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Abstract 

In the discrete p-hub location problem, various nodes interact with each other by 
sending and receiving given levels of traffic (such as telecommunications traffic, data 
transmi:sions, airline passengers, packages, etc.). It is necessary to choose p of the 
given nodes to act as hubs, which are fully interconnected; it is also necessary to 
connect each other node to one of  these hubs so that traffic can be sent between any 
pair of nodes by using the hubs as switching points. The objective is to minimize the 
sum of the costs for sending traffic along the links connecting the various nodes. Like 
many combinatorial problems, the p-hub location problem has many local optima. 
Heuristics, such as exchange methods, can terminate once such a local optimum is 
encountered. In this paper, we describe new heuristics for the p-hub location problem, 
based on tabu search and on a greedy randomized adaptive search procedure (GRASP). 
These recently developed approaches to combinatorial opfindzafion are capable of  examining 
several local optima, so that, overall, superior solutions are found. Computational experience 
is reported in which both tabu search and GRASP found "optimal" hub locations (subject 
to the assumption that nodes must be assigned to the nearest hub) in over 90% of test 
problems. For problems for which such optima are not known, tabu search and GRASP 
generated new best-known solutions. 

1. Introduction 

Situations exist in which various locations (nodes) interact with each other 
by sending and receiving traffic. This could represent telecommunications traffic, 
data transmissions, amine passengers, express packages, etc. One possible strategy 
to link these locations or nodes, via a communications or transportation network, 
requires a certain number p of the locations to be hubs. These hubs are fully 
interconnected with network links. The remaining locations are each in turn connected 
("assigned") to one of the hubs. The hub is said to "serve" those nonhub locations 
assigned to it. Traffic can be sent between any pair of locations by using the hubs 
as intermediate switching points. 

In the discrete p-hub location problem, the node locations are given, along 
with the level of  traffic that each node sends to, and receives from, every other 
node. (If the actual traffic patterns are stochastic, then these levels represent the 
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mean traffic.) Also given are costs per unit for sending traffic between each possible 
pair of nodes. It is necessary then to choose p of the given nodes to act as hubs 
and to assign each other node to one of these hubs. The objective is to minimize 
the sum of the costs incurred along the various network links. 

Like many facility location problems, the discrete p-hub location problem is 
a difficult combinatorial problem. (For a survey of facility location problems, see 
[4, 22].) Typically, many local optima exist. Because of the computational complexity 
(the problem is NP-complete), it is natural to apply heuristic techniques, especially 
for large problems. However, many standard heuristics, such as exchange algorithms 
[21], terminate once a local optimum is encountered. 

In this paper, we describe how some recently developed approaches to 
combinatorial optimization, specifically, tabu search and greedy randomized adaptive 
search procedure (GRASP) methods, can be applied to design heuristics for the 
p-hub location problem. These heuristics examine several local optima in a coherent, 
systematic way and, thereby, obtain an especially good final solution. In our 
computational experiments (in which, for comparison purposes, we restricted nodes 
to be assigned to the closest hub), both tabu search and GRASP methods found the 
"optimal" hub locations (subject to that restriction on the assignments) in over 90% 
of test problems. Further, for problems for which such optima are not known, these 
new heuristics generated solutions that were superior to the previously best-known 
solutions. These results offer evidence that these heuristics, as well as refinements, 
variations and extensions of them, should be considered further for this and related 
problems. 

The fundamental principles underlying tabu search are described by Glover 
[11, 12]. Based on strategies originally developed for nonlinear covering problems 
[8], this approach has since been applied to a variety of difficult combinatorial 
problems, e.g. [9, 10, 14, 15, 18, 28]. A similar approach was independently developed 
by Hansen [16]. Tabu search operates in the context of a search procedure in which 
one "moves" iteratively from one feasible solution to another. The key idea is to 
forbid certain possible "moves" at each iteration, based on the past history of 
moves, in order to force the algorithm to explore new areas of the feasible region. 

So-called greedy random adaptive search procedures have also been applied 
to a variety of difficult combinatorial problems [1, 2, 5, 6, 17]. They were given the 
acronym GRASP by Feo et al. [7]. In GRASP methods, a search procedure to find 
a local optimum is replicated multiple times with different starting points. These 
starting points are determined by "greedy" procedure that has a probabilistic component 
within it. This probabilistic component consists of randomly choosing one of the 
best candidates from a list, and not necessarily the top candidate, in the greedy 
procedure. The goal is to choose many excellent starting points via the greedy 
procedure (as opposed to purely random starting points) and thereby increase the 
chances of finding the true optimum on at least one replication. 

Tabu search and GRASP are among several new approaches to heuristic 
search procedures for combinatorial optimization that have been developed in recent 
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years. A survey of some of these approaches, including simulated annealing, neural 
networks and genetic algorithms, is given in [13]. 

The generic discrete p-hub location model for choosing hubs and their 
assignments was first formulated as a quadratic integer program by O'Kelly ]26] 
who proposed an enumeration-based heuristic. A variety of single-exchange and 
double-exchange heuristics for the discrete p-hub location problem were proposed 
by Klincewicz [21]. The related problem of hub locations in a continuous plane is 
considered in [24] and issues of congestion in hub networks are discussed in [25]. 
Examples of hubbing networks are found in certain airlines, package delivery systems, 
and trucking companies, as discussed in [26, 2.7]. They are also found in certain 
telecommunications systems, such as backbone packet networks [3, 23]. 

In section 2, we formulate the discrete p-hub location problem. We describe 
our adaptation of tabu search to the p-hub location problem in section 3 and our 
application of GRASP to this problem in section 4. Section 5 reports our computational 
experience. 

2. Problem formulation 

In the p-hub location problem, there are n distinct locations or nodes. For any 
pair of nodes i and j, W/j denotes the number of units of traffic sent from i to j. (We 
assume W/i = 0.) If a node i is connected to a hub at node j, then a standard cost 
Cq per unit is incurred for all traffic on the link between i and j. Typically, Cij is 
proportional to the distance between i and j. If i and j are both hubs, then this cost 
is discounted to account for economies of scale in the volume of traffic between 
hubs. In the standard p-hub formulation considered here, these economies of scale 
are represented by a discount parameter a, so that all traffic sent between i and j 
incurs a cost at the rate of aCij per unit. This "linear" model might serve as an 
approximation to more complicated concave functions on interhub flows. These 
might arise, for example, in an airline network, where interhub traffic would use 
larger, more efficient airplanes, or in a communications network, where interhub 
traffic would use more efficient, high capacity links. 

The integer decision variables used in the formulation are defined as follows: 

1 node j is a hub, 

YJ = 0 otherwise; 

10 node i is connected to a hub at j,  

Xq = otherwise. 

Although costs on a link are linear in the flows, the overall problem is quadratic 
in the facility assignment variables Xq. In its most general form, the problem 
formulation can then be written as a quadratic integer program as follows: 
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MinimizeE E W/i(E xikca + ~, Xi,,,CJ~ 
i j k m 

+ aZk Zm XikXimCkm) (la) 

subject tO X X(/ = 1, for i = 1, . . . , n (lb) 
J 

Yj = p, (lc) 
J 

Xij < Yj, for i = l, . . . .  n and j = l . . . . .  n, ( ld)  

X/j,I~E{0,1}, for i = l  . . . . .  n and j = l  . . . . .  n. (le) 

The objective function (la) sums costs for each ordered pair ( i , j ) ,  i.e. the 
cost from origin i to its hub node k, plus the cost to destination j from its hub at 
some node m, plus the cost from hub k to hub m. Constraints (lb) require that every 
node be connected to a hub and constraint (lc) requires that exactly p hubs be 
chosen. Constraints (ld) ensure that a node i is assigned to j only if j is, in fact, 
a hub. 

This formulation differs just slightly from the original formulation of O'Kelly 
[26], which uses variables Xjj in the role of Yj. O'Kelly also uses an alternate form 
of constraints (Id). 

Often, cost elements will be symmetric, i.e. Cij = Cyi, thus simplifying certain 
computations. As pointed out in [26], by defining Oi = EjW/y to be the total amount 
of traffic originating at node i and D i = ~.jWji to be the total traffic destined for 
node i, the objective (la) can be rewritten: 

Minimize ~ ~ XikClk(O i + Di) 
i k 

+ ~_. ~_, Xjm ~. ~_, Xik(aWijC~). ( 2 )  
j m i k 

Here, the first summation term represents the cost of ingoing traffic on the link 
between each node i and its associated hub k (assuming cost symmetry). The second 
term is a compact way of representing the costs on interhub links. 

Note that, even if all Yj variables were fixed (i.e. hub locations were known) 
in problem (1), the remaining problem of assigning nodes to hubs is still an NP- 
complete quadratic assignment problem. (See [22, chapter 9] for a discussion of 
quadratic assignment.) However, within the context of heuristics, it is important to 
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be able to evaluate quickly a given choice of p-hubs, and, therefore, relatively 
simple procedures for assigning nodes to hubs need be considered. For example, 
O'KeUy [26] considers cost-based assignments where Xa = 1 if Ca = minj{CijiYj = 1 }, 
and where ties can be broken arbitrarily. Since costs are typically proportional to 
distance, these can also be called distance-based assignments. (In addition to cost 
or distance-based assignments, Klincewicz [21] also considers some more general 
schemes that take traffic volumes into account.) 

In this paper, we restrict our attention to the cost or distance-based assignments. 
There are two reasons for this. First, in most applications, it makes sense for a 
hub to serve a reasonably compact group of nodes, i.e. nodes that are "close" to 
the hub. For this very reason, more sophisticated assignment heuristics may be 
unnecessary. Second, a relatively simple assignment procedure such as this allows 
us to compute "optimal" hub locations (i.e. the best possible hub locations assuming 
distance-based assignments) for small problems by enumeration. In this way, we 
have a consistent and verifiable benchmark to compare the quality of the hub 
solutions generated by various heuristics, particularly our new tabu search and 
GRASP procedures. 

3. Tabu search 

In this section, we outline our particular implementation of tabu search for 
the p-hub location problem. For additional background on tabu search, see [11, 12]. 
Tabu search operates in the context of a search procedure in which at each iteration 
one moves from one feasible solution to another. For the case of  the p-hub location 
problem, a feasible solution consists of a set K of  hubs, assuming all nodes are 
assigned to the "nearest" hub. We will consider a "move" to be an exchange in 
which some node q replaces some node r as a hub in the current set K. 

As is described below, tabu search, unlike other search or exchange procedures, 
is not stopped once it hits a local optimum. It can continue despite a lack of  
"improving" moves, and, because of  a "tabu list", it can avoid falling back into the 
same local optimum from which it just emerged. In this way, many local optima 
may be encountered. Tabu search approaches may be particularly appropriate to try 
for this type of problem, given other successful implementations for other quadratic 
integer programming problems (e.g. [28]). 

3.1. THE VALUE FUNCTION 

To evaluate how "good" a given move is, we will use a local improvement 
measure that computes the savings that would result from the move, assuming all 
nodes previously assigned to r are now assigned to q. (Since node assignments can, 
in fact, change, this measure of savings is just an estimate.) This savings estimate 
is used, for example, for the heuristics in [21]. We denote the interhub traffic from 
a hub k to a hub l for the current set of assignments by: 
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= Z Z (3) 
{ilX~=I} {j IXjt--l) 

If  a node q replaces node r as a hub, the savings estimate is: 

Rq, = X o,(c  - + X O,(Cr, - Cq,) 
{i IX~r =1} {i IX/, =1} 

+ a Z l,k(Crk - Cqk) + a ~., l~,(Ckr - Ckq). (4) 
k~K kEK 
kC~r k~r 

This represents the sum of  savings on outgoing and incoming traffic both from and 
to nodes now served by r, as well as savings on interhub traffic on links to other 
hubs k ~ K. We will consider a move to be an "improving" move if the savings 
estimate Rqr is positive. 

Note that this is just one of  potentially many different savings estimates that 
could be used as a value function. In this paper, we obtain good results using this 
particular function (4), which provides a good estimate with moderate computational 
effort and is consistent with the estimate used in the exchange heuristics considered 
in [21]. Other estimates, ranging from the very simple to the computationaUy complex, 
might also be considered. (See the discussion in section 5.5.) 

3.2. THE TABU LIST 

At each iteration, there is a "tabu list" of  moves that are forbidden to be 
made. This list is based on the past history of moves. In our implementation, after 
a move (q, r) is made, in which node q replaces node r, the move (q, r) and its 
inverse move (r, q) are placed on the tabu list. The tabu list is initially built up over 
M consecutive moves and updated circularly in later iterations. That is, in later 
iterations, the oldest dements  on the tabu list are removed and replaced with those 
based on the current move. 

The only way that it is possible to make a move (q, r), if  (q, r) is on the tabu 
list, is for the move (q, r) to satisfy some "aspiration level" criterion. In our 
implementation, a move (q, r) on the tabu list satisfies the "aspiration level" criterion 
if the current objective value minus Rqr is less than the best objective value found 
thus far. 

3.3. INITIAL SOLUTION AND SEARCH PROCEDURE 

One initializes the tabu search by constructing a good feasible solution. In 
our implementation, we choose the p nodes with the largest values of  Oi + Di to be 
the initial set o f  hubs. 

Thereafter, at each iteration, we choose to make the move (q, r), from among 
those moves that are permissible, that maximizes Rq,. "Permissible" moves are 
those that either 
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(1) are not on the tabu list, or 

(2) are on the tabu list, but satisfy the aspiration level criterion. 

Note that it is not necessary for the chosen move to be an "improving" move, i.e. 
the maximum value for Rqr could be negative. After each move, the objective 
function value (la) is computed for the current feasible solution. If it is the best 
objective function value encountered thus far, the solution is recorded. 

Computing Rqr for all possible q and r represents a significant part of the 
computational effort in the tabu search. It is therefore important that we seek 
efficient ways to implement this procedure. One specific way that this can be done, 
for a moderate to large number of nodes q, is to first compute 

R , :  y~O~C~ + ~.,DiC,~ +a~.,l,,C~, +a~.~lk, C ~. (5) 
{ilXj, =1} {ilX~, :1} k e K  k~K 

&a~r katr 

Then, for each q, 

and 

Sq,= ~,OiC ~ + ZDiC¢, +a~_l,~Cq, +aZlk,  C ~ (6) 
{ ilX~, =11 { ilXi, =11 k GK k ~K 

t'~r k~r 

^ 

R,, = Rr-S , , .  (7) 

This requires several additional multiplications (and additions) to compute/~,initially; 
however, for each q, we avoid subtracting Cir- Ciq and Cri - C q i  for each i and C,k - 
Cqk and Ck, - Ckq for each k. For a moderate to large number of q, this is advantageous; 
the exact break-even point is computer dependent. 

3.4. RESTARTS 

Periodically, e.g. every N iterations, one can restart the tabu search procedure 
by erasing the current tabu list and choosing a new initial solution. In our 
implementation, we always use the best solution encountered thus far as the new 
initial solution, unless it is unchanged since the last restart. In this case, one can 
either terminate the search, or else, construct a new initial solution based on what 
is called "long-term memory". 

Long-term memory consists of a matrix T in which element Tq, equals the 
number of times move (q, r) has been made since the very start of the algorithm. 
The purpose of long-term memory is to have a measure of what areas of the feasible 
region have already been well-explored, so that we might construct a solution in 
a less explored area. To do this, we construct the new initial solution, not on the 
basis of Oi + Di, but on the basis of Oi + Di - ].tY~j(Tij + Tji), where # is a penalty 
parameter. (The parameter # should be on the order of Oi + Di. In our computational 
experiments in section 5, this implied # = 104.) Thus, if node i has already been 
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involved in a large number of moves, it is less likely to show up in the new initial 
solution. 

In our computational experiments described in section 5, we allow at most 
one restart based on long-term memory. (Clearly, other criteria are possible.) With 
these conditions, our implementation of tabu search will terminate when the best 
solution encountered does not improve between restarts and a restart based on long- 
term memory has already been tried once. 

4. GRASP 

In a Greedy Randomized Adaptive Search Procedure (GRASP) method, a 
given heuristic is replicated many times; the best result obtained is then kept as the 
solution. Each replication consists of two steps: first, a greedy procedure with a 
probabilistic component that generates an initial feasible solution, and, second, a 
search procedure to improve on that initial solution. 

4.1. THE INITIAL SOLUTION 

4.1.1. A myopic savings criterion 

In a greedy procedure, one adds one element at a time to the solution set, this 
one element being chosen according to some myopic criterion. In GRASP, however, 
the one element is chosen from among a list of the best candidate elements, not 
necessarily the top candidate. 

In the case of  the discrete p-hub location problem, we add one element (node) 
at a time to the set K of hubs. Many possible myopic criteria might be proposed. 
The myopic criterion we will use in our implementation is the true improvement 
Si in the objective function (la) that would result if a node i were added to the set 
K. This involves summing the .cost changes due to each node j that would be 
reassigned to i, if i were added as a hub. (For choosing the first hub, when K is 
initially empty, the savings or improvement is calculated by assuming that the costs 
for the initial null assignments are equal to some large number.) The specific 
procedure for computing the improvement Si for each node i can be described as 
follows: 

COMPUTING Si 

Step 1. Initialize Si = 0. Let j = 1. 

Step 2. Let ~ denote the minimum cost to assign j to a node in the current set K, 
and let k be the node in K associated with that cost, i.e. C': min{Cjq}. 

- - ~ J <  e K  
(If K is empty, let Cj equal some large number.) If Cj _ Cji, then ~o to step 
5. Otherwise, execute steps 3 and 4. 

Step 3. Add the savings for reassigning j to i: 
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Step 4. 

Step 5. 

si <-- si + ( o j  + o j ) (Cj  - cj i) .  

(Skip if K is currently empty.) To compute changes in the interhub costs, 
perform the following procedure for each node 1 ~ j :  

• Let Ct = Ct,n = qmi'ntC~ ), i.e. I would be assigned to hub m in the 
current set K. 

• If ~ > Cti, so that l would be reassigned to i, let Si 6- Si 
+ (Wit + Wlj) a C~.,t. 

• If 1~1 < Cn, let Si ~ Si + (Wit + Wtj) a (Ctm - Cim). 

Incrementj ~----j + 1. If j < n, go to step 2. Otherwise, stop. 1:3 

4.1.2. Efficient implementation 

Although the above steps provide a clear description of the cost savings 
included in Si, efficient computer implementations might perform the computations 
differently. As one obvious example, one could store Wjt= Wjt + Wlj and ODj = Oj + Dj 
in advance so that they need not be recomputed each time. Computations could also 
be reduced by storing the interhub-cost for traffic to and from node j, given the 
current set of hubs K, i.e. 

l 

where j is assigned to hub k and each I is assigned to hub m in the current solution. 
(We have suppressed the notational dependence of k on j and m on l.) Likewise, 
it is convenient to denote ~ (i) to be the interhub cost for traffic to and from node 
j, if node i were added to K. In addition, one could define quantities T,, to be the 
traffic between i and hub m if i were added as a hub; Tm could then be accumulated 
in step 4, before any multiplication by Cim and a. Given these, the following 
efficient implementation results: 

COMPUTING Sl (ALTERNATIVE PROCEDURE) 

Step 1. Initialize sl = 0, s2= 0, H~(i)= O for all j ,  and Tm= O for all m ~ K. Let 
j = l .  

Step 2. IfCj < Cji, then go to step 5. Otherwise, execute steps 3 and 4. 

Step 3. Add the savings for reassigning j to i: 

$1 6 -  S 1 + ODj(Cj  -- Cji ). 

Step 4. (Skip if K is currently empty.) For each node l ;~j: if (~t <Cn and 1 is 
assigned to hub m in the current solution, then T m 6-T= + Wit. 



292 J.G. Klincewicz, Avoiding local optima 

Step 4.a. Compute: 

Step 5. 

(i)= ~ . T ,  Ci,, 
m~K 

s2 s2 + - f t j  Ci). 

Increment j <---j + 1. If j < n, go to step 2. Otherwise, compute 

S i = s 1 + as2 

and stop. [] 

(Once it is later decided which node i will actually be added to set K, the interhub 
costs can be updated: ~ <---~. (i).) 

4.1.3. Choosing from a candidate list 

At each step of the greedy procedure, the nodes i corresponding to the largest 
values of Si are kept in a candidate list. This list has a maximum length L. The list 
can be truncated by requiring that all candidate elements i on the list have Si values 
within o~ percent of the top candidate. 

The overall initial solution can be summarized as follows: 

INITIAL GREEDY SOLUTION 

Step 1. Let k= l, K= O. 

Step 2. Compute Si for all nodes i not in K and construct a candidate list of 
maximum length L as described above. 

Step 3. Choose randomly from among the elements of the candidate list with 
each dement having equal probability. Add this random choice to set K. 

Step 4. Increment k <---k + 1. If k < p, go to step 2. Otherwise, stop. [] 

As noted above, many myopic measures could be used in place of Si as 
defined above. We note, however, that the value of Si defined above computes the 
true cost improvement for adding node i, and excellent results have been obtained 
using it in computational experiments (see section 5). 

4.2 THE SEARCH PROCEDURE 

The second step of a GRASP replication is to attempt to improve upon the 
greedy initial solution. Many search procedures might be designed for this purpose, 
e.g. variations of the exchange procedures in [21]. We choose here to implement 
a procedure analogous to that used in the tabu search algorithm. We summarize that 
procedure below: 



J.G. Klincewicz, Avoiding local optima 293 

THE SEARCH PROCEDURE 

Step 1. Start with the initial greedy solution set K as computed above. 

Step 2. Compute Rq, for all nonhub nodes q and all r ~ K, as in eq. (4). 

Step 3. Let (q', r ' )  represent the exchange that maximizes Rq,. If Rq,r, > 0, let q' 
replace r" in set K, and return to step 2. Otherwise, stop. [] 

Because the initial greedy solution tends to be an excellent one, the search 
procedure generally terminates in very few (less than 5) iterations. 

5. Computational experience 

5.1. COMPUTER ENVIRONMENT AND TEST PROBLEMS 

The heuristics described here were implemented in FORTRAN and run on an 
Amdahl 5890 computer operating under UNIX ® SYSTEM 5.2.6B. The programs were 
compiled using F77. All processing times listed are in CPU seconds. 

Test data were obtained from two sources. First is a set of problems used in 
[26] and later in [21 ]. For these, the nodes consist of lists of US cities and the traffic 
measures are based on 1970 airline passenger interactions as evaluated by the Civil 
Aeronautics Board (CAB). Problems with 10 nodes, 15 nodes, 20 nodes, and 25 
nodes are used. We consider p = 3 and p = 4. These problems are small enough that 
all (~) possible hub configurations can be enumerated and, assuming that nodes are 
to b~ "assigned to the closest hub, optima can be determined. 

The second set consists of two 52-node problems. These are based on intemode 
traffic data used in the testing of the packet network design algorithm in [23]. They 
are also used in [21]. We consider cases o f p  = 4 and p = 10, thus generating some 
larger-sized problems. 

5.2. TABU SEARCH AND THE CAB PROBLEMS 

Table 1 summarizes the results of some of our computational experience with 
the Civil Aeronautics Board (CAB) data using tabu search with long-term memory. 
Problems with n = 10, 15, 20, 25 and p = 3, 4 were tested. For each set of values 
for n and p, 4 different runs were made, corresponding to values of a = 0.4, 0.6, 
0.8 and 1.0. Tabu search parameters tested include M = 10 and N = 30, M = 20 and 
N = 60, M =30 and N = 90, and M = 40 and N = 120. (Recall that M denotes the 
number of  past iterations considered in the tabu list and N denotes the number of  
iterations between restarts.) 

Each row of table 1 corresponds to a pair of n and p values. For each setting 
of the tabu search parameters, we list how many of  the problems obtained optimal 
solutions and how many obtained suboptimal solutions. In each category (optimal 
and suboptimal) we also list the average time required to complete the tabu search 
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heuristic and the average time required until the solution was first found. Also listed 
in a separate column is the average time to obtain the optimum by enumeration. The 
results with M = 30 and N = 90 are, overall, the best, with optimal solutions being 
found in 29 out of the 32 cases (90.6%). Furthermore, the value of the 3 suboptimal 
solutions differed from the optimal by an average of only 1.0%. 

The solutions obtained for other parameter settings were also very good, 
indicating a certain robustness in the tabu search procedure. Note also that the 
average time when the eventual solution is first encountered is only a fraction of 
the average total time. This indicates that good tabu search solutions are often found 
in the early stages of search. 

5.3. GRASP AND THE CAB PROBLEMS 

Table 2 summarizes some of our computational experience using GRASP on 
the CAB problems. As above, we examine problems with n = 10, 15, 20, 25 and 
p = 3,4. For each problem size, 4 different runs (a = 0.4, 0.6, 0.8 and 1.0) were 
made. Each run consisted of 100 replications of the algorithm. 

We examine GRASP with a maximum candidate list length L = 5 and L = 7. 
(In both cases, we truncate the list if candidate elements are not within ~z = 20% 
of the top candidate.) For each parameter setting, we list, as in table 1, how many 
problems obtained optimal solutions and how many obtained suboptimal solutions. 
In each category, we also list the average total CPU time required to complete 100 
replications, as well as the average CPU time between appearances of  the best 
solution (i.e. the average of, for the various runs, the total time divided by the 
number of replications on the best solution was found). Once again, for comparison 
purposes, we also list the time required for complete enumeration. 

As can be seen, for L = 7, 30 out of 32 problems (93.75%= obtained optimal 
solutions. (For the two that did not, the value of the objective was only 0.03% and 
0.16% above the optimum.) For L = 5, only 28 out of 32 problems obtained optimal 
solutions. 

5.4. RESULTS FOR 52-NODE PROBLEMS 

In order to examine the performance of the new heuristics on some larger 
problems, we ran tabu search and GRASP on some 52-node examples [23, 21]. (For 
these large problems, withp = 4 andp = 10, it was prohibitive to perform a complete 
enumeration to determine an optimal solution.) In addition to the results of our tabu 
search and GRASP heuristics, we also compare the results of a "double-exchange 
heuristic" from [21] and the results of a variation of  GRASP in which initial 
solutions are chosen completely at random, instead of through the "greedy random" 
candidate list procedure. 

Table 3 summarizes these computational results. Each row of the table 
corresponds to a particular problem with specified values of n, p and a. For each 
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Table 2 

Results of GRASP on CAB problems: Number of problems, average total time, average time between 
eneonters of the best solution (CPU seconds). 

Optimal Suboptimal Op$-nal Suboptimal 
n p Runs Runs Runs Runs Enumeration 

Time ] Time Time time 
Total to ]Total to Total to 
time best I time best time best 

Time 
Total to 
time best 

4 0 4 0 
10 3 0.65 

0.33 0.03 N/A N/A 0.29 0.09 N/A N/A 
4 0 4 0 

10 4 5.60 
0.50 0.05 NIA NIA 0.35 0.11 N/A NIA 

4 0 4 0 
15 3 3.98 

0.74 0.06 N/A N/A 0.63 0.07 NIA N/A 
4 0 4 0 

15 4 58.66 
0~3 0.17 N/A NIA 0.83 0.19 NIA N/A 

1 3 3 1 
20 3 13.94 

1.79 0.12 1.69 0.64 1.44 0.67 1.36 0.34 
3 1 4 0 

20 4 289.43 
2.10 033 2.14 0.30 1.84 0.83 NIA NIA 

4 0 4 0 
25 3 36.75 

2.43 0.22 NIA NIA 2.26 030 N/A NIA 

25 4 977.18 
3.19 

4 

1.95 

0 

N/A N/A 

3 

2.95 1.04 

1 

2.78 2.78 

algorithm tested, we list the best normalized objective function found. (These are 
normalized so that the best known solution equals 100.) For the columns corresponding 
to the tabu search procedures, we also list the total time to complete the search and 
the time when the best solution was first encountered, similar to table 1. For 
columns corresponding to GRASP procedures and to the variant with totally random 
starts, we also list the total CPU time expended and the average time between 
appearances of  the best solution, similar to table 2. (For the true GRASP procedures, 
the total time represents 100 replications; for the variant with totally random starts, 
the total time represents 200 replications forp  = 4 and 300 replications forp  = 10.) 
The final column corresponds to the double-exchange heuristic described in [21]; 
in addition to the normalized objective, we list the total required CPU time. 



J.G. Klincewicz, Avoiding local optima 297 

Tabu search algorithms 

Many different parameter settings were tested for tabu search and GRASP; 
we report results for the best of  those examined. For tabu search, we list results for 
M = 40 and N = 120 and for M = 50 and N = 150. Each obtained the best known 
solution 8 out of  16 times. 

For n = 52 and p = 4, total times for completing the tabu search varied between 
6 and 16 CPU seconds, but what turned out to be the eventual solution was actually 
found in from 0.05 to 7.59 seconds. Similarly, for n = 52 and p = 10, total times 
ranged from 11.6 to almost 28 CPU seconds, but the time to first encounter the 
eventual solution ranged from 0.03 to 14.48 seconds. As in table 1, this suggests 
that good solutions are frequently found in the 6arlier stages of  the tabu search. 

GRASP algorithms 

For GRASP, we again report results for maximum candidate list length L = 5 
and L = 7, and we truncate the list if candidate elements are not within a = 20% 
of  the top candidate. The setting with list length L = 7 generated the best known 
solution in 14 out of 16 cases. (With L = 5, this happened in only 7 of  16 cases.) 

With L = 7, for n = 52 and p = 4, 100 replications took from 16.5 to just over 
23 CPU seconds; the average time between replications that yielded the best solution 
ranged from 0.71 to 16.83. Likewise, for L = 7, n = 52 and p = 10, 100 replications 
ranged between 32 and 44 seconds; the average time between encounters of  the best 
solution ranges from over 7 to over 40 seconds. 

Comparisons 

It is difficult to make comparisons of  time requirements for tabu search and 
GRASP. With most other heuristics, the final solution is not determined until the 
end of  the algorithm. With tabu search and GRASP, however, the solution that is 
eventually reported as the best can be encountered at any time during the computation. 
In addition, there are no "obvious" choices for the stopping rules for terminating 
the algorithm. Different stopping rules result in different time requirements as well 
as different solutions. Furthermore, since GRASP is a randomized algorithm, the 
same algorithm with a given stopping rule could yield different solutions on different 
r u n s .  

One possible measure for the time requirements of  tabu search is the reported 
"time until the best solution is first encountered". On the other hand, since GRASP 
is a randomized algorithm, we reported the "average CPU time between appearances 
of  the best solution". This can give some measure of how long we might  expect to 
take before this best solution is first encountered. In table 3, for L = 7, n = 52 and 
p = 10, GRASP yielded average times between appearances of  the best solution of  
from over 7 to over 40 seconds. On the other hand, tabu search yielded, on the same 
problems, times of  between 0.03 and over 14 CPU seconds until the best solution 
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is first encountered. This is, admittedly, an imperfect measure since it does ignore 
stopping rules. 

In summary, for our particular implementations on this given set of test 
problems, tabu search showed potential advantage in CPU time, whereas GRASP 
generated optimal solutions somewhat more frequently. Based on these indicators, 
it would seem that both tabu search and GRASP are worthy of further consideration 
for this class of problems. Extensions and variations of both these algorithms should 
be considered in future research (see section 5.5). 

Other algorithms 

In table 3, comparisons of tabu search and GRASP against the exchange 
heuristic and against the search procedure with completely random solutions are 
also favorable. In only one instance did the exchange heuristic match the best 
known solution. 

For search procedure with completely random initial solutions, enough 
replications were performed so that the CPU time required was comparable to the 
CPU time required for the true GRASP algorithms. (As noted above, this represents 
200 replications for p = 4 and 300 replications for p = 10.) Although fairly good 
solutions were obtained, in only 3 cases did this approach obtain the best known 
solution. This indicates the value of the greedy random candidate list procedure for 
generating exceptionally good initial solutions. 

As indicated in the introduction, tabu search and GRASP are two of many 
new approaches [13] to combinatorial optimization that have been developed in 
recent years, including simulated annealing [19, 20]. Although this author has 
experimented with some simulated annealing for the p-hub location problem, efforts 
in this direction have thus far not matched the success of the tabu search and 
GRASP procedures that have been developed in this paper. Therefore, we do not 
report detailed results here. 

5.5. CONCLUSIONS 

Some particular implementations of both tabu search and GRASP heuristics 
have demonstrated excellent results in obtaining optimal or best known solutions 
for a restricted version of the p-hub location problem. As noted above, for a given 
set of test problems, these implementations of tabu search and GRASP generated 
known optima in 90.60% and 93.75% of the cases, respectively. Both these algorithms, 
and variations on them, therefore seem worthy of further consideration. 

For tabu search, variations may include other parameter settings, restart strategies 
or value functions. To consider one example, an alternative value function might 
be designed that would take into account changes in node assignments when hubs 
are exchanged. (The value function (4) described in section 3.1 assumes that node 
assignments remain unchanged.) Such a function would, naturally, be more difficult 
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and time-consuming to compute, but the potentially more accurate savings estimate 
might lead to improved searches. 

For GRASP, one may consider other parameter settings, other myopic criteria 
for choosing nodes, or other search procedures. In particular, alternative value 
functions, such as the one described above for tabu search, can likewise be incorporated 
into the GRASP search procedure (section 4.2). 

Of particular interest, however, would be extending these tabu search and 
GRASP approaches to consider other types of assignment schemes besides distance- 
based assignments. (The "optimal" solutions given here are, clearly, not necessarily 
optimal when assignments are unrestricted.) The success of tabu search and GRASP 
approaches, for the restricted case of distance-based assignments, does give 
encouragement that appropriate extensions and variations of these approaches can 
be successful for the general case of the p-hub problem as well. 
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