
Annals of Operations Research 40(1992)283-302 283

A V O m i N G LOCAL OPTIMA IN THEp-HUB LOCATION PROBLEM USING
TABU SEARCH AND GRASP

John G. KLINCEWICZ
AT & T Bell Laboratories, Holmdel, NJ 07733-3030, USA

Abstract

In the discrete p-hub location problem, various nodes interact with each other by
sending and receiving given levels of traffic (such as telecommunications traffic, data
transmi:sions, airline passengers, packages, etc.). It is necessary to choose p of the
given nodes to act as hubs, which are fully interconnected; it is also necessary to
connect each other node to one of these hubs so that traffic can be sent between any
pair of nodes by using the hubs as switching points. The objective is to minimize the
sum of the costs for sending traffic along the links connecting the various nodes. Like
many combinatorial problems, the p-hub location problem has many local optima.
Heuristics, such as exchange methods, can terminate once such a local optimum is
encountered. In this paper, we describe new heuristics for the p-hub location problem,
based on tabu search and on a greedy randomized adaptive search procedure (GRASP).
These recently developed approaches to combinatorial opfindzafion are capable of examining
several local optima, so that, overall, superior solutions are found. Computational experience
is reported in which both tabu search and GRASP found "optimal" hub locations (subject
to the assumption that nodes must be assigned to the nearest hub) in over 90% of test
problems. For problems for which such optima are not known, tabu search and GRASP
generated new best-known solutions.

1. Introduction

Situations exist in which various locations (nodes) interact with each other
by sending and receiving traffic. This could represent telecommunications traffic,
data transmissions, amine passengers, express packages, etc. One possible strategy
to link these locations or nodes, via a communications or transportation network,
requires a certain number p of the locations to be hubs. These hubs are fully
interconnected with network links. The remaining locations are each in turn connected
("assigned") to one of the hubs. The hub is said to "serve" those nonhub locations
assigned to it. Traffic can be sent between any pair of locations by using the hubs
as intermediate switching points.

In the discrete p-hub location problem, the node locations are given, along
with the level of traffic that each node sends to, and receives from, every other
node. (If the actual traffic patterns are stochastic, then these levels represent the

© J.C. Baltzer AG, Scientific Publishing Company

284 J.G. Klincewicz, Avoiding local optima

mean traffic.) Also given are costs per unit for sending traffic between each possible
pair of nodes. It is necessary then to choose p of the given nodes to act as hubs
and to assign each other node to one of these hubs. The objective is to minimize
the sum of the costs incurred along the various network links.

Like many facility location problems, the discrete p-hub location problem is
a difficult combinatorial problem. (For a survey of facility location problems, see
[4, 22].) Typically, many local optima exist. Because of the computational complexity
(the problem is NP-complete), it is natural to apply heuristic techniques, especially
for large problems. However, many standard heuristics, such as exchange algorithms
[21], terminate once a local optimum is encountered.

In this paper, we describe how some recently developed approaches to
combinatorial optimization, specifically, tabu search and greedy randomized adaptive
search procedure (GRASP) methods, can be applied to design heuristics for the
p-hub location problem. These heuristics examine several local optima in a coherent,
systematic way and, thereby, obtain an especially good final solution. In our
computational experiments (in which, for comparison purposes, we restricted nodes
to be assigned to the closest hub), both tabu search and GRASP methods found the
"optimal" hub locations (subject to that restriction on the assignments) in over 90%
of test problems. Further, for problems for which such optima are not known, these
new heuristics generated solutions that were superior to the previously best-known
solutions. These results offer evidence that these heuristics, as well as refinements,
variations and extensions of them, should be considered further for this and related
problems.

The fundamental principles underlying tabu search are described by Glover
[11, 12]. Based on strategies originally developed for nonlinear covering problems
[8], this approach has since been applied to a variety of difficult combinatorial
problems, e.g. [9, 10, 14, 15, 18, 28]. A similar approach was independently developed
by Hansen [16]. Tabu search operates in the context of a search procedure in which
one "moves" iteratively from one feasible solution to another. The key idea is to
forbid certain possible "moves" at each iteration, based on the past history of
moves, in order to force the algorithm to explore new areas of the feasible region.

So-called greedy random adaptive search procedures have also been applied
to a variety of difficult combinatorial problems [1, 2, 5, 6, 17]. They were given the
acronym GRASP by Feo et al. [7]. In GRASP methods, a search procedure to find
a local optimum is replicated multiple times with different starting points. These
starting points are determined by "greedy" procedure that has a probabilistic component
within it. This probabilistic component consists of randomly choosing one of the
best candidates from a list, and not necessarily the top candidate, in the greedy
procedure. The goal is to choose many excellent starting points via the greedy
procedure (as opposed to purely random starting points) and thereby increase the
chances of finding the true optimum on at least one replication.

Tabu search and GRASP are among several new approaches to heuristic
search procedures for combinatorial optimization that have been developed in recent

J.G. Klincewicz, Avoiding local optima 285

years. A survey of some of these approaches, including simulated annealing, neural
networks and genetic algorithms, is given in [13].

The generic discrete p-hub location model for choosing hubs and their
assignments was first formulated as a quadratic integer program by O'Kelly]26]
who proposed an enumeration-based heuristic. A variety of single-exchange and
double-exchange heuristics for the discrete p-hub location problem were proposed
by Klincewicz [21]. The related problem of hub locations in a continuous plane is
considered in [24] and issues of congestion in hub networks are discussed in [25].
Examples of hubbing networks are found in certain airlines, package delivery systems,
and trucking companies, as discussed in [26, 2.7]. They are also found in certain
telecommunications systems, such as backbone packet networks [3, 23].

In section 2, we formulate the discrete p-hub location problem. We describe
our adaptation of tabu search to the p-hub location problem in section 3 and our
application of GRASP to this problem in section 4. Section 5 reports our computational
experience.

2. Problem formulation

In the p-hub location problem, there are n distinct locations or nodes. For any
pair of nodes i and j, W/j denotes the number of units of traffic sent from i to j. (We
assume W/i = 0.) If a node i is connected to a hub at node j, then a standard cost
Cq per unit is incurred for all traffic on the link between i and j. Typically, Cij is
proportional to the distance between i and j. If i and j are both hubs, then this cost
is discounted to account for economies of scale in the volume of traffic between
hubs. In the standard p-hub formulation considered here, these economies of scale
are represented by a discount parameter a, so that all traffic sent between i and j
incurs a cost at the rate of aCij per unit. This "linear" model might serve as an
approximation to more complicated concave functions on interhub flows. These
might arise, for example, in an airline network, where interhub traffic would use
larger, more efficient airplanes, or in a communications network, where interhub
traffic would use more efficient, high capacity links.

The integer decision variables used in the formulation are defined as follows:

1 node j is a hub,

YJ = 0 otherwise;

10 node i is connected to a hub at j,

Xq = otherwise.

Although costs on a link are linear in the flows, the overall problem is quadratic
in the facility assignment variables Xq. In its most general form, the problem
formulation can then be written as a quadratic integer program as follows:

286 J.G. Klincewicz, Avoiding local optima

MinimizeE E W/i(E xikca + ~, Xi,,,CJ~
i j k m

+ aZk Zm XikXimCkm) (la)

subject tO X X(/ = 1, for i = 1, . . . , n (lb)
J

Yj = p, (lc)
J

Xij < Yj, for i = l, n and j = l n, (ld)

X/j,I~E{0,1}, for i = l n and j = l n. (le)

The objective function (la) sums costs for each ordered pair (i , j) , i.e. the
cost from origin i to its hub node k, plus the cost to destination j from its hub at
some node m, plus the cost from hub k to hub m. Constraints (lb) require that every
node be connected to a hub and constraint (lc) requires that exactly p hubs be
chosen. Constraints (ld) ensure that a node i is assigned to j only if j is, in fact,
a hub.

This formulation differs just slightly from the original formulation of O'Kelly
[26], which uses variables Xjj in the role of Yj. O'Kelly also uses an alternate form
of constraints (Id).

Often, cost elements will be symmetric, i.e. Cij = Cyi, thus simplifying certain
computations. As pointed out in [26], by defining Oi = EjW/y to be the total amount
of traffic originating at node i and D i = ~.jWji to be the total traffic destined for
node i, the objective (la) can be rewritten:

Minimize ~ ~ XikClk(O i + Di)
i k

+ ~_. ~_, Xjm ~. ~_, Xik(aWijC~). (2)
j m i k

Here, the first summation term represents the cost of ingoing traffic on the link
between each node i and its associated hub k (assuming cost symmetry). The second
term is a compact way of representing the costs on interhub links.

Note that, even if all Yj variables were fixed (i.e. hub locations were known)
in problem (1), the remaining problem of assigning nodes to hubs is still an NP-
complete quadratic assignment problem. (See [22, chapter 9] for a discussion of
quadratic assignment.) However, within the context of heuristics, it is important to

J.G. Klincewicz, Avoiding local optima 287

be able to evaluate quickly a given choice of p-hubs, and, therefore, relatively
simple procedures for assigning nodes to hubs need be considered. For example,
O'KeUy [26] considers cost-based assignments where Xa = 1 if Ca = minj{CijiYj = 1 },
and where ties can be broken arbitrarily. Since costs are typically proportional to
distance, these can also be called distance-based assignments. (In addition to cost
or distance-based assignments, Klincewicz [21] also considers some more general
schemes that take traffic volumes into account.)

In this paper, we restrict our attention to the cost or distance-based assignments.
There are two reasons for this. First, in most applications, it makes sense for a
hub to serve a reasonably compact group of nodes, i.e. nodes that are "close" to
the hub. For this very reason, more sophisticated assignment heuristics may be
unnecessary. Second, a relatively simple assignment procedure such as this allows
us to compute "optimal" hub locations (i.e. the best possible hub locations assuming
distance-based assignments) for small problems by enumeration. In this way, we
have a consistent and verifiable benchmark to compare the quality of the hub
solutions generated by various heuristics, particularly our new tabu search and
GRASP procedures.

3. Tabu search

In this section, we outline our particular implementation of tabu search for
the p-hub location problem. For additional background on tabu search, see [11, 12].
Tabu search operates in the context of a search procedure in which at each iteration
one moves from one feasible solution to another. For the case of the p-hub location
problem, a feasible solution consists of a set K of hubs, assuming all nodes are
assigned to the "nearest" hub. We will consider a "move" to be an exchange in
which some node q replaces some node r as a hub in the current set K.

As is described below, tabu search, unlike other search or exchange procedures,
is not stopped once it hits a local optimum. It can continue despite a lack of
"improving" moves, and, because of a "tabu list", it can avoid falling back into the
same local optimum from which it just emerged. In this way, many local optima
may be encountered. Tabu search approaches may be particularly appropriate to try
for this type of problem, given other successful implementations for other quadratic
integer programming problems (e.g. [28]).

3.1. THE VALUE FUNCTION

To evaluate how "good" a given move is, we will use a local improvement
measure that computes the savings that would result from the move, assuming all
nodes previously assigned to r are now assigned to q. (Since node assignments can,
in fact, change, this measure of savings is just an estimate.) This savings estimate
is used, for example, for the heuristics in [21]. We denote the interhub traffic from
a hub k to a hub l for the current set of assignments by:

288 J.G. Klincewicz, Avoiding local optima

= Z Z (3)
{ilX~=I} {j IXjt--l)

If a node q replaces node r as a hub, the savings estimate is:

Rq, = X o,(c - + X O,(Cr, - Cq,)
{i IX~r =1} {i IX/, =1}

+ a Z l,k(Crk - Cqk) + a ~., l~,(Ckr - Ckq). (4)
k~K kEK
kC~r k~r

This represents the sum of savings on outgoing and incoming traffic both from and
to nodes now served by r, as well as savings on interhub traffic on links to other
hubs k ~ K. We will consider a move to be an "improving" move if the savings
estimate Rqr is positive.

Note that this is just one of potentially many different savings estimates that
could be used as a value function. In this paper, we obtain good results using this
particular function (4), which provides a good estimate with moderate computational
effort and is consistent with the estimate used in the exchange heuristics considered
in [21]. Other estimates, ranging from the very simple to the computationaUy complex,
might also be considered. (See the discussion in section 5.5.)

3.2. THE TABU LIST

At each iteration, there is a "tabu list" of moves that are forbidden to be
made. This list is based on the past history of moves. In our implementation, after
a move (q, r) is made, in which node q replaces node r, the move (q, r) and its
inverse move (r, q) are placed on the tabu list. The tabu list is initially built up over
M consecutive moves and updated circularly in later iterations. That is, in later
iterations, the oldest dements on the tabu list are removed and replaced with those
based on the current move.

The only way that it is possible to make a move (q, r), if (q, r) is on the tabu
list, is for the move (q, r) to satisfy some "aspiration level" criterion. In our
implementation, a move (q, r) on the tabu list satisfies the "aspiration level" criterion
if the current objective value minus Rqr is less than the best objective value found
thus far.

3.3. INITIAL SOLUTION AND SEARCH PROCEDURE

One initializes the tabu search by constructing a good feasible solution. In
our implementation, we choose the p nodes with the largest values of Oi + Di to be
the initial set o f hubs.

Thereafter, at each iteration, we choose to make the move (q, r), from among
those moves that are permissible, that maximizes Rq,. "Permissible" moves are
those that either

J.G. Klincewicz, Avoiding local optima 289

(1) are not on the tabu list, or

(2) are on the tabu list, but satisfy the aspiration level criterion.

Note that it is not necessary for the chosen move to be an "improving" move, i.e.
the maximum value for Rqr could be negative. After each move, the objective
function value (la) is computed for the current feasible solution. If it is the best
objective function value encountered thus far, the solution is recorded.

Computing Rqr for all possible q and r represents a significant part of the
computational effort in the tabu search. It is therefore important that we seek
efficient ways to implement this procedure. One specific way that this can be done,
for a moderate to large number of nodes q, is to first compute

R , : y~O~C~ + ~.,DiC,~ +a~.,l,,C~, +a~.~lk, C ~. (5)
{ilXj, =1} {ilX~, :1} k e K k~K

&a~r katr

Then, for each q,

and

Sq,= ~,OiC ~ + ZDiC¢, +a~_l,~Cq, +aZlk, C ~ (6)
{ ilX~, =11 { ilXi, =11 k GK k ~K

t'~r k~r

^

R,, = Rr-S , , . (7)

This requires several additional multiplications (and additions) to compute/~,initially;
however, for each q, we avoid subtracting Cir- Ciq and Cri - C q i for each i and C,k -
Cqk and Ck, - Ckq for each k. For a moderate to large number of q, this is advantageous;
the exact break-even point is computer dependent.

3.4. RESTARTS

Periodically, e.g. every N iterations, one can restart the tabu search procedure
by erasing the current tabu list and choosing a new initial solution. In our
implementation, we always use the best solution encountered thus far as the new
initial solution, unless it is unchanged since the last restart. In this case, one can
either terminate the search, or else, construct a new initial solution based on what
is called "long-term memory".

Long-term memory consists of a matrix T in which element Tq, equals the
number of times move (q, r) has been made since the very start of the algorithm.
The purpose of long-term memory is to have a measure of what areas of the feasible
region have already been well-explored, so that we might construct a solution in
a less explored area. To do this, we construct the new initial solution, not on the
basis of Oi + Di, but on the basis of Oi + Di -].tY~j(Tij + Tji), where # is a penalty
parameter. (The parameter # should be on the order of Oi + Di. In our computational
experiments in section 5, this implied # = 104.) Thus, if node i has already been

290 J.G. Klincewicz, Avoiding local optima

involved in a large number of moves, it is less likely to show up in the new initial
solution.

In our computational experiments described in section 5, we allow at most
one restart based on long-term memory. (Clearly, other criteria are possible.) With
these conditions, our implementation of tabu search will terminate when the best
solution encountered does not improve between restarts and a restart based on long-
term memory has already been tried once.

4. GRASP

In a Greedy Randomized Adaptive Search Procedure (GRASP) method, a
given heuristic is replicated many times; the best result obtained is then kept as the
solution. Each replication consists of two steps: first, a greedy procedure with a
probabilistic component that generates an initial feasible solution, and, second, a
search procedure to improve on that initial solution.

4.1. THE INITIAL SOLUTION

4.1.1. A myopic savings criterion

In a greedy procedure, one adds one element at a time to the solution set, this
one element being chosen according to some myopic criterion. In GRASP, however,
the one element is chosen from among a list of the best candidate elements, not
necessarily the top candidate.

In the case of the discrete p-hub location problem, we add one element (node)
at a time to the set K of hubs. Many possible myopic criteria might be proposed.
The myopic criterion we will use in our implementation is the true improvement
Si in the objective function (la) that would result if a node i were added to the set
K. This involves summing the .cost changes due to each node j that would be
reassigned to i, if i were added as a hub. (For choosing the first hub, when K is
initially empty, the savings or improvement is calculated by assuming that the costs
for the initial null assignments are equal to some large number.) The specific
procedure for computing the improvement Si for each node i can be described as
follows:

COMPUTING Si

Step 1. Initialize Si = 0. Let j = 1.

Step 2. Let ~ denote the minimum cost to assign j to a node in the current set K,
and let k be the node in K associated with that cost, i.e. C': min{Cjq}.

- - ~ J < e K
(If K is empty, let Cj equal some large number.) If Cj _ Cji, then ~o to step
5. Otherwise, execute steps 3 and 4.

Step 3. Add the savings for reassigning j to i:

J.G. Klincewicz, Avoiding local optima 291

Step 4.

Step 5.

si <-- si + (o j + o j) (Cj - cj i) .

(Skip if K is currently empty.) To compute changes in the interhub costs,
perform the following procedure for each node 1 ~ j :

• Let Ct = Ct,n = qmi'ntC~), i.e. I would be assigned to hub m in the
current set K.

• If ~ > Cti, so that l would be reassigned to i, let Si 6- Si
+ (Wit + Wlj) a C~.,t.

• If 1~1 < Cn, let Si ~ Si + (Wit + Wtj) a (Ctm - Cim).

Incrementj ~----j + 1. If j < n, go to step 2. Otherwise, stop. 1:3

4.1.2. Efficient implementation

Although the above steps provide a clear description of the cost savings
included in Si, efficient computer implementations might perform the computations
differently. As one obvious example, one could store Wjt= Wjt + Wlj and ODj = Oj + Dj
in advance so that they need not be recomputed each time. Computations could also
be reduced by storing the interhub-cost for traffic to and from node j, given the
current set of hubs K, i.e.

l

where j is assigned to hub k and each I is assigned to hub m in the current solution.
(We have suppressed the notational dependence of k on j and m on l.) Likewise,
it is convenient to denote ~ (i) to be the interhub cost for traffic to and from node
j, if node i were added to K. In addition, one could define quantities T,, to be the
traffic between i and hub m if i were added as a hub; Tm could then be accumulated
in step 4, before any multiplication by Cim and a. Given these, the following
efficient implementation results:

COMPUTING Sl (ALTERNATIVE PROCEDURE)

Step 1. Initialize sl = 0, s2= 0, H~(i)= O for all j , and Tm= O for all m ~ K. Let
j = l .

Step 2. IfCj < Cji, then go to step 5. Otherwise, execute steps 3 and 4.

Step 3. Add the savings for reassigning j to i:

$1 6 - S 1 + ODj(Cj -- Cji).

Step 4. (Skip if K is currently empty.) For each node l ;~j: if (~t <Cn and 1 is
assigned to hub m in the current solution, then T m 6-T= + Wit.

292 J.G. Klincewicz, Avoiding local optima

Step 4.a. Compute:

Step 5.

(i)= ~ . T , Ci,,
m~K

s2 s2 + - f t j Ci).

Increment j <---j + 1. If j < n, go to step 2. Otherwise, compute

S i = s 1 + as2

and stop. []

(Once it is later decided which node i will actually be added to set K, the interhub
costs can be updated: ~ <---~. (i).)

4.1.3. Choosing from a candidate list

At each step of the greedy procedure, the nodes i corresponding to the largest
values of Si are kept in a candidate list. This list has a maximum length L. The list
can be truncated by requiring that all candidate elements i on the list have Si values
within o~ percent of the top candidate.

The overall initial solution can be summarized as follows:

INITIAL GREEDY SOLUTION

Step 1. Let k= l, K= O.

Step 2. Compute Si for all nodes i not in K and construct a candidate list of
maximum length L as described above.

Step 3. Choose randomly from among the elements of the candidate list with
each dement having equal probability. Add this random choice to set K.

Step 4. Increment k <---k + 1. If k < p, go to step 2. Otherwise, stop. []

As noted above, many myopic measures could be used in place of Si as
defined above. We note, however, that the value of Si defined above computes the
true cost improvement for adding node i, and excellent results have been obtained
using it in computational experiments (see section 5).

4.2 THE SEARCH PROCEDURE

The second step of a GRASP replication is to attempt to improve upon the
greedy initial solution. Many search procedures might be designed for this purpose,
e.g. variations of the exchange procedures in [21]. We choose here to implement
a procedure analogous to that used in the tabu search algorithm. We summarize that
procedure below:

J.G. Klincewicz, Avoiding local optima 293

THE SEARCH PROCEDURE

Step 1. Start with the initial greedy solution set K as computed above.

Step 2. Compute Rq, for all nonhub nodes q and all r ~ K, as in eq. (4).

Step 3. Let (q', r ') represent the exchange that maximizes Rq,. If Rq,r, > 0, let q'
replace r" in set K, and return to step 2. Otherwise, stop. []

Because the initial greedy solution tends to be an excellent one, the search
procedure generally terminates in very few (less than 5) iterations.

5. Computational experience

5.1. COMPUTER ENVIRONMENT AND TEST PROBLEMS

The heuristics described here were implemented in FORTRAN and run on an
Amdahl 5890 computer operating under UNIX ® SYSTEM 5.2.6B. The programs were
compiled using F77. All processing times listed are in CPU seconds.

Test data were obtained from two sources. First is a set of problems used in
[26] and later in [21]. For these, the nodes consist of lists of US cities and the traffic
measures are based on 1970 airline passenger interactions as evaluated by the Civil
Aeronautics Board (CAB). Problems with 10 nodes, 15 nodes, 20 nodes, and 25
nodes are used. We consider p = 3 and p = 4. These problems are small enough that
all (~) possible hub configurations can be enumerated and, assuming that nodes are
to b~ "assigned to the closest hub, optima can be determined.

The second set consists of two 52-node problems. These are based on intemode
traffic data used in the testing of the packet network design algorithm in [23]. They
are also used in [21]. We consider cases o f p = 4 and p = 10, thus generating some
larger-sized problems.

5.2. TABU SEARCH AND THE CAB PROBLEMS

Table 1 summarizes the results of some of our computational experience with
the Civil Aeronautics Board (CAB) data using tabu search with long-term memory.
Problems with n = 10, 15, 20, 25 and p = 3, 4 were tested. For each set of values
for n and p, 4 different runs were made, corresponding to values of a = 0.4, 0.6,
0.8 and 1.0. Tabu search parameters tested include M = 10 and N = 30, M = 20 and
N = 60, M =30 and N = 90, and M = 40 and N = 120. (Recall that M denotes the
number of past iterations considered in the tabu list and N denotes the number of
iterations between restarts.)

Each row of table 1 corresponds to a pair of n and p values. For each setting
of the tabu search parameters, we list how many of the problems obtained optimal
solutions and how many obtained suboptimal solutions. In each category (optimal
and suboptimal) we also list the average time required to complete the tabu search

T
ab

le
 1

R
es

ul
ts

 o
f t

ab
u

se
ar

ch
 o

n
C

A
B

 p
ro

bl
em

s:
 N

um
be

r o
f p

ro
bl

em
s,

 a
ve

ra
gc

 to
ta

l t
im

e,
 a

ve
ra

ge
 ti

m
e

un
ti

l b
es

t s
ol

ut
io

n
is

 fi
rs

t m
te

re
d

(C
PU

 s
ec

on
ds

).

(M
 =

 l
en

gt
h

o
f

ta
bu

 l
is

t,
 N

 =
 i

te
ra

ti
on

s
be

tw
ee

n
re

st
ar

ts
.)

T
ab

u
se

ar
ch

:
M

 =
 1

0,
 N

 =
 3

0
T

ab
u

se
ar

ch
:

M
 =

 2
0,

 N
 =

 6
0

T
ab

u
se

ar
ch

:
M

 =
 3

0,
 N

 =
 9

0
T

ab
u

se
ar

ch
 M

 =
 4

0,
 N

 =
 1

20

O
pt

im
al

S

ub
cv

t~
al

O

pt
im

al

O
pt

im
-S

Su

bo
pt

im
al

O

pt
im

a]

Su
bo

pt
im

al

ri
m

s
ru

ns

ru
ns

ru

ns

ru
ns

ru

ns

E
nu

m
er

at
io

n
n

p
T

im
e

T
im

e
T

im
e

T
im

e
T

im
e

T
im

e
ti

m
c

T
ot

al

to

T
ot

al

T
ot

al

to

T
ot

al

to

T
ot

al

to

T
ot

al

to

to

ti
m

e
be

st

ti
m

e
ti

m
e

be
st

ti

m
c

be
st

ti

m
e

be
st

ti

m
e

be
st

be

st

4
0

4
4

0
4

0

I0

3

0.
65

0.
12

0.

02

N
/A

N

/A

0.
26

0.

02

10
.3

6
0.

02

N
/A

N

/A

0.
48

0.

02

N
/A

4
0

4
4

0
3

1

I0

4
5.

60

0.
15

0.

09

N
/A

N

/A

0.
34

0.

17

0.
39

0.

09

N
/A

N

/A

0.
56

0.

09

0.
08

3
1

4
4

0
4

0

15

3
3.

98

I [0
.2

3
0.

09

0.
23

0.

03

0.
54

0.

12

0.
74

0.

19

N
/A

N

/A

0.
98

0.

11

N
/A

N

/A

4
0

3
4

0
4

0

15

4
58

.6
6

0.
33

0.

20

N
/A

N

/A

0.
80

0.

18

0.
91

0.

26

N
/A

N

/A

1.
13

0.

26

N
/A

N

/A

2
2

4
3

1
4

0

20

3
13

.9
4

0.
23

0.

01

0.
42

0.

06

0.
46

0.

10

0.
81

0.

03

1.
36

0.

35

1.
15

0.

33

N
/A

N

/A

3
1

3
4

0
3

1

20

4
28

9A
3

0.
33

0.

05

0.
64

0.

49

0.
89

1.

10

0.
30

N

/A

N
/A

1.

68

1.
68

1.

21

3
1

3
4

0
3

1

25

3
36

.7
5

0.
52

0.
06

0.

64

0.
10

1.

14

1.
13

0.
47

N
/
A

N
I
A

1.
03

3.
59

2.
85

2
2

97
7.
18

25

4

0.
62

0.

06

2

0.
76

D
I
n
s

T
im

e
to

be

st

0.
15

2

1.
20

Su
bo

~i
m

al

ru
n

s

T
im

c
T

ot
al

to

ti

m
e

be
st

0

N
/A

N

/A

0

N
/A

N

/A

0

N
/A

N

/A

1

0.
80

0.

24

0

N
/A

N

/A

1

0.
11

1.

27

L
01

1

0.
21

1.

80

1.
29

2

0.
06

1.

50

0.
72

2

1.
80

0.

06

7-
02

0.

32

3

1.
99

Tm
al

ti
me

N
/
A

0.
28

0.
04

0.
14

0.
63

1

4.
78

3.
59

t~

f3

tq

~s

oo

C
~

J.G. Klincewicz, Avoiding local optima 295

heuristic and the average time required until the solution was first found. Also listed
in a separate column is the average time to obtain the optimum by enumeration. The
results with M = 30 and N = 90 are, overall, the best, with optimal solutions being
found in 29 out of the 32 cases (90.6%). Furthermore, the value of the 3 suboptimal
solutions differed from the optimal by an average of only 1.0%.

The solutions obtained for other parameter settings were also very good,
indicating a certain robustness in the tabu search procedure. Note also that the
average time when the eventual solution is first encountered is only a fraction of
the average total time. This indicates that good tabu search solutions are often found
in the early stages of search.

5.3. GRASP AND THE CAB PROBLEMS

Table 2 summarizes some of our computational experience using GRASP on
the CAB problems. As above, we examine problems with n = 10, 15, 20, 25 and
p = 3,4. For each problem size, 4 different runs (a = 0.4, 0.6, 0.8 and 1.0) were
made. Each run consisted of 100 replications of the algorithm.

We examine GRASP with a maximum candidate list length L = 5 and L = 7.
(In both cases, we truncate the list if candidate elements are not within ~z = 20%
of the top candidate.) For each parameter setting, we list, as in table 1, how many
problems obtained optimal solutions and how many obtained suboptimal solutions.
In each category, we also list the average total CPU time required to complete 100
replications, as well as the average CPU time between appearances of the best
solution (i.e. the average of, for the various runs, the total time divided by the
number of replications on the best solution was found). Once again, for comparison
purposes, we also list the time required for complete enumeration.

As can be seen, for L = 7, 30 out of 32 problems (93.75%= obtained optimal
solutions. (For the two that did not, the value of the objective was only 0.03% and
0.16% above the optimum.) For L = 5, only 28 out of 32 problems obtained optimal
solutions.

5.4. RESULTS FOR 52-NODE PROBLEMS

In order to examine the performance of the new heuristics on some larger
problems, we ran tabu search and GRASP on some 52-node examples [23, 21]. (For
these large problems, withp = 4 andp = 10, it was prohibitive to perform a complete
enumeration to determine an optimal solution.) In addition to the results of our tabu
search and GRASP heuristics, we also compare the results of a "double-exchange
heuristic" from [21] and the results of a variation of GRASP in which initial
solutions are chosen completely at random, instead of through the "greedy random"
candidate list procedure.

Table 3 summarizes these computational results. Each row of the table
corresponds to a particular problem with specified values of n, p and a. For each

296 J.G. Klincewicz, Avoiding local optima

Table 2

Results of GRASP on CAB problems: Number of problems, average total time, average time between
eneonters of the best solution (CPU seconds).

Optimal Suboptimal Op$-nal Suboptimal
n p Runs Runs Runs Runs Enumeration

Time] Time Time time
Total to]Total to Total to
time best I time best time best

Time
Total to
time best

4 0 4 0
10 3 0.65

0.33 0.03 N/A N/A 0.29 0.09 N/A N/A
4 0 4 0

10 4 5.60
0.50 0.05 NIA NIA 0.35 0.11 N/A NIA

4 0 4 0
15 3 3.98

0.74 0.06 N/A N/A 0.63 0.07 NIA N/A
4 0 4 0

15 4 58.66
0~3 0.17 N/A NIA 0.83 0.19 NIA N/A

1 3 3 1
20 3 13.94

1.79 0.12 1.69 0.64 1.44 0.67 1.36 0.34
3 1 4 0

20 4 289.43
2.10 033 2.14 0.30 1.84 0.83 NIA NIA

4 0 4 0
25 3 36.75

2.43 0.22 NIA NIA 2.26 030 N/A NIA

25 4 977.18
3.19

4

1.95

0

N/A N/A

3

2.95 1.04

1

2.78 2.78

algorithm tested, we list the best normalized objective function found. (These are
normalized so that the best known solution equals 100.) For the columns corresponding
to the tabu search procedures, we also list the total time to complete the search and
the time when the best solution was first encountered, similar to table 1. For
columns corresponding to GRASP procedures and to the variant with totally random
starts, we also list the total CPU time expended and the average time between
appearances of the best solution, similar to table 2. (For the true GRASP procedures,
the total time represents 100 replications; for the variant with totally random starts,
the total time represents 200 replications forp = 4 and 300 replications forp = 10.)
The final column corresponds to the double-exchange heuristic described in [21];
in addition to the normalized objective, we list the total required CPU time.

J.G. Klincewicz, Avoiding local optima 297

Tabu search algorithms

Many different parameter settings were tested for tabu search and GRASP;
we report results for the best of those examined. For tabu search, we list results for
M = 40 and N = 120 and for M = 50 and N = 150. Each obtained the best known
solution 8 out of 16 times.

For n = 52 and p = 4, total times for completing the tabu search varied between
6 and 16 CPU seconds, but what turned out to be the eventual solution was actually
found in from 0.05 to 7.59 seconds. Similarly, for n = 52 and p = 10, total times
ranged from 11.6 to almost 28 CPU seconds, but the time to first encounter the
eventual solution ranged from 0.03 to 14.48 seconds. As in table 1, this suggests
that good solutions are frequently found in the 6arlier stages of the tabu search.

GRASP algorithms

For GRASP, we again report results for maximum candidate list length L = 5
and L = 7, and we truncate the list if candidate elements are not within a = 20%
of the top candidate. The setting with list length L = 7 generated the best known
solution in 14 out of 16 cases. (With L = 5, this happened in only 7 of 16 cases.)

With L = 7, for n = 52 and p = 4, 100 replications took from 16.5 to just over
23 CPU seconds; the average time between replications that yielded the best solution
ranged from 0.71 to 16.83. Likewise, for L = 7, n = 52 and p = 10, 100 replications
ranged between 32 and 44 seconds; the average time between encounters of the best
solution ranges from over 7 to over 40 seconds.

Comparisons

It is difficult to make comparisons of time requirements for tabu search and
GRASP. With most other heuristics, the final solution is not determined until the
end of the algorithm. With tabu search and GRASP, however, the solution that is
eventually reported as the best can be encountered at any time during the computation.
In addition, there are no "obvious" choices for the stopping rules for terminating
the algorithm. Different stopping rules result in different time requirements as well
as different solutions. Furthermore, since GRASP is a randomized algorithm, the
same algorithm with a given stopping rule could yield different solutions on different
r u n s .

One possible measure for the time requirements of tabu search is the reported
"time until the best solution is first encountered". On the other hand, since GRASP
is a randomized algorithm, we reported the "average CPU time between appearances
of the best solution". This can give some measure of how long we might expect to
take before this best solution is first encountered. In table 3, for L = 7, n = 52 and
p = 10, GRASP yielded average times between appearances of the best solution of
from over 7 to over 40 seconds. On the other hand, tabu search yielded, on the same
problems, times of between 0.03 and over 14 CPU seconds until the best solution

T
ab

le
 3

R
es

ul
ts

 o
n

52
-n

od
e

pr
ob

le
m

s:
 N
or

ma
li

ze
d

ob
je

ct
iv

e
fu

nc
ti

on
 a
nd

 C
P
U
 t

im
es

 (
se

co
nd

s)
.

(M
 =

 le
ng

th
 o

f
ta

bu
 l

is
t,

N
 =

 i
te

ra
ti

on
s

be
tw

ee
n

re
st

ar
ts

,
L

 =
 l

en
gt

h
of

 c
an

di
da

te
 l

is
t.

)

O
0

n
p

a

T
ab

u
se

ar
ch

T

ab
u

se
ar

ch

G
R

A
S

P

G
R

A
S

P

M
=

40
,

N
=

12
0

M
=

50
,

N
=

15
0

L
=

5

L
=

7
a

=
20

%

a~
 =

20
%

G
R

A
SP

 w
it

h
E

xc
ha

ng
e

tc

to
ta

lly
 r

an
do

m
 s

ta
rt

s
he

ur
is

ti
c

[2
11

52

4
0.

4

52

4
0.
4

52

4
0.

6

52

4
0.

6

52

4
0.
8

52

4
0.
8

52

4
1.
0

52

4
1.
0

I0
0,

00

6.
32

0.
17

I0
0.

00

7.
79

0.
42

io
o5
5

9.
46

1.

60

10
0.

00

7.
81

0.

65

10
0.

00

11
.0

9
3.

68

10
0.

00

7.
81

10
0.

00

9.
47

10
0.

29

7.
80

0.
05

1.
73

0.
41

9.
82

10
0.

00

10
0.

00

0.
16

9.
68

0.
42

10
0.

00

15
.7

8
4.
71

10
0.

00

9.
71

0.

64

I0
0.

00

9.
86

7.
59

10
0.

00

9.
71

0.
04

I0
0.

00

9.
89

7.
14

10
0.

29

9.
70

0.

40

I0
0.
00

25
.0
8

2.
50

10
0.

00

16
.4
9

0.
53

10
2.

06

24
.7

8
2.

25

I0
0.
00

16
.4

0
1.
82

I0
1.
12

25
.0
7

2.
78

10
0.

86

16
.7

6
2.

79

10
0.

62

25
.0
4

12
.5

2

10
0.

00

16
.2

7
1.

35

23
.1
5

16
.5
5

18
.9

9

16
.5
0

23
.0

6

16
.8

3

23
.1
3

16
.5
3

10
0,

00

10
0.

00

10
0.
55

10
0.

00

10
0.

00

I0
0.

00

10
0.

00

10
0.

00

5.
78

0.
71

9 A
9

4.
12

2.
88

16
.8

3

5.
78

5.
51

10
0.

14

27
.8

4
6.

96

10
0.

00

17
.4

9
0.
69

10
0.
55

29
.0
8

4.
84

10
0.

00

16
.9
4

0.
94

10
2.

02

29
.7

6
29

.7
6

10
0.

00

17
.0

1
17

.0
1

10
1.

87

29
.7

2
14

.8
6

10
1.
12

16
.1

8
16

.1
8

10
3.
54

0.
65

10
4.

41

1.
07

10
3.

17

0.
65

10
0.
95

1.
07

10
1.
55

1.
29

I0
1

.~

1.
07

10
3.
55

1.
29

10
1.

69

2.
10

1'
4

o~

t"
s

52

I0

0.
4

52

I0

0.
4

52

I0

0.
6

52

10

0.
6

52

10

0.
8

52

10

0.
8

52

I0

1.

0

52

I0

1.
0

14
.4
4

17
.3

8

11
.6
0

17
.3

9

14
.5

1

27
.7

7

14
.4

8

17
.4

3

10
0.

00

10
0.

00

10
0.

06

10
0.

31

10
0.

54

10
2.

22

10
2.

73

10
2.

85

9.
30

13
.5

1

2.
27

11
.8

4

0.
04

3.
51

0.
03

2.
03

21
.6

8

17
.4

2

14
.6

7

17
.3

6

14
.4

9

30
.4

2

18
.1

3

26
.1

2

10
0.

15

10
0.

19

I0
0.

00

10
0.

72

10
0.

54

10
2.

00

10
2.

68

10
2.

85

14
.4

8

0.
88

9.
90

0.
04

8.
70

8.
74

10
.9

7

4.
39

41
.5
1

31
.4

2

42
.3
7

31
56

42
.9

5

35
.1
8

45
.4

6

38
.5
5

10
0.

53

10
0.

00

I0
0.

00

I0
0.

00

10
0.

00

10
0.

29

10
0.

14

10
0.

53

20
.7

5

31
.4

2

42
.3
7

31
56

42
.9

5

35
.1

8

45
.4

6

38
.5

5

35
.9
1

31
40

40
.8

3

33
.1

8

41
.4

3

13
4.

25

43
.8

6

37
.8

9

10
0.
61

10
0.

00

10
0.

00

10
0.
00

10
0.

00

I0
0.
00

10
0.

00

10
0.

00

35
.9

1

8.
10

40
.8

3

33
.1

8

20
.7

1

8.
56

10
.9
6

7.
57

48
.6

4

[3
6.

98

45
.0

6

37
.4

5

48
.2

3

37
.4

8

53
.8
9

38
.4

4

10
2.

36

10
0.
42

10
3.
44

10
0.
78

10
3.

64

10
2.
54

10
6.

30

10
3.
77

48
.6
4

36
.9

8

45
.0
6

18
.7

2

48
.2
3

37
.4
8:

53
.8

9

38
.4

4

10
3.
04

3.
65

10
6.
13

5.
19

10
1.

62

3.
65

10
0.

72

10
.3

3

10
0.

54

3.
69

10
3.

60

10
.3

8

10
0.

05

3.
72

10
5.

56

5.
72

f~

o
~

t%

g~

300 J.G. Klincewicz, Avoiding local optima

is first encountered. This is, admittedly, an imperfect measure since it does ignore
stopping rules.

In summary, for our particular implementations on this given set of test
problems, tabu search showed potential advantage in CPU time, whereas GRASP
generated optimal solutions somewhat more frequently. Based on these indicators,
it would seem that both tabu search and GRASP are worthy of further consideration
for this class of problems. Extensions and variations of both these algorithms should
be considered in future research (see section 5.5).

Other algorithms

In table 3, comparisons of tabu search and GRASP against the exchange
heuristic and against the search procedure with completely random solutions are
also favorable. In only one instance did the exchange heuristic match the best
known solution.

For search procedure with completely random initial solutions, enough
replications were performed so that the CPU time required was comparable to the
CPU time required for the true GRASP algorithms. (As noted above, this represents
200 replications for p = 4 and 300 replications for p = 10.) Although fairly good
solutions were obtained, in only 3 cases did this approach obtain the best known
solution. This indicates the value of the greedy random candidate list procedure for
generating exceptionally good initial solutions.

As indicated in the introduction, tabu search and GRASP are two of many
new approaches [13] to combinatorial optimization that have been developed in
recent years, including simulated annealing [19, 20]. Although this author has
experimented with some simulated annealing for the p-hub location problem, efforts
in this direction have thus far not matched the success of the tabu search and
GRASP procedures that have been developed in this paper. Therefore, we do not
report detailed results here.

5.5. CONCLUSIONS

Some particular implementations of both tabu search and GRASP heuristics
have demonstrated excellent results in obtaining optimal or best known solutions
for a restricted version of the p-hub location problem. As noted above, for a given
set of test problems, these implementations of tabu search and GRASP generated
known optima in 90.60% and 93.75% of the cases, respectively. Both these algorithms,
and variations on them, therefore seem worthy of further consideration.

For tabu search, variations may include other parameter settings, restart strategies
or value functions. To consider one example, an alternative value function might
be designed that would take into account changes in node assignments when hubs
are exchanged. (The value function (4) described in section 3.1 assumes that node
assignments remain unchanged.) Such a function would, naturally, be more difficult

J.G. Klincewicz, Avoiding local optima 301

and time-consuming to compute, but the potentially more accurate savings estimate
might lead to improved searches.

For GRASP, one may consider other parameter settings, other myopic criteria
for choosing nodes, or other search procedures. In particular, alternative value
functions, such as the one described above for tabu search, can likewise be incorporated
into the GRASP search procedure (section 4.2).

Of particular interest, however, would be extending these tabu search and
GRASP approaches to consider other types of assignment schemes besides distance-
based assignments. (The "optimal" solutions given here are, clearly, not necessarily
optimal when assignments are unrestricted.) The success of tabu search and GRASP
approaches, for the restricted case of distance-based assignments, does give
encouragement that appropriate extensions and variations of these approaches can
be successful for the general case of the p-hub problem as well.

Acknowledgements

The author thanks Professor Thomas A. Feo for helpful discussions, also
Professor Morton O'Kelly for providing the CAB data, and Dr. Beth S. Munson for
providing the 52-node data.

References

[I] J.F. Bard and T.A. Feo, An algorithm for the manufacturing equipment selection problem, HE Trans.
23(1991)83-92.

[2] J.F. Bard and T.A. Feo, Operations sequencing in discrete parts manufacturing, Manag. Sci.
35(1989)249-255.

[3] R.R. Boorstyn mad H. Frank, Large-scale network topological optimization, IEEE Trans. Commun.
COM-25(1977)29-47.

[4] M.L. Brandeau and S.S. Chiu, An overview of representative problems in location research, Manag.
Sci. 35(1989)645-674.

[5] T.A. leo and J.F. Bard, Flight scheduling and maintenance base planning, Manag. Sci.
35(i989)1415-1432.

[6] T.A. Feo and M.G.C. Resende, A probabilistic heuristic for a computationally difficult set covering
problem, Oper. Res. Lett. 8(2)(1989).

[7] T.A. Feo, M.G.C. Resende and S.H. Smith, A greedy randomized adaptive search procedure for
maximum independent set, unpublished manuscript (1989).

[8] F. Glover, Heuristics for integer programming using surrogate constraints, Dec. Sci.
8(1977)156-166.

[9] F. Glover, Future paths for integer programming and links to artificial intelligence, Comput. Oper.
Res. 13(1986)533-549.

[10] F. Glover, Tabu search methods in artificial intelligence and operations research, ORSA Art. Int.
Newsletter 1(2)(1987)6.

[11] F. Glover, Tabu search, Part I, ORSA J. Comput, 1(1989)190-206.
[12] F. Glover, Tabu search, Part II, ORSA J. Comput. 2(1990)4-32.
[13] F. Glover and H.J. Greenberg, New approaches for heuristic search: A bilateral linkage with artificial

intelligence, Europ. J. Oper. Res. 39(1989)119-130.

302 J.G. Klincewicz, Avoiding local optima

[14] F. Glover, C. McMiUan and B. Novick, Interactive decision software and computer graphics for
architectural and space planning, Ann. Oper. Res. 5(1985)557-573.

[15] F. Glover andC.McMillan, The general employee scheduling problem: An integration of management
science and operations research, Comput. Oper. Res. 13(1986)563-593.

[16] P. Hansen, The steepest ascent mildest descent heuristic for combinatorial programming, presented
at the Congress on Numerical Methods in Combinatorial Optimization, Capri, Italy (1986).

[17] J.P. Hart and A.W. Shogan, Semi-greedy heuristics: An empirical study, Oper. Res. Lett.
6(1987)107-114.

[18] A. Hertz and D. de Werra, Using tabu search techniques for graph coloring, Computing
29(1987)345- 351.

[19] D.S. Johnson, C.R. Aragon, L.A. MeGeoeh and C. Schevon, Optimization by simulated annealing:
An experimental evaluation ~art I), Ot~. Res. 37(1989)865-892.

[20] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, Optimization by simulated annealing, Science
22(1983)671-680.

[21] J.G. Klincewicz, Heuristics for the p-hub location problem, Europ. LOper. Res. 53(1991)25-37.
[22] R.F. Love, J.G. Morris and G.O. Wesolowsky, Facilities Location: Models and Methods, Publications

in Operations Research, vol. 7(North-Holland/Elsevier, New York, 1988).
[23] C.L Monma and D.D. Sheng, Backbone network design and performance analysis: A methodology

for packet switching networks, IEEE J. Sel. Areas Commun. SAC-4(1986)946-965.
[24] M.E. O'Kelly, The location of interacting hub facilities, Tramp. Sci. 20(1986)92-106.
[25] M.E. O'Kelly, Activity levels at hub facilities in interacting networks, Geographic Anal.

18(1986)343-356.
[26] M.E. O'Kelly, A quadratic integer program for the location of interacting hub facilities, Europ. J.

Oper. Res. 32(1987)393-404.
[27] W.B. Powell and Y. Sheffi, Design and implementation of an interactive optimization system for

network design in the motor carrier industry, Oper. Res. 37(1989)12-29,
[28] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA L Comput.

2(1990)33-45.

