one demand region. There are two generators with different investment 
and operating costs, and the demand is given by a load duration curve with three 
load levels: base, medium, and peak. We index the generators with j = I, 2, and the 
demands with i = I, 2, 3. The variables xj, j = I, 2, denote the capacities which can 
be built and operated to meet demands di, i = I, 2, 3. The variable Yij denotes the 
operating level for generator j in load level i with operating cost fij. The variable 
Yi, defines the unserved demand in load level i which can be purchased with penalty 
cost3~, >~j .  The subscript s is not an index, but denotes only an unserved demand 
variable. The per-unit cost to build generatorj is cj. Finally, the model is formulated 
with complete recourse, which means that at any given choice of x, demand is 
satisfied for all outcomes. In this model, building new generators competes with 
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Table 1 

APL1P test problem data. 

Generator capacity costs (10S$/MW, a) 

cl = 4.0, e2 = 2.5 

Generator operating costs (105$/MW, a) 

fll = 4.3 f21 = 8.7 
fl2 = 2.0 fz2 = 4.0 
A3=0.5 f~=  1.0 

Unserved demand penalities (105$/MW, a) 

A, =A, =./~, = 10.0 

Minimum generator capacities (MW) 

bl --  b 2  = 1000 

Demands (MW) 
No. 1 2 3 4 

Outcome 900 1000 1100 1200 
Probability 0.15 0.45 0.25 0.15 

Availabilities of generators 
Generator 1 (/31) 
No. 1 2 3 4 
Outcome 1.0 0.9 0.5 0.1 
Probability 0.2 0.3 0,4 0.1 

Generator 2 (~2) 
No. 1 2 3 4 

Outcome 1.0 0.9 0.7 0.1 
Probability 0.1 0.2 0.5 0.1 

5 

0.0 
0.1 

purchasing unserved demand through the cost function, yet there is a minimum 
capacity by which has to be built for each load level. The availabilities o f  the two 
genera to rs /~ , j  = 1, 2, and the demands in each load level di, i = 1, 2, 3, are uncertain. 
Generator one has four possibilities, while generator two has five, and each demand 
has four. All o f  the data values are given in table 1 and the problem can be 
formulated as follows: 

minimize 
2 {23 

j=l j f l  i=1 

2 

÷ 

i=1 
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subject to xj > b j, j = 1, 2, 

3 
t a<0,  j = l ,  2, --OtTXJ + E Yij - 

i=1 
2 

~ y ~ + y ~ > d ~ ,  i = 1 ,  2, 3, 
j=l 

xj, y ~ , y ~  j = l ,  2, i = 1 ,  2, 3. 

We will take o9 ~ ~ when solving the universe problem and o9 ~ S when 
solving a problem with sampling. 

The number of possible demands and availabilities results in 4 . 5 . 4 3 =  1280 
possible outcomes in ~, and thus 1280 subproblems have to be solved in each 
iteration of Benders decomposition for the universe case. We compare the universe 
solution with solutions gained by the importance sampling algorithm. Table 2 shows 
the results in the case of 20 samples out of the possible 1280 combinations and 

Table 2 

Model APL1P, 20 samples (100 replications of the experiment). 

Correct Mean 95% conf Bias 

[%1 [%] 

No. univ 1280 
No. iter 7.6 

G1 1800.0 1666.5 57.0 - 7.4 
G2 1571.4 1732.5 52.5 10.2 
0 13513.7 13729.4 21.3 1.6 

Obj 24642.3 24726.7 2.1 0.3 

Est. eonf [%] left 1.5 
Est. ¢onf [%] right 1.9 
Coverage 0.90 

without an improvement phase. One hundred replications of the same experiment 
with different seeds were run to obtain statistical information about the accuracy 
of the solution and the estimated confidence interval. The mean over the 100 
replications of the objective function value (total costs) differs from the universe 
solution by 0.3%. From the distribution of the optimum objective function value 
derived from the 100 replications of the experiment, a 95% confidence interval is 
computed: +2.1%. In each replication, a 95% confidence interval of the solution is 
estimated. The mean over all replications of the estimated confidence interval is 
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1.5% on the left-hand side and 1.9% on the right-hand side. In the worst case, an 
objective function value of  26233.9 was computed. This is about 6.4% off the 
correct answer. The estimated 95% confidence interval in this case did not cover 
the correct answer. The coverage rate of  90% expresses that in 90% of  the 100 
replications, the correct answer of  the universe solution is covered by the estimated 
confidence interval. This shows that if we use a sample size of  20, we are slightly 
underestimating the confidence interval; if the computation of  the 95% confidence 
interval was exact, we would expect a coverage rate of  95%. The reason for the 
underestimation of  the 95% confidence interval in the case of  sample size 20 lies 
in the underlying assumptions of the estimation method, e.g. constant error distribution 
along a cut, same basis for all outcomes of  the random right-hand sides of the cuts. 
Especially the latter assumption is only true if the variances are small. A larger 
sample size reduces the variances and we expect a better coverage rate of  the 95% 
confidence interval. The bias and the confidence interval of  the optimum strategies 
(the loads x to be installed) are larger than those of  the optimum objective function 
value. The objective function near the optimal solution appears to be fiat: several 
different strategies lead close to the optimum costs. Confidence intervals of  about 
57% and 52% are computed. In the above example, a sample size of  20 was chosen. 
Note that additional computational effort is also needed to obtain the importance 
distribution, e.g. 17 subproblems have to be solved in each iteration to obtain the 
marginal costs Mi. Compared to the universe solution, the method e.g. achieves, 
with about 2.9% of  computational effort, a solution which has 95% confidence 
within an interval of  +2.1% of  the correct answer. Importance sampling seems to 
be a promising approach to solving stochastic linear programs. Table 3 represents 
the results when using 200 samples: one can see decreasing bias, decreasing confidence 
intervals, and improving estimations of the confidence intervals with increased 

Table 3 

Model APL1P, 200 samples (100 replications of the experiment). 

Conect Mean 95% conf Bi~ 

[%1 [%] 

1280 No. univ 
No. iter 7.9 

G1 
G2 
0 

1800.0 1728.7 31.5 - 4.0 
1571.4 1681.7 29.2 7.0 

13513.7 13554.7 12.2 0.3 

Obj 

Est. conf [%] 
Est. conf [%] 
Coverage 

24642.3 24673.8 

left 0.4 
right 0.7 

0.95 

0.4 0.1 



G. Infanger, Monte Carlo sampling 89 

sample size. The coverage of the 95% confidence interval, computed by 100 replications 
of the experiment with different seeds, is now 95%. 

We investigated the performance of the algorithm on two other examples 
which are small enough to compute the universe solution. PGP2, derived from 
Louvaux [22], is a power generation planning model used to determine the 
capacities of various types of equipment required to ensure that consumer demand 
is met. The demands in three demand regions are stochastic and represented 
by discrete random variables with nine, nine and eight outcomes. CEP1 is 
a capacity planning model for a manufacturing plant in which several parts are 
produced on several machines. If the demand for the parts exceeds the production 
capability, the residual parts are purchased from external sources at a price much 
higher than the production costs to meet the demand. There are three stochastic 
parameters (demands for parts) with discrete and uniform distributions with ten 
outcomes each. The formulations and data for CEP1 and PGP2 may be found in 
Higle et al. [19]. 

In the case of PGP2, we obtained very accurate results using a sample size 
of 50. By computing 100 replications of the experiment, the mean of the objective 
function values differs by 0.1% from the correct answer. The 95% confidence 
interval of the objective function value, computed by the 100 replications of the 
experiment, is :t:0.76%, the mean of the confidence intervals estimated in each 
replication is 0.62% on the left-hand side and 0.9% on the right-hand side. In 98% 
of instances, the correct solution is covered by the 95% confidence interval. In the 
worst case, the solution differed by 0.77% from the correct answer and was not 
covered by the 95% confidence interval. 

In the case of CEP1, a high sample size is needed to obtain accurate results. 
The estimation of the second-stage costs appears to be more difficult. The reason 
lies in the fact that the (penalty) costs of buying parts from external sources are 
much higher than the costs of production. For this problem, the additive approximation 
function is not a very good approximation of the true cost function since it does 
not cover the very high costs in scenarios where all three demands are high. The 
estimated confidence interval seems to be large; we computed 4.65% on the left- 
hand side and 4.62% on the right-hand side (mean over 100 replications of the 
experiment). The estimations of the confidence interval are accurate, as indicated 
by the coverage rate of 95% of the correct answer by the 95% confidence interval. 
In the worst case, a different of 8.07% of the objective function value to the correct 
answer was computed. The worst case solution is not covered by the estimated 
confidence interval. In these examples, it is easier to compute the value of the first- 
stage variables than to estimate the second-stage costs. In most cases, the correct 
answer of the first-stage variables was obtained. We have developed methods which 
adaptively improve the approximation function if sample information shows that the 
variance of the estimation is too large. A discussion of the adaptive approach is not 
the subject of this paper. Tables 4 and 5 represent the computational results of PGP2 
and CEP1 and show the sizes of the test problems. 
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Table 4 

Model POP2, 50 samples (100 replications of the experiment). 

Correct Mean 95% conf Bias 
[%] [%] 

648 No. univ 
No. iter 

Obj 

Est. conf [%] 
Est. conf [%] 
Coverage 
Comp. time [mini 

Problem size 

Master: 

Sub: 

392.2 

left 
right 

9.1 

392.5 0.76 0.1 

0.62 
0.9 
0.98 
0.28 

rows 3 
columns 7 
nonzeros 16 
rows 8 
columns 16 
nonzeros 52 

Table 5 

Model CEP1, 200 samples (100 replications of the experiment). 

Correct Mean 95% conf Bias 
[%] [%] 

I000 No. univ 
No. iter 

Obj 

Est. conf [%] 
Est. conf [%] 
Coverage 
Comp. time [min] 

Problem size 

Master: 

Sub: 

57790.7 

left 
right 

r o w s  

columns 
nonzeros 
r o w s  

columns 
nonzeio$ 

6.4 

58832.7 4.63 1.8 

4.65 
4.62 
0.95 
0.28 

12 
10 
36 
9 
16 
53 
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In the following, we report on the solution of some large test problems with 
several stochastic parameters which are too large to be solved by computing the 
universe solution. 

WRPM is a prototype multi-area capacity expansion planning problem for 
the western USA and Canada. The model is detailed, covering six regions, three 
demand blocks, two seasons, and several kinds of generation and transmission 
technologies. The objective is to determine optimum discounted least-cost levels of 
generation and transmission facilities for each region of the system over time. The 
model minimizes the total discounted costs of supplying electricity (investment and 
operating costs) to meet the exogenously given demand subject to expansion and 
operating constraints. A description of the model can be found in Dantzig et al. [8] 
and Avriel et al. [1]. In the stochastic version of the model, the availabilities of 
generators and transmission lines and demands are subject to uncertainty. There are 
thirteen stochastic parameters per time period (eight stochastic availabilities of 
generators and transmission lines and five uncertain demands) with discrete distributions 
with three or four outcomes. The operating subproblems in each period are stochastically 
independent. The test problem WRPM1 covers a time horizon of one future period 
and WRPM2 covers two future periods. There are differences in the parameters 
between WRPM1 and WRPM2. Note that in the deterministic equivalent formulation, 
the problem would have more than 1.5 billion (WRPM1) and more than 3 billion 
(WRPM2) equations. 

FI2 is a portfolio management test problem, formulated as a network problem. 
It is a modified version of test problems found in Mulvey and Vladimirou [23]. The 
problem is to select a portfolio which maximizes expected returns in future periods, 
taking into account the possibility of revising the portfolio in each period. There 
are also transaction costs and bounds on the holdings and turnovers. The test 
problem FI2 covers a planning horizon of two future periods. The retums of the 
stocks in the two future periods are stochastic parameters. The problem is formulated 
as a two-stage problem. Rather than solving the problem by looking at a certain 
number of preselected scenarios (18 to 72 in the case of Mulvey and Vladimirou), 
we instead assumed the returns of the stocks in the future periods to be independent 
random parameters, discretely distributed with three outcomes each. Since there are 
thirteen stocks with uncertain retums, the problem has twenty-six stochastic parameters. 
The universe number of scenarios (2.5 x 1012) is very large, so that the deterministic 
equivalent formulation of the problem has more than 1014 rows. The stochastic 
parameters appear in the B-matrix as well as in the D-matrix. 

Computational results of the large-scale test problems are represented in table 
6. In addition to the solution of the stochastic problems, table 6 also shows the 
results of solving the expected value problem. In this case, the stochastic parameters 
are substituted by their expectations to obtain a deterministic problem. The expected 
value solution is then used as a starting point for the stochastic solution. We also 
report on the estimated expected costs of the expected value solution. These are the 
total expected cost which would occur if the expected value solution is implemented 
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Table 6 

Large test problems: computational results. 

WRPM1 WRPM2 FI2 

No. iter stoch. (exp. vai.) 139 (82) 131 (83) 4 (2) 

Sample size 100 100 200 

Exp. val. solution obj 286323.2 140041.0 1.0766 

Exp. val. solution, exp. cost 295473.7 147227.3 1.172 

Stochastic solution 289644.2 143109.2 1.169 

Est. conf. left [%] 0.0913 0.0962 0.454 

conf. right [%] 0.063 0.1212 0,371 

Solution time [mini 75 187 2 

Problem size 

Master: rows 44 86 48 
columns 76 151 33 
nonzeros 153 334 130 

Sub: rows 302 302 61 
columns 289 289 45 
nonzeros 866 866 194 

No. univ. scenarios 5038848 10077696 2.5 x 1012 

in a stochastic environment. The objective function value of the true stochastic 
solution has to lie between the objective function value of the expected value 
solution and the expected costs of the expected value solution. 

In the case of WRPM1 and WRPM2, we chose a sample size of 100. The 
estimate of the objective function value of the stochastic solution (289644.2 in the 
case of WRPM1 and 143109.2 in the case of WRPM2) turns out to be amazingly 
accurate. The 95% confidence interval was computed at 0.0913% on the left-hand 
side and 0.063% on the right-hand side (WRPM1) and 0.0962% on the left-hand 
side and 0.1212% on the right-hand side (WRPM2). Thus, the objective function 
value of the stochastic solution lies with 95% probability within 289379.7 _ z < 289826.0 
(WRPM1) and 142971.5 < z*< 143282.6 (WRPM2). In both cases, the expected 
costs of the expected value solution and the expected costs of the stochastic solution 
differ significantly. The solution time on a Toshiba T5200 laptop PC with a 80387 
mathematic coprocessor was 75 minutes (WRPM1) and 187 minutes (WRPM2). 
During this time, about 7500 (WRPM1) and 15700 (WRPM2) subproblems (linear 
programs of  the size of 302 rows and 289 columns) are solved. 

A sample size of 200 was chosen for solving test problem FI2. The problem 
is solved in only four iterations. The objective function value of the stochastic 
solution is computed as 1.1695 with a 95% confidence interval of 0.454% on the 
left-hand side and 0.371% on the right-hand side. Thus, with 95% probability the 
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optimal solution lies between 1.164 < z*_< 1.174. The estimated expected costs of 
the expected value solution (1.172) lie within the 95% confidence interval of the 
costs of the stochastic solution; however, also in this case, expected costs of the 
exl~cted value solution and expected costs of the stochastic solution differ significantly. 

6. Conclusion 

We have discussed a promising approach to solving two-stage stochastic 
linear programs with recourse and obtained first numerical results; employing 
importance sampling within the Benders decomposition algorithm, we obtained 
very accurate solutions to the test problems with only a small sample size. The 
technique enables us to solve large-scale problems with a large number of stochastic 
parameters on a laptop computer. The test problems solved so far include up to 
twenty-six stochastic parameters and the subproblems have a size of several hundred 
rows and columns. In the deterministic equivalent formulation, the problems would 
have more than several billions of equations. The small confidence intervals of the 
solutions indicate that an extension to even more stochastic parameters is possible. 
The analysis in this paper concentrated on discrete distributions. The method, however, 
can be easily extended to continuous distributions. Current research concentrates on 
testing the technique on large-scale problems of different areas with large numbers 
of stochastic parameters. We investigated possibilities to adaptively improve the 
approximation function should it prove that the error of the estimate exceeds a 
predefined level. If some problems require a much higher sample size, the use of 
parallel processors will enable us to quickly solve large numbers of samples to 
obtain low variances of the estimations. A parallel implementation of the method 
is in preparation. 
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