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Abstract 

We consider a dynamic facility location model in which the objective is to find a 
planning horizon, x*, and a first period decision, XI*, such that XI* is a first period decision 
for at least one optimal policy for all problems with planning horizons equal to or longer 
than x*. In other words, we seek a planning horizon, "r*, such that conditions after x* do 
not influence the choice of the optimal initial decision, XI*. We call x* a forecast horizon 
and X~ an optimal initial decision. For the dynamic uncapacitated fixed charge location 
problem, we show that simple conditions exist such that the initial decision depends on 
the length of the planning horizon. Thus, a strictly optimal forecast horizon and initial 
policy may not exist. We therefore introduce the concepts of e-optimal forecast horizons 
and e-optimal initial solutions. Our computational experience inicates that such solutions 
can be found for practical problems. Although computing e-optimal forecast horizons and 
initial decisions can be cumbersome, this approach offers the potential for making significantly 
better decisions than those generated by other approaches. To illustrate this, we show that 
the use of the scenario planning approach can lead to the adoption of the worst possible 
initial decision under conditions of future uncertainty. On the basis of our results, it 
appears that the forecast horizon approach offers an attractive tool for making dynamic 
location decisions. 

1. Introduction 

The  loca t ion  o f  faci l i t ies  in both  private  and  publ ic  sector  sys tems  cr i t ical ly  

affects  the abi l i ty  o f  these sys tems  to de l iver  the requisi te services.  Fac i l i ty  loca t ion  
dec is ions  are long-term strategic decisions in  that  t hey  impac t  on  such lower - leve l  
shor te r - te rm dec is ions  as resource  a l locat ion,  veh ic le  d i spa tch ing ,  and  veh ic le  
repos i t ion ing  [1]. In general ,  implement ing  a faci l i ty  loca t ion  s t ra tegy involves  
m a k i n g  a series o f  open ing /c los ing  and dema n d  a l locat ion  dec is ions  ove r  t ime.  
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In the absence of large fixed costs associated with opening, closing and 
operating most facilities, the optimal policy over time might well be to site facilities 
optimally in each time period independently of (1) where they were located in prior 
periods and (2) where they are anticipated to be needed in the future. However, 
often these costs are large. For example, the start-up costs associated with an 
automobile assembly plant are likely to be several billion dollars before the first 
finished vehicle rolls off the line. This precludes frequent relocation of facilities and 
makes it essential that location decisions made today account for anticipated future 
conditions. 

Since future conditions are typically uncertain, and forecasts are frequently 
unreliable and subject to revision, accounting for future conditions can be very 
difficult. Furthermore, there is typically no prespecified exogeneous time horizon 
beyond which conditions can be ignored. Given this, and observing that the first 
period decision is the only one that must be implemented immediately (i.e. without 
the benefit of future information or analysis), we argue that the objective of dynamic 
facility location planning should be to f ind an optimal or near optimal first period 
decision for the location problem over an infinitely long planning horizon. 

This definition of the dynamic facility location problem warrants further 
explication. By a decision in a given time period, we generally mean the choice of 
existing facilities to close and new facilities to open at the beginning of the period 
and the assignment of demands to facilities during the period. A sequence of decisions, 
one for each period, will be called a policy. An optimal policy for either a finite 
or infinite horizon problem will be a policy whose adoption minimizes the present 
value of all present and future costs. An optimal initial decision is a first period 
decision that is part of an optimal policy. Our computational approach is to find an 
endogenously determined forecast horizon and an initial decision such that for all 
planning horizons of duration greater than or equal to the length of the forecast 
horizon, an optimal (or near optimal) policy begins with the specified initial decision 
(see Bean and Smith [3]). If such a forecast horizon can be identified, an optimal 
initial decision can be computed by solving a sufficiently long finite horizon problem. 
This forecast horizon approach will prevent the use of too short a planning horizon, 
which leads to myopic decisions and can easily happen under the common procedure 
of  using an exogeneous planning horizon. 

Because most location problems of practical interest are NP-complete, finding 
a provably optimal solution may require an excessive amount of computational 
effort for even moderate sized problems. Also, as shown below, there are simple 
problems for which a finite forecast horizon does not exist if we require the selected 
initial decision to be strictly optimal for all planning horizons of  duration greater 
than or equal to the finite forecast horizon. For these reasons, we will generally 
concentrate on finding a near optimal first period decision. 

The remainder of the paper is organized as follows. In section 2, we briefly 
review the literature on dynamic facility location modelling and forecast horizons. 
In section 3, we formalize the notion of a forecast horizon and an empirical 
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e-optimal forecast horizon for a general location model. We also show via a simple 
example that a strictly optimal initial decision may not exist for any finite forecast 
horizon. This, together with the NP-completeness of most location problems, justifies 
our search for near optimal initial decisions and forecast horizons. Section 4 summarizes 
a series of computational experiments designed to test whether or not empirical e- 
optimal forecast horizons and initial solutions can be found for practical problems. 
In section 5, we briefly review the scenario planning approach for dealing with 
uncertainty and show via a small example that the use of this approach may lead 
to the adoption of the wors t  possible initial decision. In section 6, we summarize 
our results and present recommendations for future work. 

2. Review of related literature 

Despite the strategic and long term nature of facility location decisions, most 
location models adopt a static approach. This is evident from the virtual absence of any 
discussion of dynamic models in recent texts on location modelling [12, 16, 21, 23, 25]. 
Adoption of a static approach simplifies the problem, but is justified only if the future 
is expected to replicate the present. In most cases, future conditions will differ from 
present conditions, and the use of dynamic models is warranted. 

Multi-period or dynamic facility location problems may be thought of as 
extensions of static models in which a temporal dimension has been appended. In 
all such models of which we are aware, the length of the planning period is an 
exogenous input and the model seeks an optimal policy for the planning period. 
Early work in this area was performed by Ballou [2] in the context of locating and 
relocating a single warehouse over a period of years to maximize the net present 
value of  a profit stream that depended on the location of the warehouse. He employed 
dynamic programming with backward recursion. The procedure he proposes must 
be viewed as heuristic in that the set of candidate sites is limited to the set of sites 
which correspond to solutions to the static problems for each period. This restricts 
the size of the state space. As noted by BaUou, however, "The danger in this 
assumption, of course, is that some other set of alternatives might possibly yield 
higher profits (p.275)." 

Erlenkotter [9] reviews a variety of other heuristic procedures for dynamic 
facility sizing/location/allocation problems. In these problems, the objective is to 
determine when and where to add capacity so that demands in all periods may be 
satisfied and so that the total cost of all capacity additions and distribution costs 
are minimized. 

Optimization based approaches to the problem have been developed by a 
number of  researchers. Roodman and Schwarz [30] consider a fixed charge facility 
location problem in which sites must remain closed once a decision is made to close 
them. Such a model is appropriate in the face of a declining or shrinking market. 
In a subsequent note they extend the model to allow initially open facilities to be 
closed once and initiaUy closed facilities to be opened once [30]. The models in 
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both papers are solved using branch and bound. Wesolowsky and Truscott [36] 
consider a dynamic extension of the P-median problem [14, 15] that incorporates 
fixed costs associated with opening and closing facilities in each period. (Altematively, 
the model may be considered a dynamic fixed charge facility location problem with 
a constraint on the number of facilities that must be open in each period.) The model 
constrains the number of location changes permitted in each period to be less than 
a specified value and also forces the total number of open sites in each period to 
equal a given value. These constraints, by restricting the growth of the state space, 
allow the authors to use dynamic programming to solve the problem. The authors 
also solve small instances of the problem using a standard branch and bound integer 
programming package. Dynamic extensions of the set covering location problem 
and the maximum covering location problem have been considered by Chrissis et 
al. [5], Gunawardane [13] and Schilling [31]. 

Van Roy and Erlenkotter [35] formulated a dynamic uncapacitated facility 
location model that precludes relocation of facilities. An initially open facility may 
be closed at most once and an initially closed facility may be opened at most once 
during the exogenously specified planning horizon. In its treatment of opening and 
closing options for facility sites, the model is therefore similar to that of Roodman 
and Schwarz [29] and is less general than that of Wesolowsky and Truscott [36]. 
Van Roy and Eflenkotter develop a dual-based solution algorithm coupled with a 
primal-dual adjustment procedure and (if necessary) a branch and bound algorithm. 
The approach, known as DYNALOC, is a modification of an earlier approach 
(DUALOC) developed by Erlenkotter [8] for the static uncapacitated facility location 
problem. Frantzeskakis and Watson-Gandy [10] allow facilities to be relocated 
during the planning period. They develop a solution approach that utilizes a state- 
space relaxation of a dynamic programming formulation of the problem to provide 
bounds for a branch and bound algorithm. 

All of the models reviewed so far treat future conditions as being known with 
certainty. To handle uncertain futures, Schilling [32] formulated extensions of the 
set covering [34] and maximum covering [6] models that incorporate multiple 
future scenarios. In an extension of the set covering model, for example, the objective 
is to maximize the number of sites that are common to all future scenarios subject 
to constraints requiring all demand nodes to be covered under all scenarios and 
constraints that limit the number of allowable sites in each future scenario. Schilling 
also proposes and illustrates the use of a multiobjective maximum covering model 
in which trade-offs are derived between the number of sites that are common to a 
number of scenarios and the maximum percentage degradation of coverage (taken 
over all scenarios) that results from constraining the solutions to contain the specified 
number of sites in common. By forcing the solutions to include common sites and 
by constructing the common sites first, Schilling argues that a choice between 
alternative scenarios and the implied siting plan can be deferred. This approach is 
termed the scenario planning approach. In section 5 we explore some of the implications 
of the use of this approach. 



M.S. Daskin et al., Forecast horizons 129 

All of the dynamic facility location models outlined above assume an exogenously 
specified planning period. The theory of forecast horizons argues that the length of 
the planning horizon should be determined endogenously. The optimal planning 
horizon is the earliest time T such that for all planning horizons of length T or more, 
the first period decision is the same for at least one optimal policy for each planning 
horizon. Bean and Smith [3] provide conditions for the existence of forecast horizons 
for deterministic problems. B~s and Sethi [4] and Hopp et al. [19] give existence 
conditions for stochastic problems. The theory of forecast horizons has been usefully 
applied in a number of areas, including: production scheduling problems [22, 26], 
capacity expansion planning [11, 17], equipment replacement [33], and R&D invest- 
ment [ 18]. In most cases, the optimal decision in each period can often be characterized 
by a single variable. By way of contrast, the optimal decision in location models 
is characterized by a vector of binary variables, thus making the location problems 
inherently more difficult to solve. In the following section we outline a forecast 
horizon approach to the dynamic facility location problem. 

3. Definition of forecast horizons in location models 

We now formalize the notion of forecast horizons in the context of location 
models. Consider a dynamic facility location model and let the set of location 
decisions that must be made at the beginning of period t be represented by a vector, 
Xt. Given a set of open facilities in period t (which result from the location decisions 
made at the beginning of the first t periods along with the specification of the 
initially open and closed facilities) let Yt denote the vector of decision variables 
related to the allocation of demands to facilities during period t. Similarly let: 

and 
r = {r , }  

x r  = {x l ,  . . . .  x r } ,  

t=  1,2, . . . .  "r 

where z is the length of the planning period (i.e. the number of periods) in the 
model and T < "r. For completeness, we define X0 = ~. Note that "r may be infinite, 
whereas T will always be finite and will generally be either 0 or 1 as discussed 
below. 

Without loss of  generality, let P('r: T, Xr) denote a minimization problem 
defined over a planning horizon composed of z periods in which the location 
decisions for the first T periods are given. Note that in each of those periods we 
still need to find optimal allocation decisions given by the decision variables, Yr. 
Thus, the optimization is over the sets of  variables, Xr÷ l . . . .  , X, and Y. In particular, 
the variables Xo, X1 . . . .  , Xr are inputs where Xo specifies the initial conditions; i.e. 
the initially open and closed facilities. Clearly, the minimization is only over Y if 
T = 'r. When T = 0, there are no fixed decision variables though initial conditions 
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specified by Xo may exist. We will sometimes refer to this problem as P(r : 0) or 
P(r). 

With this notation, the infinite horizon problem with fixed initial conditions 
may be defined as problem P(*,, : 0). 

Let V*(z: T, Xr), VL(r: T, Xr), VV(r: T, XT) be the optimal value, a lower 
bound, and an upper bound on the value of the objective function for P(r  : T, Xr). 
For simplicity, we let v*(r) be the optimal value of the objective function for 
P ( r : 0 )  or P('r). vL(r) and VU(r) are defined similarly to be lower and upper 
bounds on the value of the objective function for problem P(r :  0) or P(r). Note 
that we consider bounds on the objective function (as well as the optimal value) 
because finding the optimal value is often very difficult. Finding bounds may be 
dramatically easier. 

Let XT define a T-period location policy such that 

vL(r) _< v ' ( r :  T, xr) ~ vU(r). (1) 

That is, the optimal value of the problem if we begin with the location plan defined 
by Xr is between some lower and upper bounds on the unconstrained problem (i.e. 
the problem with only the existing facilities specified). If (1) holds for all r >  
and 

vV(~ ) - v"(~) <_ e 

for all r > r*, then Xr defines an &optimal T-period policy for the **-period problem 
and r ° is an e-optimal T-period forecast horizon. In general, we will be interested 
in finding an e-optimal 1-period policy (i.e. a 1-period decision) for the **-period 
problem and an e-optimal 1-period forecast horizon. We will refer to these quantities 
respectively as an e-optimal initial policy (or decision) and an e-optimal forecast 
horizon. 

The search for an e-optimal forecast horizon and an e-optimal initial decision 
is justified by the fact that many of the facility location problems of practical interest 
are NP-complete. Thus, proving that a policy is strictly optimal for any finite duration 
planning period could require an inordinate amount of computation. For example, 
suppose P(1 : 0) is an uncapacitated fixed charge facility location problem (with no 
initially open facilities). This problem is NP-complete [27]. Clearly, P( r :  0) will also 
be NP-complete as will P( r :  T, Xr) as long as T < r. 

The search for e-optimal solutions is further justified by the following simple 
example that shows that a strictly optimal solution may not exist even for very simple 
problems. The example is similar to that outlined by Bean and Smith [3]. 

Consider a two node problem in which no facility exists prior to the beginning 
of the first period. Associated with each node i and each time period t is a fixed cost 
of establishing a facility at the site (f~,), a fixed cost of closing an open facility at 
the site (ci,), a fixed per period operating cost at the site assuming an open facility 
exists at the site (ai,), and costs of transporting goods from one site i to another 
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site j which we denote by dljt. Note that the transport costs are t o t a l  t r a n s p o r t  costs 
between nodes in each period and not per unit costs. We can think of these costs as 
being the product of a unit cost, which is independent of the quantity being shipped, 
and the quantity being shipped. Each node is both a demand node and a candidate 
site for a facility. Let: 

{ a - [ /~ / (1  + 2')], for t = 1; 

air = a ,  for t = 2, 3, . . . ; 

act = a + (-1)t/~ 'v't; 

.~ = o Vi, t;. 

cit = ** V i ,  t; 

d l l t  = d'z2t = 0 V t ;  

dl2 t = d.zl t = 1 V t ,  

where r is the interest rate per period and ~,= (1 + r) -l is the one-period discount 
factor. 

We assume that a -  ~ > 1. This assumption means that the (smallest) cost of 
operating a facility is always greater than the cost of supplying a node from a 
facility located at the other node. Therefore, it will be optimal to locate at only one 
facility in period 1. Since the cost of closing a facility is very large (cit = **), the 
facility opened in period 1 will remain open for all time periods and the other 
candidate site will never be used. Since the transport costs are symmetric for all 
time periods, they may be excluded from the optimization. Thus, the problem 
becomes one of finding the site with the smallest discounted operating costs (air). 

Let Ci ( t )  be the present value of the operating costs if we locate at node i 
from period 1 through period t. We then have: 

q(O =  r"a-/37/(1 + r) 
n=l 

= a(y - 'gt+1)/(l - y) -3y/(1 + y), 

C2(t) = ~ , y " ( a  + (-1)"/3) 
n=l 

= tz()" - yt+l)[(l - }') -/iT/(1 + y)  + (-l)tyt+l~/(l + 2:) 

= C1(t) + (-l)tyt+l~/( I + T). 
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For odd values of  t, C2(t) < Cl(t), while for even values of t, Cl(t) < C2(t). Therefore, 
the optimal initial decision depends on the length o f  the planning period in this 
example. Thus, for this simple problem, an optimal forecast horizon does not exist 
and the initial policy does not stabilize to that of selecting any particular node. 
Nevertheless, we note that as t ~ -0 the two costs converge. Thus, for sufficiently 
large values of t an e-optimal initial decision will exist for all non-zero values 
of e. In particular, since the absolute value of the difference between Cl(t) and C2(t) 
is Tt÷lfl/(1 + ~y), and since this difference is a decreasing function of  t, 

r = [ ( [ m e  + ha(1 + 7)  - tn# /ln r - )q 

is an e-optimal forecast horizon for this problem where [" x ] is the smallest integer 
greater than or equal to x. The optimal decision for a problem of this duration (i.e. 
select location 1 if t* is even and location 2 if t* is odd) is an e-optimal initial 
decision. We also note that if cu = c2t = 0 for all values of  t (i.e. the closing costs 
are all 0), then the optimal policy would be to locate at node 2 in the odd numbered 
periods and at node 1 in the even numbered periods. This suggests that, in general, 
policies that prohibit opening and dosing of facilities multiple times may be suboptimal. 
In this example, if  cu = c2~ = 0 for all values of  t, then the problem decomposes into 
t single period (trivial) location problems. 

We also note that if the opening and closing costs in the example are changed 
to 

fit  =f2~ > T/( 1 - Y) Vt, 

cit = 0 Vi, t, 

then it is still optimal to locate at only one of the two sites. This is so because 
7/(1 - 7') is the present value of  all future transport costs from either site to the 
other. Thus, the cost of establishing the second facility exceeds the total discounted 
cost of shipping from one node to the other. Since the costs of establishing the 
facilities are identical in all other periods (and in particular in period 1), the problem 
again reduces to that of  selecting the single site that minimizes the discounted per 
period operating costs (aia). Finally, air may be thought of as the cost of  supplying 
node i from a facility located at node i in period t. In other words, the problem 
remains the same if we set d in  = al~ and d22t = a2t in each period t and then assume 
that all operating costs are zero in each period. 

This example illustrates a general problem associated with finding either 
exact or e-optimal initial decisions and forecast horizons. Specifically, we need to 
be able to show that the initial decision is either optimal or e-optimal for all 
planning horizons equal to or longer than the forecast horizon. Clearly, we would 
like to do so without having to solve an infinite number of problems. In the remainder 
of  this section we introduce two approaches to dealing with this issue. In the first 
approach, we assume that all costs are bounded from above by a given value. This 
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allows us to develop worst case bounds on the costs in any period and, as a result, 
an upper bound on the total cost beyond any given time. In the second approach, 
we ignore the costs beyond a given time and introduce the notion of empirical 
e-optimal decisions and forecast horizons. 

We concentrate on a cost minimization problem, where the costs considered 
include fixed costs of opening and closing facilities in each time period, fixed 
annual operating costs of any open facilities, and transport costs between demand 
sites and open facilities. Furthermore, we assume that each such cost (associated 
with each candidate site in the case of fixed costs and with each pair of sites in the 
case of transport costs) in each time period is bounded from above by a constant 
M. In the case of the transport costs, we assume that M is a bound on the total cost 
of delivering the required goods to a demand site in any period and not a bound 
on the per unit cost of delivering to the site. The total cost of delivering goods to 
any demand site in any period is clearly less than or equal to the product of the 
demand at that location and the largest unit shipment cost between a candidate 
facility site and that location. All costs are assumed to be non-negative. Finally, 
assume that all facilities are uncapacitated and that there are N demand sites. 

Since we will have at most N sites open during any period (because facilities 
are uncapacitated), MN is an upper bound on the per period operating costs for the 
system in any period. Similarly, the maximum transport cost from these facilities 
to the demand sites is also MN. Therefore, 2MN is an upper bound on the total per- 
period operating plus transport cost for the system. (Note that by incurring a one- 
time closing cost for N -  1 facilities, we can reduce the sum of these upper bounds 
from 2MN to M(N + 1). Furthermore, if the candidate facility locations correspond 
to demand sites and if the cost of transporting material from a facility at node i to 
demands at node i is modelled as being 0 as is often done, then the bound may be 
reduced to MN, the upper bound on the per period operating cost, without assuming 
that any facilities are closed.) Thus, while 2MN will be used in all of the computations 
below, tighter bounds may be used in cases such as those outlined above. 

An upper bound on the cost of operating the system from time "r (the end of 
the planning period) to some future time t with any configuration of facilities at 
time ~" is given by: 

t 

Z 2 M N ) , "  = 2MN),~+](1 _ ~,t-~)/(1 _ ),). 
n= ' [+]  

Thus, for t >_ t: 

VV (t) <_ VV (~ • 1,X1) + 
t 

Z 2MN7 n 
n=lr+l  

= V U ( ~ ' l ,  X1) + 2MN?,~+I(1-~,t-~)/(1-~,). (2) 

Inequality (2) simply states that one possible upper bound on the optimal solution 
to the t-period problem, VU(t), may be obtained by summing an upper bound on the 
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"t-period problem ('t < t) with some fixed (possibly suboptimal) initial decision, X I, 
and an upper bound on costs in periods "r+l through t. 

Any optimal or e-optimal plan for a t-period problem must begin with some 
initial decision XI. Let this initial policy be X~(t). Note that we do not know this 
policy. In fact, X;'(**), the optimal initial decision for the infinite horizon problem, 
is exactly what we are looking for. Nevertheless, it is then true that for t > "t: 

v L ( t )  >_ v L ( ' t  : I, X I ( t ) )  

> minx, vL( ' t  • 1,XI) 

= V L ( ' t ) .  (3) 

The first inequality follows from the fact that the lower bound on the solution to 
a "t-period problem beginning with any initial decision, X1, must be less than a 
(similarly constructed) lower bound on a t-period problem beginning with the same 
policy, since t > "t and thus additional costs will be incurred during periods "t + 1 
through t. Thus, for any initial policy, vL(t : 1 ,XO > vL('t : 1, XI). Clearly this also 

* > holds for policy X~ (t). Therefore VL(t : 1, X 1 (t) ) _ vL('t : 1, X~ (t) ). The  first inequality 
follows by noting that vL(t :  1, X~(t))  = vL(t) (by definition). The second inequality 
follows from the fact that the lower bound on the "t-horizon problem beginning with 
some specified initial decision X~(t) must be at least as large as the lower bound 
associated with the "t-horizon problem in which we allow any initial policy X~. This 
latter quantity is given by VL('t). In other words, the lower bound on a constrained 
"t-period problem P('t :  7', Xr) should be greater than or equal to the lower bound on 
the unconstrained "t-period problem P('t:  0). Note that inequality (3) also follows 
from the fact that vL(o increases monotonically with t. 

Combining (2) and (3) we have for t > "t, 

Vu( t )  - vL(l) <-- Vu( "t: 1,Xl) + 2MN7"+1( 1 - Yt-')/( 1 - 7') - vL('t) .  (4) 

Thus, if we can find an initial decision X~ and a planning horizon "t such that 

VU('t: 1,X1) + 2MN7~+1(1 - yt-~)/(1 - y) - vL('t) < e Vt, (5) 

then X~ constitutes an e-optimal initial decision and "t is a forecast horizon for the 
problem. Inequality (5) may be rearranged to yield: 

VU('t : 1,X1) - vL(z)  < e -  2MNT~+1(1 - ~-~)/(1 - 7') Vt. (6) 

Since (6) must hold for all values of t, for t = 00, inequality (6) becomes: 

VU('r : 1,Xl) - VL('t) < e -  2MNT~+I/(1 - 7). (7) 
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Since 7is less than 1, for any non-zero value of e there is a sufficiently large value 
of v such that the right hand side of (7) is non-negative. 

Let X~* be an initial decision such that 

vt'(v) _ v r ( v  : 1,x~*) ~ vV(v), (8) 

where VF(v • 1,X~*) is the value of the objective function for a feasible solution to 
the Y-period problem beginning with the initial decision X~*. Finding such an 
initial decision should not, in general, be overly difficult since the upper bound for 
the problem, VV(t), will usually be the objective function of the best known Y-period 
policy. In that case, X~* may be taken to be the initial period decision that is part 
of that policy. If in addition to (8), we have 

VV(v)  - vt '(v) < e -  2MNT~+I/(1 - 7), (9) 

then the initial decision X~*is an e-optimal initial decision and v is an e-optimal 
forecast horizon. Our ability to compute VU(t) and VL(t), upper and lower bounds 
on the optimal t-period problems, depends on the specific location problem under 
study. Inequality (9), however, implies that our ability to find e-optimal decisions 
and forecast horizons is limited only by our ability to solve the Y-horizon dynamic 
facility location problem sufficiently accurately. Again, this may be a non-trivial 
problem in theory since most such problems of interest are NP-complete. However, 
algorithms that work very well in practice exist for many such problems (e.g. Van 
Roy and Erlenkotter [35] for the uncapacitated dynamic facility location problem 
with facilities being allowed to be opened or closed only once). 

In addition to the need to be able to solve the finite horizon dynamic facility 
location problem sufficiently well, however, there are two additional problems 
associated with the use of (9). First, it requires the identification of M as an upper 
bound on all costs in all periods. This bound is likely to be quite large. Second, 
because this bound is likely to be large, the forecast horizon v is likely to be very 
large. In short, we will need to be able to solve a very large finite horizon problem 
to be able to use inequality (9). Alternate approaches are required for practical 
problems. 

Before discussing one alternate approach, we note that the last term of (9) 
corresponds to the upper bound on the sum of the discounted costs of operating the 
system beginning in period v+ 1 for any configuration of facilities. The early 
period costs (those for periods close to v+ 1) clearly contribute more to this bound 
than do the later period values due to the discounting of the costs. This bound 
may be reduced by taking any site configuration (e.g. the one found at the end of 
period t) and computing the actual discounted operating costs and the actual discounted 
transport costs for these early costs. The actual operating costs in any period can 
be no more than M N  as noted above and will generally be considerably less than 
that value. Computing the transport costs in any period for a given set of demands 
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and a given siting plan is trivial in the uncapacitated case since each demand node 
is assigned to the facility that can serve it at least cost. As in the case of the 
operating costs, we expect the actual transport costs to be significantly less than MN 
in each period. If in the summation representing the upper bound on the remaining 
costs, we replace the term 2MN by the actual remaining (operating and transport) 
costs associated with some configuration of sites for the early periods following 
period ~-, we can reduce the value of ~" for which the right hand side of (8) will be 
positive, thereby possibly shortening the e-optimal forecast horizon. We are currently 
pursuing other approaches to bounding the costs beyond period 'r. 

In what follows we suggest an empirical approach to examining whether or 
not forecast horizons are likely to exist for practical problems. Consider again a 
dynamic facility location problem whose objective function is to be minimized. 
Suppose we have solved the problem for all planning horizons between 1 and 
"r periods long. If for all problems with planning horizons between tl and ~ = 'r 
the initial decision is the same and if the ratio of the difference between the upper 
and lower bounds to the lower bound in each such period is less than e, then we 
say that tl constitutes an empirical e-optimal forecast horizon and that the corresponding 
initial decision is an empirical e-optimal initial decision. If there exists some sequence 
of periods from t2 to 72 (with 72 < "r) such that the conditions above are satisfied for 
this interval, but are not satisfied for period ?2 + 1, then we refer to the corresponding 
initial solution as a secondary solution. Similarly, if a secondary solution exists and 
there exists some sequence from period t3 to f3 (with t~ less than the value of  t2 
associated with the secondary solution) such that the conditions above are satisfied 
and the initial decision differs from the secondary solution, then the corresponding 
initial solution will be referred to as a tertiary solution. Alternatively, a tertiary 
solution may be thought of as a secondary solution defined over an interval from 
t3 to ~ (with t'3 < t2) that differs from the secondary solution defined over the 
interval from t2 to ?2. 

Formally, let Xl(t) be the initial solution found for the t-period dynamic 
location problem and, as before, let VV(t) and VL(t) be upper and lower bounds on 
the value of the objective function for the t-period problem. Define 

R( t )  = [Vv( t )  - V~(O] /vL(o  

to be the gap between the upper and lower bounds on the solution to the t-period 
problem. Having solved the problem with planning horizons from 1 to "r periods 
long, we say we have: 

(1) an empirical e-optimal initial solution denoted by X~ and an empirical 
e-optimal forecast horizon, q, if 

and 
R(t) <_ e t >_ t~ 

Xl(tl) = Xl(h + 1) = . . .  = Xl('r) = X:; 
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(2) a secondary initial solution, X~, if 

R(O < e 

and 

and either 

or 

or both; 

t 2 < t < ~ <  x 

x (t9 = x (t2 + l )  = . . .  = X l ( : 9  = x ?  

X~ ~ X: (if a primary solution exists), 

R(6+ I) > e, 

(3) and a tertiary initial solution, X~, if we have a secondary solution and 

R(t) < e t3 <- t < t'3 < t2 

and Xl(t3) = X1(t3 + I) =... = XI(f3) = XI 3 ~ X?. 

In the following section we investigate the existence of empirical e-optimal 
decisions, secondary solutions and tertiary solutions. 

4. Empirical results 

To investigate the existence and behavior of empirical e-optimal forecast 
horizons, e-optimal initial decisions, secondary solutions and tertiary solutions and 
to understand better the importance of these different types of solutions we solved 
a fixed charge uncapacitated dynamic facility location model with increasingly long 
planning horizons for a variety of input conditions. This section summarizes the 
results of  this set of experiments. 

The dynamic facility location model that we employ may be formulated as 
follows. We begin by defining the following indices, sets and inputs: 

i = an index on facility sites; 

Io = the set of  all initially closed candidate facility sites which can be opened; 

lc = the set of all initially open candidate facility sites which can be closed; 

! = l o u l c  = the set of all candidate facility sites; 

j = an index on demand nodes; 

J = the set of all demand nodes; 

t = an index on time; 

T = the index of  the last time period for which siting decisions are given 
exogenously; 

z = the number of time periods in the planning horizon; 

ci~ = the sum of all fixed costs in periods t to ~: (the end of  the planning horizon) 
if  a facility is opened at site i at the start of  period t for i ~ Io; 
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Cit -~ the sum of all fixed costs of operating a facility at node i from period 1 
through period t plus the fixed closing cost of a facility at i at the end of 
period t for i ~ It; 

the total cost of shipping the material demanded at node j from node i to 
node j in period t. 

We assume that all costs are positive. In addition, we define the following decision 
variables: 

1, if the facility at site i is opened at the beginning of period t for i e Io; 
xit = 0, otherwise. 

1, if the facility at site i is closed at the end of  period t for i ~ Ic; 
0, otherwise, 

the fraction of the demand node j  that is satisfied by the facility at i during 
period t. 

ix.}. 

{Y/j,}. 

With this notation, we define the following optimization problem: 

y~ = 

X , =  

Y , =  

P('r: T, XT) 

minimize Z Z cilxit + Z Z Z d~tYo't (10) 
t--I i~! t=l  i¢I j cJ  

subjectto Z y / j  t = 1 Vj, t, (11) 
i~! 

t 

Z xia - Yijt > 0 Vi E I o, V j, t, 
a l l  

(12) 

~ xi# - Yij~ > 0  Vi e l c, vj ,  t, (13) 

x/t e {0,1} Vi, t, (14) 

Y#t > 0 Vi, j ,t .  (15) 

Note that Xl . . . . .  Xr are inputs and that the minimization is o v e r  X T +  1 . . ° X~and 
Y. Nevertheless, we include the contribution of X1, . . . .  Xr in the value of  the 
objective function. 
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The objective function (10) minimizes the sum of all fixed costs of opening 
new facilities and closing existing facilities as well as the cost of transporting 
material between facilities and demand nodes. Constraint (11) stipulates that the 
entire demand of each nodej  must be completely satisfied in each period t. Constraints 
(12) and (13) ensure that demands at j are not assigned to a facility at node i in 
period t unless a facility is open at node i in period t. Specifically, constraint (12) 
applies to candidate facility sites for opening and states that demands at node j in 
priod t can be assigned to a facility at node i if and only if a facility at node i was 
opened in one of the periods up to and including period t. Similarly, constraint (13) 
applies to those sites that are initially open and states that demands at node j in 
period t can be assigned to an already open facility at node i if and only if the 
facility at node i is closed at the end of period t or a subsequent period. Note that 
the model assumes that all initially open facilities will eventually be closed. Any 
initially open facility that remains open throughout all z" periods will be closed at 
the end of period z-thereby allowing demands to be assigned to the facility throughout 
the entire planning horizon. Constraints (14) are integrality constraints on the location 
variables xit and constraints (15) are non-negativity constraints on the flow 
variables Ylj~. 

Note that while this formulation does not explicitly prohibit facilities from 
being opened (or closed) multiple times, (i.e. there is no constraint stipulating 
~t_-lxit < 1), in fact no facility will be opened (or closed) more than once. This 
results from the non-negativity of the cost coefficients cit and the fact that 
constraints (12) and (13) imply that ~.~ lx i t  < 1 for all nodes i. Thus, problem 
P(z :  T, Xr) is an uncapacitated fixed charge dynamic facility location model in 
which candidate facilities may be opened or closed at most once. Thus, the model 
can be solved using the dual ascent algorithm (DYNALOC) developed by Van Roy 
and Erlenkotter [35]. This algorithm was coded and used in the series of runs 
outlined below (see also [24]). 

All model runs used a modified form of the 15 node network presented in 
Current et al. [7]. The modification involved changing the intra-nodal distances 
from 0 to 5 units. With this distance matrix, three basic cases (labelled A, B, and 
C in table 1) were defined. For each case, fixed opening, closing, and annual 
operating costs were selected for each candidate site and each time period from 
uniform distributions whose limits are shown in table 1. For each scenario, values 
of  a0 and bo were chosen uniformly on the indicated ranges to be used in generating 
demands for each node in each peiod. This was done by randomly (and independently) 
selecting a demand function from the six functional forms given in table 2 and 
selecting the c and r parameters from the ranges indicated in the table. 

Each case was analyzed using interest rates of 3%, 6%, and 9%. We refer to 
a combination of a case and an interest rate as a scenar io .  Each scenario was solved 
for odd planning horizons of between 1 and 25 periods (i.e. 1, 3, 5 . . . . .  25 periods). 
This resulted in the solution of a total of 117 dynamic location problems in which 
the initial decisions were unconstrained. In the results reported below, the value of  
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Table 1 

Summary of input values*. 

Input factor Case A Case B Case C 

Existing facilities? No No Yes at 1, 2, 3, 7 

Per unit transport cost 0.10 0.10 0.10 

Max. periodic fixed cost 15,000 15,000 1,000 

Min. periodi¢ fixed cost 10,000 10,000 100 

Max. opening cost 250,000 150,000 300,000 

Min. opening cost 175,000 100,000 200,000 

Max. closing cost Not applicable Not applicable 15,000 

Min. opening cost Not applicable Not applicable 10,000 

Max. a o, bo 500 500 750 

Min. ao, bo 350 350 350 

*All three cases were run at three interest rates: 3%, 6%, and 9%. 

Table 2 

Demand data. 

Case Demand ftmetion ~ c Parameter range 

1 d t = rt(a o + bosin(t/c)) 0 < c <- 10 

2 dt = rt(ao + bo e-el) 0 < c <_ 1 

3 d t=  rt(ao + bo ca)  0 <__ c ___ 1 

4 dt = rt(ao + boln(-ct)) 0 <__ c -< 10 

5 d ,=r , (ao-bo ca) O<c< 1 

6 d,=rt(dt_ 1 +cdt_l) -0.02 < c < 0.02 

ar t is chosen uniformly on [0,0.t] for all cases. 

t~ used in defining the existence of an empirical e-optimal forecast horizon, and 
empirical e-optimal initial decision, secondary solutions and tertiary solutions was 
0.02. 

Figure 1 summarizes the results for the case A and a 3% interest rate scenario. 
The top part of the figure shows the initial solution that was obtained as a function 
of the length of the planning horizon, while the bottom part of the figure, plots the 
percentage gap between the lower and upper bounds (R(t) as a percentage) as a 
function of the length of the planning horizon. From period 15 on, the gap was 
under 2% and the initial solution remained the same. Thus, we identify period 15 
as the empirical O.02-optimal forecast horizon and locations 3, 10, and 13 as 
constituting the empirical O.02-optimal initial solution. During periods 7 and 9, the 
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Fig. 1. Finite horizon solutions: case A, 3% interest rate. 



142 M.S. Daskin et al., Forecast horizons 

gap is again  less than 2% and the initial  so lut ion was the same fo r  bo th  runs. Thus ,  
locat ions  6 and 13 const i tu te  a secondary solution fo r  this scenario.  Final ly ,  dur ing  
per iods  1 and 3, the gap is unde r  2% and the initial  so lut ion is ident ica l  fo r  bo th  

per iods.  Thus ,  loca t ion  6 is ident if ied as a tertiary solution for  this scenar io .  
Tab les  3 and 4 summar ize  the results f o r  all 9 scenarios .  As indicated,  0 .02-  

opt imal  forecas t  hor izons  and initial solut ions were  ident i f ied in 6 o f  the 9 scenarios .  

Table 3 

Summary of periods during which 
solutions of different types exist. 

Interest Forecast horizon Secondary Soln. Tertiary Soln. 
Case rate period periods periods 

A 3 15 7 -9  1-3 
6 21 7 -9  1-3 
9 G.S. 7-11 L.C. 

B 3 17 7-13 G.S. 
6 G.S. 9-15 G.S. 
9 G.S. 9 -17  G.S. 

C 3 19 15-17 1-7  
6 19 1-9  P.S. 
9 21 I - I I  P.S. 

G.S: gap size requirement exceeded; L.C: locations change though gap size requirement 
met; P,S: previous solution precludes existence of this solution type. 

Table 4 

Summary of locations of different solution types*. 

Case 

Forecast horizon Secondary soln. Tertiary soln. 
Interest initial initial initial 

rate locations locations locations 

A 3 3, 10, 13 6, 13 6 
6 3, 10, 13 6, 13 6 
9 N.A. 6, 13 N.A. 

B 3 1, 6, 13 2, 6, 13 N.A. 
6 N.A. 2, 6, 13 N.A. 
9 N.A. 1, 6, 13 N.A. 

C* 3 5, 8, 10, 12, 14 5, 8, 12, 14 13 
6 5, 8, 12, 14 13 N.A. 
9 8, 12, 14 13 N.A. 

* N.A. = Not Applicable. 
*Initial locations for case C are additional sites that are added in the first period to 

existing sites (1, 2, 3, 7). No sites were closed in the first period under any of 
scenarios. 

the 
the 
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Secondary solutions were identified in all 9 scenarios; and tertiary solutions were 
found for 3 of  the 9 scenarios. In two of  the scenarios (cases C with interest rates 
of  6 and 9 percent), tertiary solutions were not identified because the secondary 
solution begins in period 1, thereby precluding the existence of  a tertiary solution. 
In the other cases in which either a 0.02-optimal initial solution or a tertiary solution 
was not found, either the ratio of  the difference between the bounds to the lower 
bound exceeded 0.02 (indicated by G.S.) or the gap size criterion was satisfied but 
the first period solutions changed each period (indicated by L.C.). 

The empirical 0.02-optimal initial solution is an approximation to the infinite 
horizon optimal initial solution. The use of either solution should result in low (or 
optimal) total discounted costs if a sufficiently long planning period is used. However, 
if  a shorter planning period is employed, the use of  either solution may result in 
higher costs than would be obtained if a different initial solution were employed. 
To examine this phenomenon, we resolved all of  the problems on which an empirical 
0.02-optimal initial solution was identified, forcing this solution into the model 
during period 1 (and allowing the model to optimize the solution from then on). The 
ratio of  the cost of  this solution (identified as the FHS solution) to the upper bound 
in the unconstrained case (UB) gives an indication of  the short term cost of  using 
the initial solution that is good for the long term instead of  that which might be 
better in the short term. Figure 2 plots the results of  this analysis for case A with 
an interest rate of  3%. As expected, the ratio is (close to) 1.0 beginning with the 
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empirical forecast horizon. It is worth noting, however, that from period 5 on, the 
penalty for using this initial solution is less than 10 percent. In fact, in periods 5, 
11 and 13, constraining the initial solution to be that of the empirical 0.02-optimal 
initial solution results in a better solution than is obtained in the absence of  this 
constraint. Note that it is during these periods that the upper bound is considerably 
greater than the lower bound for the unconstrained problem (see fig. 1). The reason 
for being able to do better in the constrained case than we could in the unconstrained 
case is that Van Roy and Eflenkotter's algorithm results in heuristic solutions unless 
it is embedded in a branch and bound procedure. We did not employ a branch and 
bound procedure. (The heuristic nature of the algorithm also means that the FHS/ 
UB ratio need not equal 1.0 for all periods after the empirical 0.02-optimal forecast 
horizon.) 

The empirical 0.02-optimal initial solution (FHS), secondary (SS) solution, 
and tertiary solution (TS) may all be considered viable candidate initial solutions. 
Given that both an empirical 0.02-optimal initial solution and a secondary solution 
existed for a scenario, we reran the model using the two solutions in the first period 
and allowing the model to optimize the locations beyond that time. The ratio of  the 
objective functions for these two runs for any particular planning horizon indicates 
the relative penalty associated with using either siting plan as the initial solution. 
For short planning horizons, we expect the secondary solution to do better while 
the FHS solution should do better for longer planning horizons. Figure 3 plots the 
results of  this analysis for case A with an interest rate of  3%. The FHS solution was 
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better than the SS solution as an initial decision for all planning horizons equal to 
or longer than the empirical forecast horizon. In other scenarios, the FHS solution 
was better for even shorter planning horizons and in some cases was better than the 
SS solution during part of  the period associated with the secondary solution. Again, 
this results from the heuristic nature of  the algorithm and is an indication of the fact 
that the FHS solution would have been a better initial decision for planning horizons 
of  this duration, but that the algorithm was incapable of  finding this solution. 
Nevertheless, in all six scenarios in which both an empirical 0.02-optimal initial 
decision and a secondary solution were identified, the penalty associated with using 
the FHS solution with short planning horizons was significantly larger than the 
penalty associated with using the SS solution with long planning horizons. If significant 
uncertainty surrounds the inputs associated with furore periods (during which the 
FHS becomes the preferred initial decision), it may be better to adopt the secondary 
solution as the initial solution. 

In three scenarios, an empirical 0.02-optimal initial solution was not identified. 
In all three scenarios, however, a secondary solution was found. To examine how 
well the secondary solution performed as an initial decision, we forced this solution 
into the model for the initial period and reran the model. Figure 4 (for case B with 
an interest rate of  6%) is illustrative of  the results. The secondary solution was 
identified for periods 9 - 1 5  (see table 3). However, fig. 4 shows that if  we force 
the secondary solution into the model during the initial period, the objective function 
is within 2% of  the lower bound from period 7 on. This suggests that the secondary 
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solution is actually an empirical 0.02-optimal initial decision and that the associated 
empirical 0.02-optimal forecast horizon is period 7. Similar results were obtained 
for the other 2 scenarios in which the unconstrained model runs failed to identify 
an empirical 0.02-optimal solution. 

Finally, we examined the results of forcing the tertiary solution into the model 
as the initial decision. Figure 5 (for case A with an interest rate of 3%) is typical 
of the results obtained. If the planning horizon is greater than 5 periods, either the 
secondary solution or the empirical 0.02-optimal initial solution (FHS) is better than 
the tertiary solution as an initial decision. The fact that the tertiary solution is better 
than the FHS solution for periods 5, 11, and 13 is again the result of the heuristic 
nature of the solution procedure and is not surprising in light of the rather large gaps 
between the upper and lower bounds for these planning horizons, as shown in fig. 1. 
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In summary, the empirical findings outlined above and summarized in greater 
detail in Medina [24] indicate that good initial decisions can be found and empirical 
e-optimal forecast horizons identified despite the fact that inputs can be constructed 
for which a strictly optimal forecast horizon and initial decision will never exist. 

5. A note on scenario planning 

Sections 3 and 4 deal with the problem of finding a forecast horizon and an 
optimal (or near optimal) initial solution in the case of future demands that are known 
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with certainty. In this section, we highlight some of the problems associated with 
an alternate approach that has been suggested for the problem with uncertain future 
demands. 

As noted in section 2, Schilling [32] formulated an approach, using objectives, 
in which the number of facilities that are common to all future scenarios is constrained 
to be at least a given value. He was then able to develop tradeoff diagrams indicating 
the maximum degree of degredation in the objective function under any of the 
scenarios as a function of the number of required common facilities. He argued that 
if the degree of degredation was small, planners might want to build the common 
facilities first. In so doing, planners could defer having to decide which future 
scenario is most likely until additional information is obtained and could defer 
deciding which of  the facilities that are unique to'a particular scenario should be 
built. This approach is often called the scenario planning approach. 

In this section, we present an example that indicates that the adoption of the 
scenario planning approach may not only lead to suboptimal decisions but can 
actually lead to the adoption of the worst possible alternative. The network used 
is shown in fig. 6 along with the per unit inter-nodal transport costs for all periods. 

@ 
\ 

1 O0 ~ 1 0 0 0  

Fig. 6. Example transportation network. 

All intra-nodal unit transport costs are taken to be 1. Table 5 presents the demands 
in six periods at each node under each of two scenarios. Note that the two scenarios 
are identical except that the demands for nodes A and B are inverted. A fixed cost 
of 50,000 is charged for the construction of a facility at any node in any period. 
Facilities are assumed to be uncapacitated. 

Under scenario 1, the optimal solution is to build facilities as nodes A and 
C in period 1. The total discounted cost of this strategy is 158,263. By symmetry, 
the optimal solution under scenario 2 is to build facilities at nodes B and C with 
a total discounted cost of 158,263. Node C is common to  both solutions. Thus, the 
scenario planning approach would call for the construction of a facility at node C 
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Table 5 

Example problem demands*-Scenario 1 ¢r 

Time Period Node A Node B Node C 

1 1000 750 750 
2 1050 788 788 
3 1103 827 827 
4 1158 868 868 
5 I216 911 911 
6 1277 957 957 

* Demands grow approximately 5% per period. 
* Scenario 2 demands are identical to those listed above except 

that the demands for nodes A and B are inverted. 

in pe r iod  1. I f  such  a po l icy  is adopted  and scenar io  1 evo lves ,  a fac i l i ty  wil l  be  
added at no de  A in per iod  2. The  total cost  o f  this s t ra tegy,  howeve r ,  is 1 , 8 9 8 , 3 0 6 -  
almost 12 times the optimal cost. Tab le  6 summar izes  the re la t ive  cos t  o f  o the r  
s trategies u n d e r  each  o f  the two scenarios .  In part icular ,  i f  we adop t  the op t imal  
scenar io  1 so lu t ion  ( locate  at A and C in per iod  1) and scenar io  2 evo lves ,  the cos t  
is o n l y  9% grea te r  than  it wou ld  have  been  had we b e e n  able to se lec t  the op t ima l  
scenar io  2 s t rategy.  Also,  i f  we build on ly  one  faci l i ty  in per iod  1, bu i ld ing  at e i the r  
o f  the  n o n - c o m m o n  sites (A o r  B) in per iod  1 is p re fe rab le  to  bu i ld ing  at the  

Table 6 

Relative costs of alternative solution strategies*. 

Facilities Facilities Relative Relative 
built built cost under cost under 

in period 1 in period 2 scenario 1 ~ scenario 2 ~ 

A,C - 1.000 1.090 
B,C - 1.090 1.000 

A C 5.725 5.815 
B C 5.815 5.725 

C A 11.995 12.070 
C B 12.070 11.995 

* Values shown are the ratios of the objective function using the 
indicated construction strategy to the optimal objective function 
for the particular scenario. Thus, the ratio of the cost of building 
at location A in period 1 and location C in period 2 to the optimal 
cost under scenario 1 is 5.725:1. 
The optimal cost strategy under scenario 1 is to build at locations 
A and C in period 1 at a total discounted cost of 158,263. The 
optimal cost strategy inder scenario 2 is to build at locations B 
and C in period 1 at a total discounted cost of 158,263. 
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common site, even if the site selected for construction in period 1 is not a part of 
the optimal solution for the scenario that ultimately evolves. Since node C is isolated 
and is a small demand node under either of the two scenarios, building at that node 
in the first period and delaying the decision as to where the second facility should 
be located results in exorbitant first period transport costs and is the worst  possible 
initial decision. 

While the example outlined above applies to the problem of minimizing the 
present value of future costs and the scenario planning approach was proposed for 
covering models, it is clear that similar problems may arise in the application of 
the approach to covering models. In short, planners need to be concerned not only 
with the final configuration of sites but also with the time staging of facility additions 
(and deletions) that will enable the system to reach the final configuration in an 
optimal manner. 

6. Summary, conclusions and future work 

In this paper we have proposed an approach to dynamic facility location 
modelling that does not view the planning horizon as an exogenous input. Rather, 
we suggest finding a forecast horizon such that the initial optimal (or near optimal 
decision is invariant with respect to conditions beyond the forecast horizon. We 
showed that simple examples can be constructed in which a strictly optimal (finite) 
forecast horizon and initial decision do not exist. This together with the NP-completeness 
of  most of the location models of practical interest justified our search for e-optimal 
forecast horizons and initial solutions. For this relaxed problem we proposed a 
crude method of identifying e-optimal solutions which involved bounding the costs 
in all future periods. Next we defined an empirical e-optimal solution as one that 
is e-optimal if costs beyond the forecast horizon are ignored instead of approximated 
or bounded. Empirical tests showed that good initial decisions and empirical e- 
optimal forecast horizons could be found for small problems. Finally, we showed 
that the scenario planning approach for dealing with uncertain future conditions can 
lead to the adoption of the worst possible initial decision. Thus its use must be 
accompanied by extreme care and caution. 

Much additional work remains. First, the empirical study reported on above 
is limited. More extensive empirical testing with bigger networks and with other 
location models should be conducted to determine whether or not the notions of 
empirical e-optimal forecast horizons and initial solutions are of practical value. 
Second, methodological work aimed at finding e-optimal forecast horizons and 
initial solutions should be conducted. The authors are currently engaged in work in 
this latter arena. 
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