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Abstract 

In many service systems, the primary objective is to provide continuous service 
and/or service within a prespecified time interval. In the public sector, emergency 
service systems fit into this category. In the private sector, systems providing repair 
service to critical production facilities and computers constitute another example. In 
these systems, the concept of multiple service facilities providing backup to each other 
becomes an important element in the design process. In this paper, we study the capacitated 
facility siting problem with multiple levels of backup coverage. The problem is formulated 
as a mathematical program; an efficient solution procedure is developed and computational 
experiments are reported. 

1. Introduction 

Due to the nature of the service they provide, there are certain facility systems 
where a primary goal is to have the capability to provide that service at all times. 
In these cases, where the cost of not providing the service is sufficiently great and 
there is a significant likelihood the designated provider may be incapable, the 
system should be designed with redundancy to ensure continuous service. Clearly, 
in the public sector, emergency service systems fit into this category. One expects 
a call to 911 to bring an ambulance in a relatively short time. The inability to do 
so can be life threatening. In the private sector, a company guaranteeing computer 
repair services within twenty-four hours of a request risks losing customers if it 
fails to meet its claim. Facilities can be made unavailable by equipment breakdown, 
personnel problems, or other crises, but the most common reason is simply being 
occupied with another request for service. The more congested the system, the more 
likely this is to occur and, therefore, the greater the need for "backup" providers. 

A base of literature is massing around the challenge of siting facility systems 
of critical services that meet the need for continuous service capability. Many 
researchers employ the concept of coverage in their backup service models because 
it ensures a worst-case lower bound on the quality of service delivered. These 
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models include the location/simulation approach of Berlin [2], the multiple coverage- 
set covering formulation of Daskin and Stem [7], and the hierarchical maximal 
covering problem of Ruefli and Storbeck [26]. A brief review of backup service 
research appears in Hogan and ReVelle [17], who also develop a multiobjective 
formulation trading off primary and backup coverage. Each of the above are multiple 
coverage approaches which take no explicit consideration of facility workload. 
Weaver and Church [27] introduce the vector assignment p-median problem which 
allocates a fixed percentage of each site's demand to separate facilities. Again, 
however, without concern for a facility capacity. 

It is in congested systems that one is most likely to find facilities operating 
at (or beyond) their workload limits. Thus, incorporating capacity restrictions in the 
siting model is a desirable enhancement. Several authors have included such limitations 
in the maximal covering location problems, but without addressing issues of backup 
service. Current and Storbeck [6] provide several foundations of the problem. Chung 
et aI. [3] present a heuristic for solving the model with binary assignments, but only 
for relatively small problems. Pirkul and Schilling [24] develop another formulation 
of the capacitated maximal covering location problem and demonstrate an efficient 
heuristic based on a Lagrangian relaxation for large problems. Finally, Pirkul and 
Schilling [22] do employ facility capacities in the context of siting emergency 
facilities. In that paper, the authors consider a single level of backup service and 
do not utilize the concept of coverage. 

The combination of facility capacities and backup service within the context 
of covering models has been examined in only one previous paper. Pirkul and 
Schilling [23] provide a formulation and solution approach for a capacitated facility 
model which seeks coverage from both a primary facility as well as a secondary 
facility. Only a single level of backup is considered, however. In highly congested 
systems and/or when service availability is hyper-critical, multiple levels of backup 
service will be needed. In this paper, we will generalize the work of Pirkul and 
Schilling [23] to permit any number of backup facilities. 

2. Model development 

In words, the model we examine here attempts to maximize the amount of 
demand covered by a fixed number of facilities such that all demand is assigned 
to a unique facility for each level of service and the total service provided by each 
facility does not exceed some specified service capacity. 

Mathematically, the model can be stated as follows: 

Problem P 

S" ckakx k (1) Z e = m a x ~  ~ z_, ij i ij 
i ~ l  j c J  k E K  
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subject to ~ yj = p, (2) 
j ~ J  

x~ = 1 ,  V i E I ,  V k ~ K ,  (3) 
j ~ J  

k x O <_y j ,  V i ~ l ,  V i e  J, (4) 
k~K 

Z ~-, a~ xk <- Wj, Vj e J, (5) 
i~ l  kEK 

yj e {0, 1}, V i e  J,  (6) 

k xij ~{0, 1}, V i e l ,  V j ~ J ,  V k ~ K ,  (7) 
where 

J = 

K = 
a~' = 

w : -  
p = 

S t = 

d/j = 

the index set of all demand points; 

the index set of all potential facility sites; 

the index set of all service levels; 

the demand at point i for level k service; 

the workload capacity for a facility at site j ;  

the number of facilities to be sited; 

the maximum service distance or time for acceptable service at level k; 

the travel distance or time from j to i; 

c~ = {1, i f d q < S  k, 

0, otherwise; 

x~ = f 1, if a facility at j provides service of level k to point i, 
ij 

0, otherwise; 

1, if a facility is sited at j ,  

YJ = 0, otherwise. 

This formulation adapts the "p-median" format of the Maximal Covering 
Location problem presented in Church and ReVelle [5], to include both facilities 
capacities and multiple service levels. 

The "service level" corresponds to the order in which the facility providing 
that service is called. The first service level would be provided by the facility which 
initially receives the call for service (the primary service provider). The second 
service level is provided by the backup facility, i.e. the facility that is called when 
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the primary provider is unavailable. The facility delivering the kth service level 
would be contacted if facilities assigned service levels 1 through k - 1 are all busy. 
Clearly, the likelihood that a level k provider is called fails off quickly as k increases. 
The number of service levels desired in any particular problem instance can be set 
by the decision maker based on the criticality of providing service and the cost of 
providing that service. The model described here allows the decision maker to 
experiment with different levels of K and gauge their impact on system performance. 

The constant a/k represents the demand at point i that is expected to be served 
by a level k provider. For example, a~ would be the number of service calls met 
by the primary server and a 2 would be the number of calls met by the first backup 
facility. Thus, the total demand for service at point i would be Y kEK a/k. 

Determining the actual number of calls for service at each service level is not 
possible prior to the location-allocation decision, since facility availability depends 
on the number of calls the facility is assigned. Nevertheless, there are several 
alternative approaches to estimating a~'s. As suggested by Pirkul and Schilling [22], 
these values can be approximated with a simulation model, through examination of 
historical data, or by a worst-case estimate from the decision maker. 

The objective function (1) maximizes the expected demand for each service 
level that is within the relevant worst-case distance from its assigned service provider. 
The effect of this objective is to maximize the total demand covered, without 
differential emphasis on whether that service coverage is provided by the primary 
server or by one of the backup facilities. The formulation could easily be modified, 
however, to value a given service level over the service levels which back it up. 
That is, the objective could be rewritten as 

Zp m a x ~  .~ ~ k k k = gkcijai x(i, 
i~l j ~ J  k~K 

where gk is the preference weight on service provided by level k. This form would 
be appropriate, for example, when the maximum service distances S k increase with 
k so that the quality of service degrades as k increases. In such a case, gk would 
be set to weight lower service levels more than higher ones. 

Constraint (2) limits the number of facilities opened to be equal to p. Constraint 
set (3) stipulates that the demand at i for each service level must be assigned a 
provider. Thus, while only covered demand is counted in the objective, all demand 
is provided service - and contributes to some facility's workload. 

In constraint set (4), two problem requirements are maintained. First, they 
ensure that demand is only assigned to a facility that is open. It also forces the 
different levels of demand at point i to be assigned to different facilities (i.e. 
x~. and x~.', where k ~: k', cannot both be 1). This requirement for separating the 
source of service for a given point follows from the recognition that a facility 
cannot provide backup to itself. If a facility is busy and cannot provide level k 
service to point i, it cannot be available at the next (backup) service level. 
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It is important to recognize that a facility services all demand assigned to it, 
not just demand within a worst-case travel distance. Therefore, constraint (5) establishes 
a capacity limit on the total demand a facility serves. This approach, while different 
from several other authors' work on the capacitated maximal covering problem 
[3,6] is more realistic for service settings where demand cannot be turned away. 
As discussed in Pirkul and Schilling [24], however, certain pathologies in the 
optimal demand allocation are likely. These pertain to the quality of service provided 
to demand that is uncovered. Service delivered to points within the worst-case 
travel distance is, by definition, satisfactory. There is no consideration given by the 
objective function to how close service providers are to points which are beyond 
the coverage distance. In fact, the model may assign demand to quite distant facilities 
even where closer (yet still not covering) facilities are available. Since the objective 
function does not consider them, uncovered demand points may be assigned to any 
available facility without regard to its proximity. There are any number of functions 
which address the service quality provided by these demand points. In this paper, 
we adokpt the modification used in Pirkul and Schilling [24], where cikj is replaced 
with 1)ij SO that (1) is replaced by 

where 

Z p = m a x ~  ~ ~ k k k v~ai xij, 
i$l  j~J  k~K 

Ill ifd/j < S k, 

ifd/j > S k, 

(8) 

(9) 

and 0 < a < 1, where ct is the weight given to uncovered service. 

j  --1 

a =I /2  

a = O  

Max (dij) 

Fig. 1. Service function performance for three levels of a .  
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This modification serves to minimize the average weighted travel distance to 
uncovered points while also maximizing the demand which is covered. The effect 
of this definition of vij is perhaps more apparent in fig. 1, which shows how service 
quality changes as the response distance increases. For distances up to S, service 
quality is assumed unaffected by distance and valued at one. As dlj increases above 
S units, service quality degrades. The multiplier tz allows the decision maker to 
discount service beyond S even further. Note that when a = 0, we have a formulation 
which places no value on uncovered demand [24]. In the next section, we explore 
an efficient solution procedure for this model. 

3. Problem solution 

The model presented in the previous section belongs to the NP-complete 
class of problems [11]. There are no algorithms specifically designed to solve this 
problem. Commercial integer programming codes can solve small instances of this 
model, but cannot handle realistic problem sizes. Development of an efficient solution 
procedure for this model is critically dependent on being able to exploit its spacial 
structure. We use a Langrangian relaxation approach to develop a heuristic solution 
procedure which is both efficient and effective. 

The Lagrangian relaxation scheme has been successfully applied to many 
combinatorial optimization problems during the last decade or so. The use of generalized 
Langrange multipliers was first suggested by Everett [8]. The successful application 
of this relaxation to the traveling salesman problem by Held and Karp [15] led to 
its use in a number of problems. Various location problems [14, 19], distributed 
computer system design problems [12,20], are only a few of the problems to which 
this relaxation has been applied. For surveys on Lagrangian relaxation, the reader 
is referred to Fisher [9,10]. We consider the following Lagrangian relaxation of 
problem P formed by multiplying the constraint set (3) by a vector of Lagrange 
multipliers )~ik, and adding them to the objective function. 

Problem L(~) 

Z L ( Z ) = m a x X  X X t • k i~l ,~ K ( l)ijai xij + l~ik 
i~! j~J  k~K 

Xx,-1) 
j~J 

(lO) 

subject to constraints (2), (4), (5), (6), and (7). 

Alternatively, problem L(A,) can be stated as the following set of subproblems 
tied together by constraint set (2): 

For j = 1 . . . . .  IJI, 

zJL(%) = max ~.~ ~., (u3a~ + ~,ik)xi~ (11) 
i¢l k¢K 
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k < Vi ~ 1, (12) subject to ~., xij - y j, 
k ~ K  

ai xij < Wj, (13) 
i ~ l  k ~ K  

yj ~ {0, 1}, (14) 

k xij ~ {0, 1}, Vi ~ I, Vk ~ K. (15) 

In each subproblem, yj is equal to either 0 or 1. If yj is equal to 0, then all 
x~j associated with that facility j are also 0 due to constraint set (12). If yj is equal 
to 1, then the subproblem becomes a 0-1  multiple choice knapsack problem. In 

k (i.e. order to speed up the solution process, we relax the integrality constraint o n  xij 
we now have 0 < x/~ <1), and the problem can now be solved using any one of the 
linear programming algorithms. This problem exhibits a special structure, however, 
that makes it possible to develop solution procedures that are significantly faster 
than simplex-based algorithms. This is the continuous multiple choice knapsack 
problem and can be solved using a procedure first proposed by Johnson and 
Padberg [18]. Note that by solving only this continuous version of the subproblem, 
we may not obtain a bound which is as tight as that obtained by solving the integer 
version, but we expect the results not to vary significantly since for each subproblem, 
at most two variables could be fractional (see [18]). Let ZL($) denote the value 
of this continuous relaxation of problem L(~.). Note that by solving only the continuous 
version of the subproblems, we have 

ZL(~I,) _> ZL(~ ) >_ ZL(,,¢I, *) -> Zp(x*,y*), 

where ZL(3.*) = min~.ZL(~.) is the best bound using this relaxation, and Zp(x*, y*) is 
the optimal solution value to problem P. The tentative solution to a subproblem is 
obtained by setting yj equal to 1 and keeping the solution of the linear program 
associated with this subproblem if the objective function value of this linear program 
is positive; otherwise, yj is set at 0 and the solution of the subproblem is taken to 
be the zero vector. After all I JI subproblems have been solved, then constraint 
set (2) is enforced, which restricts the number of facilities open to p. Obviously, 
those p facilities which correspond to subproblems with the highest objective function 
values are selected. 

Excluding a few special cases, finding optimal multipliers is known to be a 
very difficult task. In practice a good, but not necessarily optimal, set of multipliers 
is often located by using either a subgradient optimization method or various multiplier 
adjustment methods known as ascent (descent) methods [1]. 

In this study, we use the subgradient optimization algorithm to derive bounds 
using problem L(3,). The subgradient method is an adaptation of the gradient method 
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in which subgradients replace gradients. Given an initial multiplier vector ~,0, a 
sequence of multipliers is generated using the following rule: 

~l,-~ +1 =~,'~--tml J~J~(X~')m -- 11, V k ~ K ,  V i E  l, 

where x m is an optimal solution to problem L(2 m) (the Lagrangian problem with 
multiplier vector (2m)), and tm is a positive scalar step size. It was shown by 

** t Poljack [25] that lim sup ZL(~, m) converges to ZL(2*) if tm "> 0 and Y.i = o i"> 0~. 
Since in general these conditions are very difficult to satisfy, this method is always 
used as a heuristic. We use the following step size that has been frequently used 
in practice: 

iEl kEK j~J 

where Zf  is a feasible solution value of problem P and 6m is a scalar satisfying 
0 _< 8m < 2. This scalar is set equal to 2 at the beginning of the algorithm and is 
halved whenever the bound does not improve in 20 consecutive iterations. In our 
implementation, the subgradient algorithm is terminated after 200 iterations or 
earlier if the gap between the dual (upper) bound and the best primal feasible 
solution value is within a user-specified tolerance. 

A heuristic solution procedure (procedure F) for problem P is developed in 
conjunction with the Lagrangian relaxation presented in this section. This procedure 
attempts to generate a feasible solution after every iteration of the subgradient 
optimization algorithm. The best feasible solution is retained when the subgradient 
algorithm is terminated. We state procedure F. 

PROCEDURE F 

Step 1: 

Step 2: 

Step 3: 

Open the p facilities which were selected in the Lagrangian solution. Repeat 
steps 2 through 3 for level k coverage iterating from 1 through IKI. 
For level k, determine for every demand point how many facilities are 
within distance S k. 

Attempt to assign those demand points which have only one facility within 
distance S k. Assign first the demand with the largest population to its 
closest facility with sufficient remaining capacity, then assign the demand 
with second largest population, etc. Then attempt to assign (in decreasing 
order of population) those demand points which have two facilities within 
distance S k by choosing that facility which has greater available capacity. 
Repeat this assignment procedure for demand points which have three 
facilities within distance S k, and so on. It is possible that a demand point 
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~ Start 

1 
,.._ Ii Solve Problem,the Lagranigan [ 
v I i.e., solve the subproblems of 

Pr°blei'L(Z) ,, 

If the value of the Lagrangian 
Problem is lower than the lower 

bound, then update the lower bound 
and the best Lagrangian Multipliers 

I Execute Procedure-F to solve I 
the primal Problem-P and, if ! 

applicable, update the best feasible I 
solution value, Z I, to Problem-P. I 

I Iteration Count = Iteration Count + 1 I Update Lagrangian Multipliers . 
I 

Stop 

Fig. 2. Block diagram of overall solution procedure. 
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i may have to be assigned a facility for level k coverage which exists at 
a distance greater than S t. For such cases, find the nearest open facility 
which has adequate capacity. Also note that the different levels of demand 

k' at point i are to be assigned to different facilities (i.e. x~ and xij ,  where 
k ~ k', cannot both be 1). 

Figure 2 is a block diagram which describes the overall solution procedure 
and indicates how the various components are tied together. 

4. Computational experiments 

In order to test the performance of procedure F, a set of computational 
experiments were performed. The subgradient optimization algorithm incorporating 
procedure F was coded in FOR'rRAr~ and experiments were performed using an IBM 
3081-D computer running under MVS/SP 1.3.2. 

The data used in these experiments were generated to conform to the primary, 
secondary, tertiary, etc., service levels of the model. The parameter K was fixed at 
either 3, 4, or 5. The total capacity requirement for each demand point i was drawn 
from a uniform distribution between 200 and 500. The capacity requirements all, 
ai2, ai3, ai4, and ai5, were fixed, respectively, at 0.80, 0.10, 0.06, 0.03 and 0.01 
times the total requirement. The remaining problem data were randomly generated. 
Data points representing facility sites and demand points were drawn from a uniform 
distribution over a rectangle with sides 50 and 100. The Euclidean distance dzj 
between demand point i and potential facility j was used to define the objective 
function coefficients as follows. The minimum and maximum distances between 
any demand point and a facility (Dmha and Dmax) were used to set the S k parameters, 
S k was set equal to Dmin + Mk(Dmax - Drain), where the multipliers M I, M 2, M 3, M 4, 
and M s were set equal to 0.2, 0.4, 0.6, 0.8, and 1.0, respectively, for the results 
reported in table 1, and set equal to 0.05, 0.10, 0.15, 0.20, and 0.25, respectively, 
for the results reported in table 2. Hence, table 2 reports on problems with much 
smaller coverage distances for all levels of service. The parameter a was set equal 
to 0.5. The maximum workload capacity of each facility Wj was set equal to 
(Y.i ~ 1 Y.t ~ g air × 3/2)/p. Even though we have chosen to generate facilities of equal 
size, the model is more general and can handle different facility capacities. 

The results of the experiments are reported in tables 1 and 2 for problems 
with up to 200 demand points and 20 potential facility locations. A total of 150 
problems were solved in each set. These problems were arranged into groups of 10, 
where all problems in a group were generated with the same structure in order to 
achieve a reasonable level of confidence about the performance of the procedure 
on that problem structure. The gap between the best (primal) feasible solution value 
and the best upper (Lagrangian) bound is used to judge the quality of the procedure. 
Note that this gap can never be less than the gap between the best feasible solution 
value and the (unknown) optimal solution values. The gaps are expressed as a 
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Table 1 

Performance of solution procedure. 

Data generation Percentage gap a Mean 
method b between the feasible Computing time 

solution and bound (IBM-3081 
M N K p Min Mean Max CPU secs) 

Average percentage 
of demand poin~ within 

S l S 2 S 3 S 4 S $ 

100 10 3 5 0.59 1.93 2.62 21.1 72.5 97.3 100.0 
100 10 4 5 1.58 2.39 3.00 32.0 63.5 80.4 86.1 99.1 
100 10 5 5 0.41 1.51 2.60 45.5 71.2 96.4 98.1 98.6 100.0 

100 20 3 10 0.00 0.00 0.01 21.7 90.7 100.0 100.0 
100 20 4 10 0.00 0.00 0.01 27.7 90.5 100.0 100.0 100.0 
100 20 5 10 0.00 0.07 0.36 49.3 99.2 100.0 100.0 100.0 100.0 

200 15 3 10 0.00 0.01 0.04 80.3 83.8 99.6 100.0 
200 15 4 10 0.00 0.10 0.25 90.9 98.7 100.0 100.0 100.0 
200 15 5 10 0.00 0.02 0.04 95.3 98.1 100.0 100.0 100.0 100.0 

200 20 3 10 0.00 0.15 0.35 56.9 97.4 100.0 100.0 
200 20 4 10 0.00 0.50 1.35 116.1 99.6 100.0 100.0 100.0 
200 20 5 10 0.02 0.43 2.28 170.2 97.9 98.5 100.0 100.0 100.0 

200 30 3 15 0.00 0.01 0.04 90.5 99.4 99.6 100.0 
200 30 4 15 0.00 0.02 0.05 110.4 100.0 100.0 100.0 100.0 
200 30 5 15 0.00 0.01 0.02 182.0 97.7 98.3 100.0 100.0 100.0 

"Percentage gap = (feasible solution va lue-  upper bound)/upper bound x 100. 
b M: number of demand points; N: number of potential facility locations; K: number of levels of coverage 

to be assigned for each demand point location; p:  number of facilities to be sited. The multipliers 
M 1, M 2, M 3, M 4, M 5 were set equal to 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. 

percentage of the upper bound. For each group of problems, the minimum, mean, 
and maximum gap values are reported. The average computing times are also 
reported. It should be pointed out that these times are the times for the subgradient 
optimization procedure (since procedure F is an integral part of this procedure) and 
can be decreased or increased by changing the maximum iteration number permitted 
in the procedure. As mentioned in section 3, we used 200 iterations as a cutoff 
point. Only average computation times are reported, since the variance in computing 
times is not significant. Also mentioned are the percentages of demand points that 
were completely covered for the various levels. 

Table 1 (and similarly table 2) should be interpreted as follows: Studying 
line 6, we know that the results in this line were obtained by solving 10 problems 
each with 100 demand points and 20 potential facility sites, with 5 levels of backup 
required, and 10 facilities to be opened. The minimum percentage gap between the 
feasible solution and the upper bound was 0% of the bound. The mean and 
maximum gaps were 0.07% and 0.36%, respectively. On the average, it took 49.3 
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Table 2 

Performance of solution procedure. 

Data generation Percentage gap' 
method b between the feasible 

solution and bound 
M N K p Min Mean Max 

Mean Percentage 
Computing time of demand points within 

~ M - 3 0 8 1  
CPU sees) S x S 2 S 3 S 4 S s 

100 10 3 5 2.14 3.36 4.45 22.5 12.6 13.7 13.4 
100 10 4 5 4.32 4.80 5.06 33.9 11.2 10.1 10.0 8.8 
100 10 5 5 3.15 4.74 6.63 46.0 12.0 10.0 12.0 15.6 

100 20 3 10 1.64 3.37 4.70 32.9 17.4 18.0 20.8 
100 20 4 10 1.96 3.06 4.04 48.6 17.0 10.0 9.0 11.2 
100 20 5 10 1.24 2.00 2.75 65.3 19.7 14.3 13.0 10.3 

200 15 3 10 0.89 2.16 2.87 63.0 16.0 5.0 5.5 
200 15 4 10 0.50 1.01 1.53 97.1 18.5 8.0 7.0 7.5 
200 15 5 10 1.12 2.61 5.20 127.6 15.5 15.0 20.5 25.5 

200 20 3 10 0.97 2.54 3.61 84.1 21.0 8.0 9.5 
200 20 4 10 1.25 2.38 5.14 119.0 19.0 13.5 15.0 10.0 
200 20 5 10 0.56 2.27 3.24 170.6 14.5 11.0 9.0 4.5 

200 30 3 15 1.34 2.13 3.21 105.1 24.6 25.5 32.2 
200 30 4 15 2.66 3.20 3.92 153.0 23.2 26.1 31.0 41.3 
200 30 5 15 2.04 3.13 4.02 199.7 25.5 25.0 24.6 33.8 

16.2 

9.7 

21.0 

2.5 

45.2 

m Percentage gap = (feasible solution value - upper bound)/upper bound x 100. 
b M: number of demand points; N: number of potential facility locations; K: number of levels of coverage 

to be assigned for each demand point location; p: number of facilities to be sited. The multipliers 
M 1, M 2, M 3, M 4, M s were set equal to 0.05, 0.1, 0.15, 0.2, and 0.25, respectively. 

seconds of  CPU time to solve each problem in this set. Finally, on average, 99.2% 
of the demand points were covered at the primary level of  service and 100% of the 
demand points were covered at the other four levels of  service. 

Table 2 reports on problems with the much smaller coverage distances. As 
might be expected, very high coverage at all levels of  service is much more difficult 
to realize in these sets of  problems since fewer complete coverage candidate facilities 
are available for the demand points. Also, the gaps between the feasible solutions 
and upper bounds, although small, are larger than those reported in table 1, with 
mean values ranging from 1.01% to 4.80%. 

These results indicate that our procedure is effective in solving problems with 
a wide range of  structures, with mean gaps less than or equal to 2.39% for the 
problems studied in table 1, and less than or equal to 4.80% for those studied in 
table 2. These are not significant gaps when we consider that the real gaps between 
the feasible and optimal solution values can indeed be significantly smaller than the 
gaps reported here. 
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5. An example 

The model  and solution procedure developed in this paper were applied to 
"real world" data obtained from a study one of  the authors conducted in a major  
US city. (The data have been disguised to retain confidentiality.) The example 
discussed here is intended to serve as an illustration o f  the applicability of  the 
model to practical-sized problems and not as a solution to any specific problem. 

The decision setting for this example is identical to the one studied in Pirkul 
and Schilling [22]. It concerns identifying locations for fire stations such that all 
points in the city will receive k levels o f  coverage. Since only stations are being 
sited and not the type o f  equipment that they hold, '~'e are assuming that all o f  the 
equipment in a station is dispatched to meet  a call for service. 

The demand network consists of  625 nodes covering an area o f  approximately 
80 square miles. Thirty of  these nodes were selected as potential facility sites. The 
selections were made such that a uniform distribution of  possible locations was 
obtained. Total demand for the city is 21,000 runs per year. The determination of  
the level of  demand to nodes was accomplished through a survey of  actual fire 
response records. Each fire station was assumed to have a maximum workload of  
2400 runs per year. 

All demand nodes had their various levels of  coverage as defined in the 
previous section. In table 3, we provide some sample results for a few problems for 
various values of  the level of  coverage when the number of  facilities p that can be 

Table 3 

Solution results for example problem. 

Problem size b Percentage Computing time 
M N K p gap m (IBM-3081 CPU see) 

625 30 2 20 0.23 575 
625 30 3 20 0.23 1027 
625 30 4 20 0.22 1600 
625 30 5 20 0.24 2200 

*Percentage gap = (feasible solution value - upper bound)/upper bound x 100. 
bM: number of demand points; N: number of potential facility locations; 
K: number of levels of coverage to be assigned for each demand point 
leeation: p: number of facilities to be sited. The multipliers M 1, M 2. M 3, 
M 4, M s were set equal to 0.2, 0.4, 0.6, 0.8, and 1.0, respectively. 

opened was set at 20. This example represents an extremely large mixed integer 
program with 93,780 variables and more than 20,000 functional constraints for the 
case where IKI = 5. Yet the heuristic was able to find solutions that would have 
been practically hard to obtain with commercial  integer programming codes. Solution 
times with procedure F, while large, were still reasonable. 



336 S. Narasimhan et al., Capacitated emergency facility siting 

6. S u m m a r y  

In this paper, we have presented a model  for the capacitated facility siting 
problem with multiple levels o f  backup coverage. This model  differs from many 
other covering models  in that the uncovered demand is forced to be assigned to a 
facility recognizing that all demand has to be served even if  we are not able to meet 
our covering criteria. Also, the objective function is modified to reflect a measure 
o f  distance for  those demand points that are assigned to facilities but are not 
covered due to the fact that the facility is outside the covering distance. This feature 
of  the model  prevents anomalies in that those demand points not covered are 
assigned to the nearest facility rather than to an arbitrary facility, as they would be 
in the traditional covering models. An effective solution procedure was developed 
in conjunction with a Lagrangian relaxation of  the model and results o f  computational 
experiments were discussed. A large-scale example using real-world data was also 
solved using this solution procedure. 
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