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A b s t r a c t  

Network location problems occur when new facilities must be located on a network, 
and the network distances between new and existing facilities are important. In urban, 
regional, or geographic contexts, there may be hundreds of thousands (or more) of 
existing facilities, in which case it is common to aggregate existing facilities, e.g. 
represent all the existing facility locations in a zip code area by a centroid. This 
aggregation makes the size of the problem more manageable for data collection and data 
processing purposes, as well as for purposes of analysis; at the same time, it introduces 
errors, and results in an approximating location problem being solved. There seems to 
be relatively little theory for doing aggregation, or evaluating the results of aggregation; 
most approaches are based on experimentation or computational studies. We propose 
a theory that has the potential to improve the means available for doing aggregation. 

1. Introduction 

To  mot iva te  the work  to fol low,  it is helpful  to first  b r ie f ly  relate  some 

exper iences  one  o f  us had in work ing  on an actual  loca t ion  problem.  
In 1989 the state o f  Flor ida,  l ike several  o ther  large states in the U S A  in 

recent years, requested proposals from contractors to operate a motor  vehicle  inspection 

p rogram in m a jo r  met ropo l i t an  areas in the state. T h e  program,  which  is manda ted  
by Flor ida  law,  will  involve  stat ions where  vehic les  will  be inspected  to de te rmine  
whe the r  or  not  they sat isfy exhaus t  pol lut ion standards.  Fo r  each  ~'ontract zone  
where  Nat iona l  Ambien t  Air  Qual i ty  Standards are exceeded ,  cont rac tgrs  submi t ted  
bids which  inc luded the loca t ions  o f  the stations,  the n u m b e r  o f  lan~s o f  each  o f  
the stations,  f inancia l  informat ion ,  etc. Chosen  cont rac tors  will  charge  the o w n e r  

o f  each  inspected  veh ic le  a fee,  a por t ion  o f  which  will  be rebated to the state to 
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fund an agency to monitor operation of the stations. Contracts are intended to be 
given for seven years, with an option to extend for two additional one-year periods. 

Contractors were required to submit, with their bids, estimates of average 
travel distances of vehicle registrants, assuming each registrant visits a closest 
station. More than four million registrants existed in the contract zones throughout 
the state. Subsequent to, and in part as a consequence of our involvement, the 
agency provided information to the contractors on the number of registrants in each 
contract zone by zip code area, as well as the latitude and longitude of 345 centroids 
of zip code areas in the contract zones. This information was used both by the 
contractors, and by us, for estimating average distances travelled, assuming each 
registrant used a closest station. The following sentence was included in the request 
for proposals to address the travel distance question: "The average driving distance 
from residences to inspection stations shall be no more than six (6) miles for at least 
ninety percent (90%) of the affected registered motor vehicle owners in the designated 
problem areas." Further, the agency listed five areas on which proposals would be 
graded, with a possible maximum grade of 200 points. The following area, worth 
40 points out of 200, addressed the driving distance question. "I'he public convenience 
of the inspection stations, including a calculation of the maximum average driving 
distance of six (6) miles to an inspection facility applicable to ninety percent of 
motor vehicles within each program area for each contract zone and a calculation 
of  the maximum waiting time." 

We provided the agency with a simple, custom-made PC code with graphics 
which it used to help evaluate the contractor-proposed locations, as well as the 
results of some location-allocation analysis for one contract zone. Our program had 
the capability of using either Euclidean, rectilinear, or network travel distances, and 
estimated average and total travel distances of vehicle registrants, assuming each 
registrant visits a station closest to their zip code area centroid. 

Since contractors had the right to appeal the agency awards, it was important 
to the agency that they be in a position to claim they had treated proposals impartially. 
One attraction of having a program, from the point of view of the agency, was that 
the program was impartial; it provided a common basis for evaluating all proposals, 
and also gave the agency a way to double-check the contractor's distance measure 
calculations. 

The agency used our code as part of their process of evaluating the locations 
of all bids received, and this use was documented for purposes of an appeal (which 
occurred and was turned down). 

This experience has identified several approximation questions of interest 
which, as best we can determine, are not well resolved. The principal question 
involves approximating each zip code area by its centroid, so that the total distance 
between registrants in the zip code area and the station was approximated by the 
product of  the number of  people in the zip code area and the distance between the 
station and the centroid; this kind of  approximation, called aggregation, is pervasive 
in applied location work (see Rushton [32]). It would simply have been impossible 
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to represent the location of every one of the more than four million individual 
registrants within the time (and budget constraints) available. A second approximation 
issue involved the choice of a distance measure: Euclidean, rectilinear, or network. 
(The choice the agency eventually made was Euclidean, because all of the contractors 
used Euclidean distance.) A related issue, unresolved, was how much effort should 
be made to estimate distances accurately when other sources of error in the model 
also affected its accuracy, including the use of current registration data to predict 
a future situation, inaccuracies in the given registration data, and the assumption 
that each registrant would use a closest station to their (registrant) address (instead, 
say, of one closest to their place of work, or one on the way between their home 
and place of work). 

Approximating locations in a zip code area by a zip code area centroid is a 
type of aggregation. There are a number of reasons for doing aggregation, involving 
the cost of obtaining and processing the data, the form in which the data is available 
(it may already be aggregated), the size of the resulting location models, and the 
computational and theoretical tractability of the resulting location models. Note that 
this last reason is not necessarily the same as the previous one, since a large model 
might still be tractable. 

2. Literature 

There is a substantial literature on doing aggregation, a striking aspect of 
which, from our point of view, is that it is almost all experimental. Various schemes 
for doing aggregation are devised and then tested computationally, either by using 
randomly generated problems or actual data. Relatively recent papers with extensive 
literature discussions on aggregation include those by Current and Schilling [5,6], 
Daskin et al. [7], Mirchandani and Reilly [27], and Rushton [32]. These papers 
document the widespread use of aggregation, and the difficulty of doing it well. It 
is well recognized that aggregation introduces inaccuracy into the model, but what 
to do about it seems unclear. Indeed, Daskin et al. point out that "Conclusions from 
the literature are often contradictory and are based on subjective assessments of 
whether the aggregate locations differ significantly from the disaggregate sites." 

For representative aggregation computational studies, see Brown and 
Masser [3], Hillsman and Rhoda [19], Goodchild [14], Bach [1], Mirchandani and 
Reilly [27], Current and Schilling [5,6], and Casillas [4]. 

Rushton [32], in an insightful discussion of applications of location models, 
discusses aggregation. He states that "The effect of employing discrete spatial 
structures to represent data that is distributed continuously is largely unknown, 
though recent research has shown that the effects on the validity of results from 
location-allocation models can be considerable. In most cases, the decision to use a 
particular data structure is a matter of convenience and most analysts do not discuss 
the potential consequences of the data system they use or the alternatives they 
reject . . . .  Clearly, optimum locations must be sensitive, to an important degree, 
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at some level of spatial aggregation of data. We do not know how to identify this 
level in advance for any given application" (emphasis added). Later, he points out 
that "As for capturing geographical complexity, the history of applications shows 
little development: decisions to use crude distance functions and spatially aggregated 
data units continue to be the rule and the lack of any recognized method for 
evaluating the consequences of these choices on the quality of the results has 
encouraged analysts to simply dismiss the problem as intractable." 

According to Goodchild, "Many of the fields to which location-allocation 
models have been applied take the data base as some aggregation of a geographically 
dispersed demand." Later, he states that "The minimax problem is similar to the 
median, then, in that in both cases the effects of aggregation are unique to particular 
solutions, and therefore in that no general rules for aggregation can be found." 

We conclude from our literature search that there is very little theoretical 
basis for doing aggregation, that aggregation is regularly done in applied location 
modelling, and that too much aggregation can destroy the accuracy of a location 
model. 

It is the purpose of this paper to contribute to a theoretical basis for doing 
aggregation. We believe we have a good way of measuring the relative quality of 
aggregation, and can study the aggregation problem analytically. We will develop 
in the sequel an error bound for aggregation, and show that minimizing the error 
bound is a provably difficult and well-studied location problem. We shall see that 
this problem depends on the structure of the original problem, which substantiates 
Goodchild's conclusion that "no general rules for aggregation can be found." Indeed, 
we believe the best that can be done in terms of aggregation is to find an algorithm 
for doing aggregation which exploits problem structure. We believe our approach 
also explains some of the difficulties with prior work on aggregation that Rushton 
discusses. 

3. Planar aggregation 

At this point, it helps to introduce a (planar) location model related to our 
inspection station study, in order to begin to discuss evaluating the quality of 
aggregations. Suppose the vector X represents the location of a station, and the 
points P~, 1 < i < m, are the m registrant locations in a zip code area. Thus, with 

f (X)  = ~ {d(X, P/)" 1 < i < m}, 

f (X)  is the total distance between the station location and the registrant locations, 
where d(X, Y) is either the Euclidean or rectilinear distance between any two points 
X and Y. Let C denote the centroid of the zip code area: 

C = ~ {(l/re)P/• 1 _< i _< m}. 
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A well-known result [10, chapter 7] is that 

md(X, C) < f (X )  for all X. 

Thus, the approach in the Florida study underestimated the total distance, a fact 
which we pointed out to the agency, but were not too concerned about, since our 
code was being used for relative rather than absolute purposes. In particular, if our 
underestimate was off  by an additive constant, then this would have had no effect 
on relative comparisons of  travel distances. 

Subsequent to our work with the agency, we were able to find a better 
approximation than md(X, C) to f(X). From the triangle inequality, 

Thus, 
f (X )  <_ md(X, C) + f(C) 

0 < f (X)  - md(X, c) < f ( c ) ,  

for all X. 

from which it follows, with i f (X)  - [md(X, C) +f(C)/2], that 

o r  

- f (C) /2  <_ f (X)  - i f (X)  < f(C)/2 for all X, 

I f (X)  - f ' (X)  I < f(C)/2 for all X. 

Note that when X = C, the bound is tight. Hence, no smaller bound on If(X) - f ' ( X )  t 
than f (C)/2 exists which holds for all X. 

We can see, in the sense of the last three displayed lines of inequalities, 
that i f (X)  is a better approximation to f (X)  than md(X, C) (and differs from 
our underestimate by an additive constant); in one case, the maximum "error" is 
f(C)/2, while in the other case it is f(C). Of course, we could not have computed 
f(C)/2 for the same reason we could not have computed f (X),  but we do believe 
it would have been possible to es t imatef(C)  with reasonable accuracy. We believe 
the above analysis to be new. 

4. Aggregation for network location models: Basic results 

The above discussion leads to our proposed research on approximation in 
network location models. For general discussions of  network location models, see 
Handler and Mirchandani [35], Halpem and Maimon [ 17], Tansel et al. [33], Francis 
et al. [12], Dearing [8], Brandeau and Chiu [2], Mirchandani and Francis [28], and 
Francis et al. [13]. We remark that while we shall concentrate on network models,  
most of  the results are also true for analogous planar models, including lemmas 1 
through 4 and the immediately following results for error bound location functions. 
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We suppose we have a given connected network G with a finite number of 
vertices, undirected and rectifiable arcs of  positive length, with d(x, y) denoting the 
(nonnegative) length of any shortest path in G from x to y, having the customary 
distance properties that d(x, y ) =  d(y ,  x) for any x and y (symmetry), d(x, y ) >  O, 
with d(x, y) = 0 meaning x = y (nonnegativity), and d(x, y) < d(x, z) + d(z, y) for 
any x, y and z (the triangle inequality). For any x and y ~ G, we denote by P(x, y) 
the set of all points on shortest paths joining x and y. (For planar distances, interpret 
P(x, u) as {z: d(x, z) + d(z, y) = d(x, y)}, e.g. the line segment joining x and y for 
Euclidean distances.) 

Given a set of p new facility locations, X = {xl . . . . .  xp} in the network, m 
existing facility locations at al . . . . .  a,,,, respectively, together with corresponding 
"weights" (e.g. populations) wl . . . . .  win, with D(X, ai) denoting the distance between 
ai and a closest new facility, we now define p-median and p-center functions f and 
g, respectively, by 

f ( X )  = ~., {wiO(X , ai)" 1 <- i < m}, 

g(X) = max {wiD(X, ai) : 1 < i < m}. 

These functions were introduced by Hakimi [15, 16], and the problem of minimizing 
each function is known to be NP-hard (Kariv and Hakimi [21,22], Hsu and 
Nemhauser [20]). 

Let us consider the approximations to the functions f and g we obtain when 
we replace each ai by some a~. Note that while the ai will typically be distinct, the 
a~ will not, since we will be approximating at least two a i by the same point; that 
is, we aggregate many ai into less a~. To illustrate this idea with the p-median 
functionf(X), suppose m = 4, and we take a~ = a~ = al ,  a~ = a~ = a2 for some a l ,  a2. 
Replacing each ai by a~ then gives the approximating function ~,{wiD(X, a~):l  < i < 4} 
= tolD(X, cq) + to2D(X, a2), where to1 = wl + w2, to2 = w3 + w4. 

The following quite simple result, based on the triangle inequality and the 
distance symmetry property stated above, is basic to our approach: 

LEMMA 1 

If d(ai, a'i) < ei, 1 < i < m, then for every x and for 1 < i < m, 

- e  i < d(x, ai) - d(x, a D < e i . 

(a) The leftmost inequality holds as an equality if and only if ai E P(x,  a~) and 
d(ai, a'i) = el. 

(b) The rightmost inequality holds as an equality if and only if a~ E P(x,  ai) and 
d(ai, a'i) = ei. 
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In other words, if ai is approximated by a~, which is no farther than ei from 
ai, then d(x, ai) "changes" by at most +ei. Note the conditions in (a) and (b) 
indicate situations to avoid if possible in doing aggregation, since in these cases 
we have a maximum difference between d(x, ai) and d(x, a~). 

An immediate consequence of lemma 1 is 

LEMMA 2 

If d(ai, a~) < el, 1 < i ~ m, then for every X and for 1 < i < m, 

- e  i < D(X,  ai) - D(X, a't) < e i . 

We remark it should be posible to develop necessary and sufficient conditions 
for each of  the two inequalities in lemma 2 to hold as an equality. In particular, 
consider the special case where we suppose Xjci) is an element in X closest to both 
a i and a':  then the two inequalities become -e i  - d ( x j ( i ) ,  a i )  - d(xj(i), a~) <- ei, and 
we can use (a) and (b) of 1emma 1, with xj(i) replacing x, to obtain such conditions. 

Now define 

6 f = Z {wiF.i : 1 < i < m}, 6g = max {wiE i • 1 < i < m}. 

We can use lemma 2 to obtain 

LEMMA 3 

Suppose d(al, a~) <_ ei, 1 <. i <_ m. Let h(X) be either the p-center function 
g(X) or the p-median function f(X), and let h'(X) be the approximation to h(X) 
obtained by replacing each al by a ' .  

(a) For all X, 

- 6  < h(X) - h ' (X)  < 6 or I h(X) - h'(X) l < 6, 

(b) 

where 6 = 6f for the p-median function, 6 = 6 s for the p-center function. 

Further (from (a)), if h* and h'* denote the minimum values of h and h',  
respectively, then 

- 6 < h * - h ' * < 6  or I h * - h ' * l < &  

It is convenient to call the absolute value of  the difference between the true 
function h and the approximating function h" the error func t ion  (error, f o r  short) 
and to call 6 the error bound. Note that 6 is a worst-case error bound, in the sense 
that it is an error bound for all X, so that it is a bound on the max imum error; it 
may make an aggregation look worse than it actually is. An aggregration with a 
small error bound will certainly be a very good aggregation, but an aggregation with 
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a large error bound may still be acceptable. However, for comparing aggregations, 
we believe it can be helpful. We remark that what we call the error is called, in 
the terminology of  Hillsman and Rhoda [19], "Source A" error. 

Lemma 3 enables us to measure how big our error can be, regardless of  the 
choice of  X. Further, the error bound t5 may be as small as can be found on the 
maximum error, since one can easily construct examples where the bound is attained. 
That is, using (a) and (b) of  lemma 1, one can construct a~, and choose X, so that 
h(X) = h'(X) + iS. This is the fundamental reason for characterizing our error bounds 
as worst-case. Our bounds are also reasonable in the sense that the error goes to 
zero as t~ goes to zero. We can also see that the value of  delta we obtain depends 
upon the structure of  the problem; delta is much smaller for the p-center than for 
the p-median problem, for example (assuming the same data). 

For aggregation problems, we can - conceptually at least - consider choosing 
the a,., the approximations to the ai, so as to try to minimize the error bound. 
Consider, for example, the p-median function, and let U = {ul . . . . .  Uq} denote a 
set of  q points from which the a~ will be chosen (e.g. midpoints of  sides of  city 
blocks). A common approach in aggregation is to choose a closest point in U to ai 
as a ' ,  so that d(ai, a'i) = D(U, ai), where D(U, ai) is the distance between ai and a 
closest point in U (e.g. replace every existing facility on one side of  a city block 
by the center of  the side of  the city block). Thus, in our error bound analysis, if 
we choose ei = d(ai, air), then (see lemma 3) the error bound t~= tSf is given by the 
following error bound function: 

f i f (U) =- ~ {wiD(U, ai) " 1 < i < m}. (1) 

Hence, finding U to minimize the error bound involves minimizing a q-median function. 
Similarly, we conclude that finding U to minimize the error bound for  a p-center 
function involves minimizing a q-center error bound function, namely, 

fig(U) =- max {wiD(U, ai) : 1 < i <_ m}. 

Although (1) is a worst-case measure of  the error bound, we can use (1) to 
draw some conclusions about doing aggregation, all of which seem quite reasonable. 
We note that all the wi and D(U, ai) for which D(U, ai) > 0 affect the quality of  the 
aggregation, and do so in an additive sense, so that aggregating ai with both large 
wi and large D(U, ai) will lead to more error than aggregating ai with small wi and 
small D(U, ai). Choosing as a~ a point in U other than a closest point in U to az 
will cause the error bound to increase. Further, the larger U is the better, in the 
sense that, if U contains U, then fir(U) < fir(U), while for the error bound to be 
zero, every al must be an element of  U. 

Note, by comparison, that the error bound for fig(U), the p-center problem, 
is much less sensitive to the way aggregation is done, since it is only the largest 
of  the wiD(U, ai) that affects the error bound fig(U); otherwise, one can draw 
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conclusions similar to those of  the previous paragraph. This latter observation 
reinforces and quantifies comments of  Goodchild [14], and of  Mirchandani and 
Reilly [27]. 

The previous analysis can be used in a different way as follows. Suppose a 
modeler is willing to tolerate an error in terms of  objective function value of  at most 
B, so that the objective function values for the aggregated and original problems, 
at optimality, can differ in absolute value by at most B. To formulate an aggregated 
problem with this property it is enough, for the p-median problem, to choose a 
vector U such that D(U, ai) < B[W for 1 < i < m, where W = Y.{wi: 1 < i < m}, and 
for the p-center problem, to choose a vector U such that D(U, ai) < B/wi for 1 < i < m. 
In either case, finding such a vector U involves finding a feasible solution to a 
covering problem, i.e. at least one element of  U is in a neighborhood of a i of  radius 
B/W in the first case and B[w i in the second case. From the standpoint of model size, 
it would be of  interest to find a minimum cardinality set U intersecting each such 
neighborhood. For tree network location problems, we note that Tansel et al. [34] 
have solved this problem. For other literature on covering for network location 
problems, see Mirchandani and Francis [28]. We give a more detailed analysis of  
the effect of aggregation on covering constraints in section 5. 

The expression (1) explains, to some extent, why doing aggregation well can 
be difficult, since we must solve a difficult (NP-hard) problem in order to obtain 
a minimal bound. We can thus view typical aggregation approaches as described 
above and as given in the literature as being heuristic approaches (with unproven 
properties) to solving p-median problems; we believe this point of  view to be new. 
We remark here that both Mulvey and Crowder [29] and Current and Schilling [5] 
have pointed out that one can do aggregation by solving a p-median problem, but 
gave no error bound analysis. 

We observe also that we can now apply theory - and algorithms - developed 
for solving p-median problems (and p-center problems) to the problem of  doing 
"good" aggregation; this may result in better rationales for doing aggregation. For 
example, if  we want to find an aggregation to minimize the p-median error bound, 
there is an optimal U, U*, where every element of  U* is a vertex; if we want to 
minimize the p-center  error bound, there is an optimal U, U*, where each element 
of U* is a vertex or a "bottleneck point" or "intersection point", namely, a point 
y so that wid(y, al) = wjd(y, aj) for some i and j, with y ~ P(ai, aj). We believe 
these observations are new. 

With IUI = q, we note that q is independent of  p;  thus it is difficult to do 
aggregation even for a 1-median problem. On the other hand, if we want to minimize 
f repeatedly treating p as a parameter, we would only need to do a single aggregation. 

Note that the error bound functions still involve all the ai, so if Our reason 
for doing aggregation is because of  the difficulties in dealing with all of  the al, then 
these difficulties will still occur in working with the error bound function; one can 
view this as an aggregation paradox. This suggests in some cases that we may need 
to be satisfied with some upper bound on the error bound instead of  the error bound 
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function itself, or instead of  its minimum value. (For example, with W the sum of 
the wi, and em,x at least as large as every ei, ~£< Wemax.) Alternatively, we may 
need to estimate the error bound function rather than compute it exactly. It should 
also be clear that the reasons for having to do aggregation in the first place will 
have a major impact on what can be done in terms of  error-bound analysis. 

In order to illustrate the fact that our en~or-bounding approach can be improved 
if we can exploit geometric structure, let us make a comparison with the approximation 
problem discussed earlier for evaluating inspection station locations. Consider the 
1-median function on a network, f ( x ) =  Y.{d(x, at) : 1 < i <_ m}. For some point c, 
suppose we take a~= c for 1 < i < m. We obtain the approximating function 
f ' (x)  = Y~( d(x, ai') : 1 < i < m} = md(x, c). Lemma 3 then gives - f (c )  < f(x)  - f ' ( x )  < f(c) 
for all x, and the error bound f ( c )  cannot be reduced provided c is the 1-median. 
By comparison, for the analogous planar problem we discussed earlier, we obtained 
a smaller error bound ( f (c) /2)  when c is the centroid. We conclude that we have 
a better approximating l -median function for the planar case than for the network 
case. Part o f  the difficulty here is that, for a general network, a centroid is not  a 
well-defined concept. Indeed, it is not difficult to show that there may be no point 
c such that md(x, c) <_f(x) for all x when we have a network. Consider a network 
consisting of  a single cycle with m = 2 nodes al, a2, and distinct arcs (al,  a2) and 
(a2, al) each of  length 1. In this case, f (x )  = 1 for all x. Suppose there is a point 
c in the network so that md(x, c) <f(x)  for all x, so that 2d(x, c) < 1 for all x. 
However, if we choose x to be the "opposite" point from c in the network, so that 
d(x, c) = 1, we then conclude 2 < 1. 

The foregoing deals mostly with comparison of  objective function values, but 
is also of  some potential help in comparing optimal solutions. We can readily use 
lemma 3(a) to obtain lemma 4 as follows: 

LEMMA 4 

Suppose d(al, a~) < el, 1 < i < m. Let h(X) be either the p-center  function 
g(X) or the p-median  function f (X) ,  and let h'(X) be the approximation to h(X) 
obtained by replacing each a i by a~. Let S(k) = {X: h(X) < k}, S'(k)  = {X: h'(X) < k}, 
that is, S(k) and S'(k) are level sets o f  h and h', respectively, of  any arbitrary value 
k. Then, with S defined in lemma 3, 

Further, 

S'(k - ,~) c S(k) c S'(k ÷ ,~), 

S(k - 8) c S'(k) c S(k + ,~). 

S'(h'*) c S(h* + 2•), S(h*) c S'(h'* + 2~). (2) 

Note that S(h*) and S'(h'*) are the sets o f  all optimal solutions to our true 
problem and our approximating problem, respectively. The two containment propertie: 
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(2) are the potentially important ones; supposing we can construct the S' sets, then 
we may be able to get "close" to S(h*), particularly if delta is small, or if the 
containment is "almost" an equality. In any case, these containment properties may 
help us to restrict our search for an optimal solution to the true problem, particularly 
if we can combine them with additional properties characterizing optimal solutions. 

5. Covering constraints for network location problems 

There is an application of some of the foregoing to covering constraints, 
which have the form 

D(X,  ai) < r~, l < i < m ,  

where again X is a set of the locations of p centers, and D(X,  ai) is the distance 
between ai and a closest  center. Such constraints occur with covering problems, 
where we want to satisfy the constraints while minimizing the total number of new 
facilities that we locate. 

We can again replace each ai by a~, with d(a i, a~) < e. Lemma 2 immediately 
implies the following: for any constant k with 

we have 

L ( k ) -  {X : D(X ,  ai) < r i + k, l < i < m}, 

L ' (k )  =- {X : D(X,a~)  < r i + k, l < i < m}, 

L ' ( - e )  c L(O) c L'(e),  

L(-e) c L'(O) c L(e). 

Thus, we can relate the set of all feasible solutions to the covering constraints L(0), 
to sets of  all feasible solutions to approximating covering constraints, and observe 
that the approximation improves as e goes to zero. 

In principle, at least, it is possible to consider the effect of aggregation on 
both objective function and constraints. For example, instead of studying the constrained 
p-median problem 

minimize f ( X )  

subject to D(X,  ai) < r i, 1 < i < m, 

one could focus on the approximating problem 

minimize i f ( X )  

subject to D(X,a~)  < r i, l < i < m. 
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Many of  the foregoing results can be modified to apply to such constrained 
problems. For example, consider the 2-parameter level set {X:f(X) < kl, D(X, ai) 
< ri + k2, i = 1 . . . . .  m}, which we note is S(kl) n L(k2). Likewise, the set we obtain 
by replacing f and each ai by f '  and a~, respectively, in this 2-parameter set is 
S'(kl) n L'(k2). Suppose d(ai, a~) -< e, i = 1 . . . . .  m, with t~ as defined in lemma 3. 
Then, using our previous containment results, we have 

S'(k: - ~) n L'(-e)  c S(k l) n L(O) c S'(k I + ~) n L'(e), 

S(k 1 - •) n L(-e) c S'(k 1) n L'(O) c S(k I + S) n L(e). 

Hence, each 2-parameter level set contains another 2-parameter level set and is in 
turn contained in yet another 2-parameter level set. 

Another approach to approximating covering constraints involves a related 
minmax  problem. Define the "modi f ied"  p -cen te r  funct ion H(X) by H(X) 
-max{D(X ,  a i ) -r i :  1 < i < m } ,  and let H* be the minimum value of  H(X), say 
H* = H(X*). Note that there exists a feasible solution to the covering constraint if 
and only if H * < 0 .  Also, with L(k)=  {X:D(X, a i )<r i+k ,  1 < i < m } ,  note that 
L(k) = {X: H(X) < k} and L(0) = {X: H(X) < 0]. 

For any two p-centers X, Y, let us define the "bottleneck matching" distance 
A(X, Y). With the indexing of, say Y fixed as Y = { Yt, Y2 . . . . .  Ye }, find a matching 
x[j I to yj, j = 1 . . . . .  p, where the matching solves the problem 

min max {d(x[jl, yj) : 1 < j < p], 

with the minimization being over all matchings. We define A(X, Y) as the minimum 
objective function value for this problem. This problem is known as a minmax 
matching problem, and can be solved in O(p 3) (Lawler [24]). We remark that 
whenever the function d(x, y) is a distance (satisfies the nonnegativity, symmetry 
and triangle inequality properties), then it can be shown that the function A(X, I0 
is also a distance. 

The following is a kind of  triangle inequality involving covering constraints 
and the foregoing "bottleneck matching" distance: 

Remark 

For any ai, X, Y, 

D(X, ai) < A(X, Y) + D(Y, ai). 

This remark, together with basic definitions, results in the following: 

CLAIM 

If A(X, X*) < (k - H*), then X E L(k). 
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Consider the case k = 0, and suppose H* < 0, so that X* satisfies the covering 
constraints. Intuitively, what the claim says is that if X is "close" to X* 
(A(X, X*)_< -H*),  then X also satisfies the covering constraints. Note A(X, X*) 
< k - H* means that d(xti ~, x~) < k - H*, 1 < j < p. 

Considering X* fixed, one can show that A(X, X*) < -H* is not a necessary 
condition for X to satisfy the covering constraints. Consider the case with p = 1 and 
G a single cycle, consisting of arcs [al, a2], [a2, a3] and [a3, al], each of  length 4. 
Let only al and a 2 be existing facilities, with rl = r2 = 4. Let x* be the midpoint of  
[al, a2]; x* minimizes H(x), and H ° = -2 .  Note that a3 satisfies the covering constraints 
(a3 E L(0)) but d(a3, x*) = 6 > -H*. Thus, with cyclic networks one cannot expect 
A(X, X*)< - H *  to be equivalent to the covering constraints. However, there are 
cases when equivalence can be proven. 

Let N(Y, p) denote the set of  all X for which A(X, Y) < p, a neighborhood 
with center Y and radius p. With this notation, the claim establishes that 
N(X*, k - n*) c L(k). 

For the case where G is a tree and p = 1, Francis et al. [11] proved that 
equality holds: N(X*, k - H*) = L(k). Thus, for this case, the m covering constraints 
d(x, ai) < ri + k are equivalent to the single constraint d(x, x*) <_ k - H*. One can see 
the point of this equivalence for approximation or aggregation: a single distance 
constraint can approximate (or aggregate) m constraints exactly. Thus, there may 
exist cases where the constraint D(X, X*) < k - H* is a "reasonable" approximation 
to D(X, ai) < ri + k for 1 < i < m. The characterization of problem structures (beyond 
trees with p = 1) for which the approximation is reasonable is an open question. 

We observe  that  N(X*, k -  H*) c L(k) impl ies  N(X*, -H*)  c L(O), 
N(X*, - e - H * ) c L ( - e )  and N(X*, e - H * ) c  L(e); the latter two neighborhoods 
can be constructed from the former with less effort than that required to 
obtain N(X*,-H*) .  Analogous to L ( - e ) c L ( O ) c L ( e ) ,  we would then have 
N(X*, - e  - H*) c N(X*, -H*) c N(X*, e -  H*), and could consider the neighborhoods 
as approximations to the three level sets. Similarly, recalling the definition of  L'(k) 
and its potential use with covering constraints, we could consider finding neighborhoods 
with the same center and successive radii different by e that would be contained, 
respectively, in L ' ( - e ) ,  L'(0), and L'(e); these neighborhoods would approximate 
the latter sets. 

6. Aggregation for network location problems: A research agenda 

Since the error bound problems we obtain are location problems, for which 
theory has been developed, it will be important to explore the impact of this theory 
on ways to do aggregation; for example, as mentioned above, the vertex optimality 
principle is relevant for p-median aggregation. Likewise, it is well known that if 
the allocation of  existing facility locations (the ai) to new facility locations is fixed, 
the p-center and p-median problems reduce, respectively, to collections of independent 
1-center and 1-median problems. We believe this fact will be helpful for minimizing 



242 R.L. Francis, T.J. Lowe, Worst-case aggregation analysis 

the error bound functions in some cases. Imagine, for example, a network showing 
major cities in the USA with interconnecting roads. Suppose we wish to solve a p- 
median problem on this network, and have decided to aggregate the various locations 
in each city into a single point; in this case, the error bound function becomes a 
sum of independent I-median functions, one function for each city, and the resulting 
1-median is the best point to represent that city by. 

It seems interesting to note for the extreme case IXl -" I UI, i.e. p = q, that if 
we could solve the error bounding problem to optimality, then we would also have 
an optimal solution, say X', to the original problem. Also, since the approximating 
problem would only have p (aggregated) existing facilities, we would have h'(X*) = O, 
so that X" would be optimal to the approximating problem as well. (In addition, the 
error bound would be tight, i.e. fir(X*) = I h(X*) - h'(X*) I.) Thus, this extreme case 
illustrates a situation where solving the approximating problem could give a very 
poor objective function estimate but entirely satisfactory locations. While we believe 
that usually we would have p much less than q, it would be interesting to examine 
how early this situation begins to occur as the ratio of p to q approaches 1 from 
below. We might wonder, conversely, for p much less than q whether h'* is a very 
good approximation to h*, but the locations it gives could be "far" from the optimal 
ones to the true problem. 

Particularly for the p-median problem, we have seen that the error bound 
function can be large. However, this may still be acceptable provided the ratio of 
it to the original p-median function is small (and likewise for the p-center case). 
Recognizing that the two functions have the same form, it appears to us that some 
theoretical analysis of this ratio may be possible. For example, if IXI = I UI, the ratio 
(for an optimal solution to each problem) will be one, which is surely unacceptable. 
When ! UI is much greater than IXI, the ratio will be closer to zero, which is better, 
since a ratio of zero means there is no aggregation at all (U includes every ai). 
Being able to estimate this ratio would thus be helpful in evaluating the acceptability 
of an aggregation. A rough surrogate measure of this ratio might be (1/q)/(1/p) 
= p/q, since the minimum objective function value o f f ( o f  fl/-) is directly proportional 
to 1/p (to 1/q). 

In the construction of a mathematical model, one usually faces some sort of 
a trade-off between realism and tractability, and this situation is particularly acute 
with the p-center and p-median models. Rushton [32] points out that "the optimal 
degree of aggregation is not known . . . .  " A  highly speculative model may possibly 
give some insight into the trade-off problem we encounter in aggregation; doing 
little aggregation (large q) results in a more accurate model, but one more difficult 
to deal with, while doing much aggregation (small q) results in a less accurate but 
more tractable model. Given p < q <_ m, suppose we measure the inaccuracy of an 
aggregation by [p /q-p /m] ,  and know a constant, say c~, so that the inaccuracy 
"cost" is c~[p/q-p/m]. Suppose also that the aggregation intractability "cost" is 
linearly proportional to q/m, with the constant of proportionality being c2, so that the 
aggregation intractability cost is c2q/m. We note the inaccuracy cost is zero wher 
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q = m (no aggregation), while c2 is the intractability cost we incur when q = m. Then 
the total cost is given by TC(q) - cl [p/q - p/m] + c2qim, where p < q < m. This result- 
ing model has essentially the same mathematical form as the famous EOQ model of  
inventory theory. For most problems, p is much less than m, so that the term clp/m is 
almost zero. Therefore, in what follows we shall ignore this term and concentrate on 
the model C(q) - clp/q + czqlm we obtain by deleting clplm from TC(q). 

To find a "best" value q* of  q (one minimizing C(q)), take the derivative of  
C(q) and set it to zero to obtain ~ = [(clpm)/c2] 1/2, and then use as q° either 
rounded up or rounded down to the nearest integer, whichever has a lower cost. We 
assume p < ~ < m; otherwise we would have to use as q* either p or m depending 
on whether ~ < p or ~ > m, respectively. We note'that p < ~ < m is equivalent to 
p/m < el~c2 < m/p, which is an indication of the importance of the ratios plm and 
m/p. We see that choosing q is entirely dependent on the ratio cJc2, which we can 
consider as the "trade-off" between the two considerations, inaccuracy and in--tractability. 

Assuming q* = ~,  we have C(q*) = 2[(clc2p)/m] 1/2. Because of  the square 
root, C(q*) is relatively insensitive to the choice of cl and c2, which means that 
inaccurate estimates of cl and c2 may not have a large effect. For example, if instead 
of the true value of  cl we use, by mistake, either ct/2 or 2cl in the equations for 
q*= ~ and C(q*), the result will be to increase C(q*) above its true value by only 
6%. Lowe and Schwarz [25] analyze the sensitivity of the EOQ model to parameter 
estimates. We expect their results to be useful in the study of  C(q). 

Of course, the aggregation cost would probably not be linear in q, but nonlinear, 
strictly increasing with a strictly positive first derivative (and thus strictly convex), 
in which case the result might be to give a smaller value of  q* than the one we 
compute. In any case, we can see that having some way to quantify the trade-off 
between the two issues of  importance here would be extremely helpful. 

Finding a way to exploit planar structure, as discussed briefly above, will be 
helpful. Perhaps for planar p-median and p-center problems we can do better than 
our worst-case approach. For example, our worst-case approach to minimize the 
error bound for the planar 1-median problem would give the planar 1-median - not 
the centroid, and without an additive constant such as f(C)12 - as the best single 
aggregating point. Clearly, there are opportunities for research along these lines. 
Likewise, if we can capture some planar structure in our networks, it should be 
helpful. 

While our error bound analysis has concentrated on the p-center  and p- 
median problems, we remark it can also be used with other location problems, 
including the multifacility minisum and minimax location problems ffrancis and 
White [10]), again resulting in certain q-median and q-center error bound functions, 
respectively. Thus, finding additional problems to which our analysis applies will 
also be of  interest. 

Computational testing of  our error bound approach is certainly in order. Our 
approach measures the worst-case error, but average-case error would be more 
meaningful. We can obtain some insight into how closely these two errors are 
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related through computational experimentation. Similarly, we can explore how good 
the error bound approach is for comparing two aggregations. We believe it will be 
more satisfactory for making relative than absolute decisions about aggregations. 
This computational testing could possibly lead to some theoretical average-case 
analysis, although it is clear that doing such an analysis will be much more difficult 
than doing worst-case analysis. In some cases, there can be compensating errors; 
as X becomes farther from one ai, it becomes closer to anothe ai, and our results 
to date do not capture this, whereas an average-case analysis might. We draw an 
analogy here with the analysis of heuristic algorithms for solving traveling salesmen 
problems (Fisher [9], Papadimitriou and Steiglitz [30]). Most of the analysis is of 
a worst-case nature, and heuristics that may have a frightening worst-case error 
bound often perform quite well in practice. 

Conceptually at least, we can view our approach to aggregation as approxi- 
mating one function, say h, by a second, say h'. This is a common practice in 
numerical analysis (although there, the functions are usually of a single real variable), 
so that some of the fundamental concepts in numerical analysis may be helpful. 
Hamming [18], for example, identifies three important questions for numerical 
function approximation that seem relevant in our context. (1) What class of functions 
are we approximating over? (2) What criterion do we use as a goodness of fit? 
(3) What accuracy is needed? Concerning the first two questions, for our error 
bound approach we are approximating over those functions we can obtain from the 
original ones by replacing each ai by some a~, and we are using the maximum error 
as a measure of goodness of fit, but there could certainly be other approaches. 
Concerning the third question, the answer is not as clear, as discussed above; what 
is involved is, on the one hand, a trade-off between data availability and data 
collection costs, analytical and computational tractability and, on the other hand, 
the benefits of having an accurate model. However, as mentioned for the Florida 
study, we can accept less accuracy for relative purposes than for absolute purposes 

The error bound analysis we  have discussed is essentially a priori  analysis 
in that it is done prior to solving the aggregation problem or the location problem 
I f  we knew optimal solutions to these two problems, we could do a posterior 
analysis, which should give us additional information. We can draw analogies witl 
aggregation done in various branches of mathematical programming where a posterior 
analysis typically gives better bounds than a priori analysis. Rogers et al. [31 
provide an excellent, up-to-date survey of aggregation in optimization. Alternativel3 
if we knew enough about the properties of optimal solutions, we could make us 
of these properties to do what would amount to a posteriori analysis. Since ot 
fundamental location problems of interest are NP-hard, it may only be possible ! 
do approximate analysis here. For example, we could look at the case of the ! 
center problem where the graph is a tree [28], which is well-solved, or at the : 
median problem for a tree [26]. Altematively, we could look at linear programmir 
relaxations of integer programming formulations of the location problem of intere, 
for which theory is well-developed. 
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While the approximation problem we have concentrated on here is that of  
aggregation, there are other important approximation issues for network location 
theory. For example, it is relevant to ask in how much detail a road network should 
be represented in a network model. So far as we know, there is no theoretical 
analysis of  this question, although it is clear that the accuracy of representation has 
a large effect on distance measure, and on locations provided by network location 
models. Perhaps our aggregation approach can shed some light on this question, if 
we can find a way to interpret it in terms of  how many vertices are needed to give 
an accurate representation of  the problem. 
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