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Abstract 

This paper introduces skewed norms, i.e. norms perturbed by a linear function, which 
are useful for modelling asymmetric distance measures. The Fermat-Weber problem with 
mixed skewed norms is then considered. Using subdifferential calculus we derive exact 
conditions for a destination point to be optimal, thereby correcting and completing some 
recent work on asymmetric distance location problems. Finally the classical dominance 
theorem is generalized to Fermat-Weber problems with a fixed skewed norm. 
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1. Introduction 

In continuous location problems distance is traditionally measured by way of a 
norm. The main reasons for this are that one obtains convex optimisation problems for 
which a large body of theory and methods exist, and that this class of distance measures 
is sufficiently large to model quite adequately many different situations. Indeed, even 
if the Euclidean norm was used almost exclusively by pioneers in the field, e.g. Weber 
[14], many other types of norms have been studied and used in the last thirty years. These 
include the rectilinear norm (see, e.g. Francis and White [4]), more generally/p-norms, 
following the study by Love and Morris [8] of the best norms approximating real road 
distances (see, e.g. Morris [10]), and block norms (e.g. Ward and Wendell [13]). However, 
by definition, norms are symmetric and hence the derived distance measures also have 
the property that distances are equal both ways. 

In several real situations this symmetry is violated, either directly, such as shortest 
path distance on a network containing one-way streets, or when an economics view of 
time or cost is used. Examples of the latter include transportation in rush-hour traffic, 
flight in the presence of wind, navigation in the presence of currents, and transportation 
on an inclined terrain. Perhaps the first theoretical development in this respect was the 
work of Durier and Michelot [3] developing a geometrical description of the solution 
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set of Fermat-Weber problems in which distances are measured by gauges which are 
an extension of norms that allow for asymmetry. Hodgson et al. [5] explicitly address 
the Weber location problem on an inclined plane, extending the classical Weiszfeld [ 15] 
method. Finally Drezner and Wesolowsky [2] discuss several asymmetric extensions of 
rectilinear and Euclidean location problems. 

In this paper we focus on the minisum single facility (or Fermat- Weber) problem 
and introduce a fairly large class of asymmetric distances: the skewed norms. We show 
first how both the Hodgson et al. [5] and Drezner and Wesolowsky [2] proposals belong 
to this class. Then we derive necessary and sufficient conditions for one of the destination 
(or source) points to be the optimal site. This is a fairly common phenomenon in the 
traditional symmetric Fermat- Weber problems, e.g. in case of dominance (see Witzgall 
[16]), and the conditions under which it arises are well known since the work of Juel 
and Love [6]. It seems, however, that in asymmetric distance problems it is less understood: 
the setting of Duffer and Michelot [3] is perhaps somewhat too general for this question 
and it is not explicitly discussed. Hodgson et al. [5] give an erroneous destination 
optimality condition which has recently been observed and corrected (without formal 
proof) by Chen [1]. Drezner and Wesolowsky [2] simply ignore the problem, thereby 
invalidating the convergence proof of their algorithm. The main aim of this paper is to 
fill in these gaps, making ample use of convex analysis and subgradient calculus, the 
value of which in continuous location problems seems to be largely unknown to many 
scholars working in the field. Therefore we start out in the next section with an overview 
of the relevant notions and results. 

2. Convex analytical preliminaries 

Following Minkowski [9] (see also Rockafellar [12]), when B is a convex, closed, 
bounded set in ~ ,  the interior of which contains the origin, the gauge of B is defined 
by 

7 ' ( x ) = i n f { ~ , > O l x / Z ~  B} for all x ~  R". 

B is then the unit ball of  7;, since 

B = { x ~  RnJT'(x)<l}. 

It is well known that any gauge 7'is a convex function on R n and that any positively 
homogeneous, definite and subadditive function is a gauge (see Rockafellar [12]). 
A distance function d r may be derived from 7' by 

dr(x, y) = 7'( y - x). 

It satisfies the following properties: 

non-negativity: dr(x, y) ___ 0. 

definiteness: dr(x, y) = 0 iff x - - y .  



F. Plastria, On destination optimality 357 

Triangle inequality: dr(x, y) + dr(y, z) < dr(x, z). 

Thus the gauges are excellent candidates for defining asymmetric distance measure. 
It was shown by WitzgaU [17] that any distance function satisfying the properties 
above, and such that any function d(x, .  ) and d ( . ,  y) is convex, is necessarily 
derived from some gauge. See Duffer and Michelot [3] for some examples. 
When B is symmetric around the origin, the associated gauge y also is symmetric, 
i.e. 

7'(x) = 7'(-x) for all x, 

and thus is a norm, which we will usually denote by N. The derived distance 
measure is then also symmetric and is thus a classical metric. 
For any gauge 7' we may define a dual gauge yd by 

7'd(a) = max { (x, a ) I 7'(x) < 1 }, (1) 

where ( .  , .  ) denotes the usual scalar product. The unit ball of 7'd is exactly the 
polar of 7"s unit ball (see RockafeUar [12]), denoted by B~. It is well known that 
when N is an Iv-norm with p > 1, then its dual N a is the lq-norm with q defined by 
1/p + 1/q = 1. In particular, the Euclidean norm 12 (also denoted by I1" II) is self-dual. 
The block-norms Ii (rectilinear norm) and l** (Tchebycheff norm) are dual to each 
other. 

The classical Cauchy-Schwarz  inequality generalises as follows: 

(x, a) < 7'(x) . 7"d(a), (2) 

where for any fixed x (resp. a) equality is reached for at least one a (resp. x). 
If T is a regular linear transformation of R", then we may define a new gauge 

7'r by 7'r(x) = 7'(Tx). For example, if N is the Euclidean norm, then Nr is an ellipsoidal 
norm, i.e. a norm for which the unit ball is an ellipsoid centered at the origin. 

LEMMA 1 

The dual gauge of 7'r is (7'd)(r-l),, where ' denotes duality of linear trans- 
formations, i.e. transposition in terms of matrices. 

Proof  

By (1) we have: 

7'rd(a) = max{(x, a) 17'r(X) < 1} 

= max {(x, a) I y(Tx) < 1} 

= max {(T - lz ,  a) 17'(z) <_ 1} 
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= max{(z, (T-l) 'a) l  7(z) < 1} 

= 7 d ((T -1)'a) 

= (Ta)ff-~),(a). t-'l 

If  f :  R n --> R is a convex function, we say that p ~ R n is a subgradient o f f  
at a e R "  iff  

( x - a , p ) + f ( a ) < f ( x )  for any x ~ R " .  

The set of  all subgradients o f f  at a is called the subdifferential o f f  at a, denoted 
by Of(a), and this set is always nonvoid. I f f i s  differentiable at a then the gradient 
Vf(a) o f f  at a is the only subgradient o f f  at a, i.e. Of(a) = {Vf(a)}, while i f f  is 
nondifferentiable then Of(a) is a closed convex set. 

An important property says that a ~ R n is a global minimum of  the convex 
function f iff 0 ~ Of(a), thus generalising the classical condition Vf(a)= 0 in 
case of  differentiability. Furthermore if 0 is an interior point of  Of(a), then a is the 
unique global minimum o f f .  
These notions are standard in convex analysis and we refer the reader to the classical 
work of  Rockafellar [ 12], in which all necessary results on subdifferential calculus 
are extensively treated. In particular we will make use of  the following properties 
of  the subdifferential operator: 

• Linearity: ~)(f+ g)(a) = ~f(a) + ~g(a) and i)(3,f)(a) = ~,~f(a) for any ~, ~ R +. 

• Chain-rule: If  T : R m ---> R '~ is a linear function then i)(fo T)(a) = T'(Of(Ta)) 
where * denotes composit ion of  functions. 

For  gauges, which are always convex functions, we have a simple description 
o f  the subdifferentials: 

~7(0)  = {p ~ R'~I7 a(p) < 1} 

~7(a) = {p ~ I~nl? 'a (p) = 1 and (p, a) = 7(a)}. 
(3) 

Please, note that in case o f  a smooth norm 7, i.e. one which is differentiable 
everywhere except o f  course at the origin, the gradient VT(a ) at a ~: 0 has dual norm 
1 : 7a(VT(a))= 1. 

The first equality in (3) shows that the subdifferential o f  the gauge 7 at the 
origin is exactly the unit ball o f  7 's  dual 7 d, i.e. the polar of  7 ' s  unit  ball: B~. 

3. Skewed norms  and  asymmetric distance measures 

Let N be a norm on R n and p e R n. We define the linearly perturbed norm 
function f(N, p) by 
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f(N, p)(x) = N(x) - <p, x >. (4) 

This function is evidently positively homogeneous (f(N, p)(~x) = ~,f(N, p) for ;I, > 0) 
and subadditive (f(N, p)( x + y) < f(N, p)(x) + f(N, p)(y)). In order to be useful for 
measuring distances it has to be positive definite, i.e. f(N, p)(x) > 0 for all x ~: 0. 

[,EMMA 2 

f(N, p) is positive definite iff Nd(p) < 1. 

Proof 
First note that when p = 0 the positive definiteness of f (N,  p) is guaranteed 

by that of N. Thus assume further that p ~ 0. Suppose first Nd(p) < 1. By (2) and 
the symmetry of N we have, for all x ~ 0, (p, x) < Nd(p) • N(x) < N(x) showing that 
f(N, p)(x) > 0. Conversely, iff(N, p) is positive definite, then for any x ~: 0 we must 
have (p, x> < N(x). Choosing y so that (p, y) = Nd(p) • N(y), this leads to Nd(p) < 1, 
since p ~ 0 guarantees that y ~ 0. [] 

In view of lemma 2 we only consider linearly perturbed norms f(N, p) with 
Nd(p) < 1, and call these skewed norms. In view of their properties these functions 
are gauges. The following theorem gives several characterizations of skewed norms 
among the much larger class of gauges: 

THEOREM 3 

For a gauge 7 the following properties are equivalent: 

(1) y is a skewed norm. 

(2) The function l / 2 ( ) ' ( - x ) -  )'(x)) is linear. 

(3) The unit ball of y ' s  dual )'d admits a center of symmetry. 

(4) The polar B~ of )"s  unit ball admits a center of symmetry. 

Proof 

If y(x)= N(x) -  (p, x ) f o r  some N and p, then 1 /2() ' ( -x) -  )'(x)) = (p, x ) i s  
linear. Conversely for any )' we have )'(x) = l/2(y(x) + y(-x)) - 1/2(y(-x) - y(x)). 
Clearly N(x)=l/2(y(x)+ T(-x)) is positively homogeneous, definite, subadditive 
and symmetric, hence a norm, while the second term l / 2 ( T ( - x ) -  T(x)), being 
linear, equals (p, x) for some p. Hence, by definiteness, ),is indeed a skewed norm. 

Suppose now again )'_(x)= N(x) -  (p, x), then the subdifferential 0T(0) of 
at 0 is  exactly the unit ball B ~ o f y  a. However, 0y(x) = ON(x)-p. Hence, B~-BTv-°  _ o 
p, i.e. Nd's unit ball translated over -p .  Since N d is a norm, it is symmetric and its 
unit ball is symmetric around the origin. Hence the p o i n t - p  is a center of symmetry 
of B~. Conversely, let q b e n  center of symmetry B~. Then B~ + q is symmetric 
around the origin, hence its gauge is actually a norm N, with unit ball Blv = B~ + q. 
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Now for any x we have 

7(x) = max{(s, x) ls e B~} 

= m a x { ( s , x ) l s + q  e B~ +q} 

= m a x { ( t - q , x ) l t  e BN} 

= max{ ( t , x ) l t  e Bjv} - (q ,x )  

= N d ( x )  - (q, x), 

showing that y is a skewed norm. I"1 

COROLLARY 4 

7" is a gauge with ellipsoidal unit ball iff 7" is a skewed norm of  the form 
f(Nr,  p)  with N the Euclidean norm. 

The proof  is easy using theorem 1 and the fact that the polar of  an ellipsoid 
also is an ellipsoid. 

We now define a "distance" measure in the classical way by 

d(x, y) = f (N ,  p)(y - x). 

One easily sees that this measure satisfies all properties of  a metric, except the 
symmetry (if p # 0) due to the linear perturbation, and therefore is an adequate 
candidate for an asymmetric distance measure. 

EXAMPLE 1 

Hodgson et al. [5] derived the following expression for the work expended 
when moving a block of  mass m from a point a = (al, a2) to point x = (xl, x2) along 
a plane inclined at angle O in the direction of  the second coordinate axis: 

W(a, x) = m g { # [ ( x l  - al) 2 cos20 + (x2 - a2)2] 1/2 + (x2 - a2) tanO}, 

where g is the gravitational acceleration constant and # the coefficient of  sliding 
friction. One easily sees that W(a, x) = mf(Nr,  p)(x  - a) where N =/2 is the Euclidean 
norm, T is defined by the regular transformation matrix 

0 I I 
Since 
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['  °, / (T_I), = g/z cos O 

o 

the condition o f l emma  2 (and using lemma 1) reduces to (tanO)/# < 1, or tanO < #, 
pointed out by Hodgson et al. [5, p. 223] in order to avoid situations in which 
gravity would cause blocks to slip, in which ca se /he  model would not apply. 

E X A M P L E  2 

As a second application, consider the time necessary to fly from one point 
to another in the presence o f  a steady wind. Let us choose an orthogonal coordinate 
system with second axis in the wind's  direction. Let 11 >__ 0 denote the drift velocity 
due to the wind and s > 0 the airplane's speed relative to the surrounding air. 
Suppose one starts off from the origin in some direction y = (Yl, Y2) and always 
keeps the same flight direction. Then by the time t in which y would have been 
reached without any wind, i.e. st  = II Y II, one will in fact have reached some point 
x = (xl, x2) = (Yl, Y2 + tv). It is quite clear that this point x cannot be reached in a 
quicker way. Hence, the shortest possible time D(x) to reach x from the origin is 
given by 1 

D(x) = -'_ II Y II, 3" 

where y is chosen such that Yl = xl and x2 - Y2 = (v/s)II Y II. By squaring this last 
equality we find that Y2 should be the root of  the quadratic equation (s 2 - v2 )y  2 -  
2s2x2Y2 + s2x 2 - t~x 2 = 0 that is not greater than x2. The discriminant being (s 2 - 
v 2 ) ~ x  2 + v2s2x 2, this root always exists as soon as s > u. Indeed, it is only when 
the airplane's speed exceeds the wind velocity that all points of  the plane may be 
reached; when s < v only downwind points will be reachable! We then immediately 
find 

1 
D(x) = s II y II = (x2 - Y2) 

= s2_1 2 ((s2 _ 02)x  + s2x )ln _ .  v 
$2 _ l i 2  X2"  

After translation of  the origin to some point a, the time necessary to reach some 
destination point x, starting from a, is 

D(x - a) =f(Nr ,  p)(x - a), 

where N = /2  is the Euclidean norm, T is defined by the regular matrix 

--- 1) • T =  and p ~ -  
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in which r = (s 2 -  t~2) tt2. This is indeed positive definite by lemma 2 whenever 
v/s < 1 or v > s as already mentioned before. 

EXAMPLE 3 

Drezner and Wesolowsky [2] define the rectilinear asymmetric distance from 
point a to point x in the plane by 

where 

and 

d(a, x) = dl(a, x) + d2(a, x), 

dl(a,x ) = f E l x  l - a l l  if x I > a  1, 
[ W l X l - a l [  if x l < a l ;  

d2(a, x) = ~ N[x2 - a2 I 
[Six2 o.21 

It is easy to check that 
1 

a (O,x) = I (W 

if x 2 _> a 2, 
if x 2 < a  2. 

1 
+ E ) x l l -  ~ (W - E)x I, 

and similarly d2(0, x) = I½(S + N)x2 I -  ½(S - N)x 2. It follows that the rectilinear 
asymmetric distance d(a, x) is derived from the linearly perturbed norm f(Nr, p) 
where N = 12, 

T= 1 and p=2~.S_N). 
(s + N) 

According to lemma 2 this is a skewed norm iff 

which is equivalent with W, E, S, N > 0, since W, E, S and N are assumed to be 
nonnegative. 

EXAMPLE 4 

In the same paper these authors also define an asymmetric Euclidean distance 
by [1 ] 

F(a, x) = 1 + ~ (m - 1)(1 - cos(@ - a))  r. 

(Beware of  the typing error in formula (10) in Drezner and Wesolowsky [2, p. 204].) 
Here (r, 0 )  are polar coordinates of  x - a and m, a are parameters determining the 
shape of  the distance measure: the unit ball is an ellipse with main axis the segment 
joining the points with polar coordinates (1, a )  and (1/m, ~ + a). 
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By the fact that r = Ilx- all, rcos@ = xl - al and rsin@ = x2 - a2, one easily 
derives 

1 1 
F(a ,x )  = ~ ( m  + 1)[Ix - all - ~ ( m  - 1)[(xl - al) cos a + (x2 - a2) sin a ] ,  

showing that this asymmetric Euclidean distance measure is derived from a skewed 
norm f (N ,  p) where N = ½ (m + 1)/2 is a rescaled Euclidean norm and p = ½ (m - 1) 
(cos ~,  sin a) .  
According to lemma 2 this is positive definite whenever  (2/(ra+ 1))[[ p [I 
=[ra - 1 [/(ra +1) < 1, holding whenever  m > 0. In fact, it is sufficient to consider 
only m > 1, as implicitly assumed by Drezner and Wesolowsky [2], since the 
pairs (a,  m) and (n:+ o~, l /m) define the same skewed norm, up to a constant scaling 
factor. 

Note that examples 1, 2 and 4 all correspond to gauges with ellipsoidal unit 
balls, thus, by corollary 4, they are skewed norms derived from the Euclidean norm. 

4. Asymmetric Fermat-Weber problems 

Let A c R n be a finite set of  destination points. For each a ~ A distance to 
a is calculated by way o f  a skewed norm f(No, p,,) by 

da(x) = f(Na, pa)(X -- a) 

= Na(x- a) - (Pa, x -  a). (5) 

A central facility interacting with each of  these destinations is to be located so as 
to minimize the total cost of  all interactions. Interaction cost with destination a ~ A 
is supposed to be a linear function of  the distance of  the site x up to point a. Hence 
we obtain the following optimization problem 

min FW(x) = ~ w a d a ( x ) ,  (6) 
x~Rn a~A 

where the wa > 0 are given interaction costs per distance unit. In case all distance 
measures are symmetric  (po = 0 for all a e A), we obtain the classical F e r m a t -  
Weber problem with mixed norms. 

Since FW(x) is a convex function as a positive linear combination of  convex 
functions, the optimality condition at point x is 0 ~ 3FW(x). By the linearity of  the 
subdifferential operator we have 3FW(x)= 2a~a wa~da(x)' and by (5) 

3d.(x) = 3Na(x -  a) - p,,. 

We thus obtain the following property. 
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LEMMA 5 

x is an optimal solution to the F e r m a t - W e b e r  problem (6) iff  there exists for 
each a e A a subgradient ga e ~Na(x- a) such that 

ZWaqa = Zwapa.  I-1 
aeA aeA 

COROLLARY 6 

If  for all a e A the norm Na is differentiable at the point x - a, then x is an 
optimal solution i f f  

Z waVNa(x - a) = Z WaPa" [] 
acA aeA 

This optimality condition, however,  never  applies when x coincides with one 
o f  the destinations, b e A say. In the sequel we will suppose all norms N,, to be 
smooth, i.e. differentiable everywhere  except at the origin, in order to be able to 
derive an easy optimality condition in case o f  such a coincidence. 

THEOREM 7 

The site x = b e A is an optimal solution to the F e r m a t - W e b e r  problem iff  

Nd(Gb) <_ W b, 

w h e r e G  b = Z w a V N a f b - a ) -  ~WaPa. 
a~A\{b} aeA 

I f  the inequality is strict, then b is the only optimal solution. 

Proof 

Applying lemma 5 at point x = b with the remark that for each a ~: b N= is 
differentiable at point b -  a, we obtain the optimality condition: 

wbq =--Gb for some q e ()Nb(0), 

or, by (3), for some q with Nd(q) < 1. D 

Note that when all p,, = 0 we recover the fixed-point optimality conditions of  
Juel and Love [6] - see also Plastria [11]. 

EXAMPLE 5 

The one-centroid problem on an inclined plane was defined by Hodgson et 
al. [5] to determine the location of an unknown centroid on the inclined plane 
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rninimising the total work necessary for sliding blocks of different masses to this 
centroid. Denoting by a ¢ A the initial locations of the different blocks, with weights 
ma, and using further the notations of example 1, we obtain an asymmetric Fermat- 
Weber problem (6) with weights Wa = mo, and distance measures do(x) =f(Na, Pa), 
where N,, = Nr, N = 12, T= g# (co~o o) and p = (0,-g tan O) for each a ¢ a. 

The norm Nr is differentiable (except for 0) with gradient 

VNT(y) = V(NoT)(y)  = T'VN(Ty) 

= T '  Ty 
N(Ty) 

- ( y ~  c o s  2 0  + Y2 " 

Therefore, 

( ~ ma(b I - a 1) cos 2 0  1 

~'Gb2j ~llgae~AXtb}-(-~m--~ss2b2-~+~--gtanOa~Ama 

which corresponds (after adapting notations) with the expression for Gk in Hodgson 
et al. [5, p. 224]. According to theorem 7 the optimality condition at x = b is 

N d (G b) <- m b, 
or, by lemma 1, 

Nd((T-I)'Gb) < mb. 

Since N d = N =/2 and 

( r - l )  c o , 

this condition becomes: 

II(GbllCosO, Gbgll < #grab, 

which differs from the condition IIGbll---#gmb erroneously stated by Hodgson 
et al. [5]. This error was already noted by Chen [1]. 

The interested reader will easily derive the optimality conditions in a similar 
way for a Fermat-Weber problem involving flights in the presence of wind, using 
the development in example 2. 

EXAMPLE 6 

Consider the asymmetric Fermat-Weber problem as proposed by Drezner 
and Wesolowsky [2]: the objective to be minimised is 
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eW(x) = 
a~A 

where da(x) = f(Na, pa)(x - a) with 

N a =½(m a + 1)/2 and Pa =½(ma - 1)(c°Saa,Sinaa) 

(see example 4). We easily find from theorem 7 that b c A  is the optimal solution 
iff IIGbll < 2Wb/(mb + 1), where 

W a ( m  a +__1) ( h  - a ) -  ~ W a p  a . 
Gb = ~ '  211b - a II ,v 

a~A\{b}  a~A 

The fact that some destination may be an optimal solution is totally ignored by these 
authors: the optimality conditions ([2] formulae (12), p. 205), which correspond to 
those of our corollary 6, indeed only make sense at points x different from any 
destination. Their proof of convergence of  their adapted Weiszfeld algorithm is then 
only valid in such cases. This algorithm may undoubtedly be adapted in a way 
similar to Kuhn and Kuenne [7], as was done by Hodgson et al. [5] for the inclined 
plane case, and its convergence proven. This, however, falls outside the scope of 
this paper. 

5. A dominance theorem for asymmetric distance 

A well known theorem of WitzgaU [16] states that if, in a Fermat -Weber  
problem where all distances are measured by the same metric, some destination is 
dominant, i.e. outweighs all other destinations taken together, then this destination 
is the optimal site for the central facility. 

The easy proof of this theorem explicitly relies on the symmetry of the 
distance measure, and fails without this property. It is easy to construct one-dimensional 
examples in which the theorem does not hold. 

In this section we derive a generalisation of this dominance theorem for 
Fermat -Weber  problems with a skewed norm, which reduces to WitzgaU's result 
in the case of  symmetry. Note that Goldman, in his preface to WitzgaU's seminal 
report [16], recommends research into this kind of generalisation. 

Let d be an asymmetric distance measure on R n. We define its skewness s(d) 
by 

f d(x, y) ] 
s(d) = s u p ~ . ~  i x y R n f .  

This skewness may be infinite for general distance measures, but when d is derived 
from a gauge it is always finite and > 1. Note that s(d) = 1 expresses d is symmetric. 

LEMMA 8 

If d is derived from the skewed norm f (N,  p), then 
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1 + N d ( p )  
s(d) = 1 - N d ( p ) "  

Proof 

For any x ~ y E R n we have: 

d(y,x) 

d(x,y) N ( y -  x ) -  ( p , y -  x) 

N(y - x) + (p, y - x) 

2 
= l -  N(y - x) 

+1 
(p, y - x) 

This expression is maximised when (p, y - x)/(N(y - x)) is minimal and negative. 
By the Cauchy-Schwartz  inequality (2) this latter minimum is equal to -Nd(p). 
Hence, 

2 1 + N d(p) 
= . [ ]  

s ( d ) = l  ~ - 1  +1 1 - N d ( p )  
N d ( p )  

Consider now a Fermat-Weber  problem 

min FW(x) = ~ wad(a, x), (7) 
X~RM a~A 

in which all distances are calculated by way of a fixed smooth skewed normf(N,  p). 

THEOREM 9 

If for b ~ B we have 

sfd) Y. w., < Wb, 
a~A\{b} 

then x = b is an optimal solution to (7). If the inequality is strict, then it is the 
unique optimal solution. 

Proof 

Let us check the destination optimality criterion of  theorem 7. 

Nd(Gb) < ~ waNd(VN(b - a)) +~.~ waNd(p) 
aeA\{b} aEA 



368 F. Plastria, On destination optimality 

= (1 + Nd(p) )  E W a  + wbNd(p) 
acA\{b} 

since Na(VN(x))= 1 for any x 

< (I + Nd(p))Wb/S(d) + wbNd(p) 

= w  b. 

When the inequality among weights is strict, the last inequality above is also 
strict, showing that NO(Gt,)<Wb, whence that x =  b is the unique optimal 
solution. [] 

Note that in the case of a symmetric distance this reduces to Witzgall's 
theorem since s(d)= 1. 
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