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Abstract 

The network version of the m-median problem with mutual communication (MMMC) 
is to find the location of m new facilities on a network with n nodes such that the sum 
of (a) the cost of interaction between the new facilities and n existing facilities on the 
network, and (b) the cost of interaction between pairs of new facilities is minimized. 
The existing facilities are located at nodes of the network and the interaction cost 
between a pair of facilities is a function of the network distance between the facilities. 
This problem is shown to be equivalent to a graph-theoretic Node Selection Problem 
(NSP). We show that many other problems can be formulated as an NSP. We then 
provide a polynomial time algorithm to solve NSP for the case when the flow graph 
is Halin. Extensions to other graph families are provided. 

1. Introduction 

The network version of the m-median problem with mutual communication 
(MMMC) is to find the location of m new facilities on a transport network "¢ with 
n nodes such that the sum of (a) the cost of interaction between the new facilities 
and n existing facilities on the network, and (b) the cost of interaction between pairs 
of new facilities is minimized. The existing facilities are located at nodes of the 
network and the interaction cost between a pair of facilities is a function of the 
network distance between the facilities. 

The new facilities can be m production plants, each producing some end 
products as well as several components/by-products which are used by other plants. 
The existing facilities may be the customer locations or the distribution centers 
where the customer demand for the product(s) produced by each plant is known. 
The transport network is t h e  road network whose nodes include the customer 
points/distribution centers and other points which are candidate sites for the location 
of new plants. 
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Another application of  MMMC is the location of several new machine centers 
in a production area. Material movements are made on a transport network (e.g. 
network of  aisles). Each new machine center will send and/or receive material 
to/from one or more existing machine centers whose locations on the transport 
network are known. In addition, each new machine will have material flow interaction 
with some subset of  the other new machines. We assume that the existing machines 
are located at nodes of  the transport network. There is no loss of  generality here, 
since as long as each existing machine is on the network, its location can be 
declared as a node. We consider problems where the set of  possible locations on 
the network for each new facility is finite. We can also declare these locations as 
nodes of  the network. 

In the above examples o f  MMMC (as well as other examples), it is most 
likely the case that the cost o f  interaction between certain pairs of  facilities will not 
depend upon the network distance between their locations. This would occur in the 
above examples if there was no material flow between a pair of  facilities. In what 
follows, we say a pair of  facilities interacts only if  the cost of  interaction is a 
function of  the network distance between the facilities. 

Most  of  the literature associated with MMMC deals with the case where the 
interaction costs are linear in network distances. Kolen [13] has shown that the 
problem is NP-hard when ~ is a general network, but is polynomiaUy solvable when 
"r is a tree. Picard and Ratliff [17] also give a polynomial time algorithm for the 
problem when ~'is a tree. Dearing et al. [7] have shown that the problem is a convex 
optimization problem for all data choices if and only if  "t" is a tree. Erkut et al. [10] 
consider a constrained version of  the problem and make use of  separation 
conditions [11] to obtain a mathematical program. The mathematical program is 
equivalent to the original problem if "t is a tree; otherwise, the solution to the 
mathematical  program provides a lower bound. A computational study of  the lower 
bound vis-a-vis the original problem is given in Erkut et al. [9]. 

Xu et al. [19] consider the version of  MMMC where the transport network 
"ris not necessarily a tree, but "rdoes contain two or more blocks (maximal, nonseparable 
subgraphs of  "t). They show that by solving a related problem on a "blocking graph" 
(which is a tree), information can be obtained which localizes each optimal new 
facility to some vertex or block of  ~r. The problem then decomposes into a collection 
of  independent  problems, one for each localizing block of  ~r. 

In this paper, we give a polynomial  time algorithm for a class o f  network 
MMMC problems in which the transport network 'ris general and where the interaction 
costs are general functions o f  network distances as long as these cost functions are 
such that node optimality conditions hold, i.e. there is at least one optimal solution 
in which each new facility is located at a node of  the transport network. However, 
we do require a certain structure with respect to the pairs of  new facilities that 
interact. 

In what follows in this section, we formulate a problem known as the Node 
Selection Problem (NSP) and show that MMMC can be represented as an NSP. The 
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problem transformation, which also appears in Chhajed and Lowe [5], makes use 
of a graph we call a G-partite graph (to be defined shortly), which captures the 
essence of the underlying problem. We end the first section of the paper by citing 
four other problems that can be formulated as an NSP. 

1.1. NODE SELECTION PROBLEM 

Given a graph G = (V(G), E(G)) with node set V(G) and arc set E(G), consider 
the following G-partite graph GO: Corresponding to each node u ~ V(G), we have 
a node-family tru in G O which contains n~ nodes {uk: k = 1 . . . . .  n~}. Two nodes Uk 
and v, (v ~ u) are adjacent in G O if and only if arc (v, u) ~ E(G). Arc (Uk, V,) in 
G O is assigned a weight to~.  Thus, if (v, u) exists in G, nodes of node families u 
and v form a complete bi-partite subgraph of G °. F)gure 1 gives an example of 
graph G and a corresponding G-partite graph. Figure 2 shows the weights on the 
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Fig. 1. Graphs G and G °. 

~¢eights 

1 5 

2 7 

2 3 

4 8 

9 6 

Weights! 

1 5 

2!7 

2 

7 1 

10 2 

1 2 3 
9 11 14 

Weighu 

1 7 

19 6 12 2 4 

Fig. 2. Weights on graph G O . 

2 3 

4 8 

5 4 

arcs in G °, which are presented in the form of matrices. The entry in row 1 and 
column 3 of the first of  the matrices in fig. 2 is the weight of  the arc joining 
node 1 of trc and node 3 of ira. Node families o'u and orv are said to be adjacent 
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if  and only if every node in tr~ is adjacent with every node in trv. We will use the 
notation (tru, try) to denote all arcs between nodes in o'~ and nodes in try. The graph 
G is also referred to as the flow-graph. Given a G-partite graph G °, let S(G °) be 
an induced subgraph of  G O with one node of  each node family and Z(S(G°)) be the 
sum of  the weights on the arcs in S(G°). 

The following Node Selection Problem (NSP) was defined in [5]: Given a 
graph G and the corresponding G-partite graph G O with arc weights co, find an S(G °) 
such that Z(S(G°)) is minimum. We will denote an optimum solution of  NSP by 
S*(G°). 

The version of  the NSP in which there are also weights on nodes in G O and 
Z(S(G°)) includes the node weights as well as arc weights can be easily transformed 
to a problem with no weights on the nodes. Let nw(t~r) denote the node-weight on 
node yr. For those nodes with nW(Vr) ~ O, we identify a node family tr,,, adjacent 
to try, and set the weights to~Y of  arc (v,, uk) as tOUr" ~-- to~Y + nW(Vr), Vuj, ~ try. 
Finally, we delete all node weights. If node v~ is in S(G°), Z(S(G°)) will include 
the arc weight nW(Vr). Thus, an NSP in which there are weights on nodes can be 
transformed to an equivalent NSP in which there are no weights on nodes. 

1.2. MMMC AS NSP 

To represent MMMC as an NSP, the flow graph has m nodes (one node for 
each new facility). For nodes u and v of  G, (u, v) E E(G) if  and only if new facilities 
u and v interact, i.e. the cost of  interaction between the pair depends upon the 
distance between them. We then construct a G-partite graph G O with m node families, 
one corresponding to each new facility. The node family for node u of  G consists 
o f  n~ nodes, one node corresponding to each of  the n,, possible locations for new 
facility u on the transport graph 'r. For each new facility u, we select a new facility 
u ° such that there is an interaction between new facilities u and u ° and define a 
function 6(u, u °) = 1 and t~(u, v) = 0 for all other new facilities v ~: u °. Note that 
t~(u, v) may not be equal to 6(v, u). The weight on the arc (uk, vr) in G O is equal 
to the sum of  (a) t~(u, v) * (interaction costs between new facility u and all existing 
facilities if  new facility u is located at node k), (b) t~(v, u) * (interaction costs 
between new facility v and all existing facilities if  new facility v is located 
at node r), and (c) interaction cost between new facilities u and v if  u is located 
at node k and v is located at node r. 

S(G °) gives a feasible solution to MMMC with a cost Z(S(G°)). Thus, solving 
NSP on a G-partite graph as defined in the preceding paragraph provides a solution 
to the MMMC. In [5], a version of  the MMMC in which there is a fixed cost of 
locating a new facility u at node k is modeled as an NSP. 

1.3. ADDITIONAL PROBLEMS AS NSP 

We now cite four additional problems that can be posed as Node Selection 
Problems. 
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Problem 1 : 0 - 1  quadratic programming 

A 0 - 1  quadratic programming problem is [2]: 

(QP) min ll2xTQx + cx = ~_~ ~_, qijxixj + ~,~ CiX i, X E {1, 0}. 
i - - l . . .n-I  jffii+l...n i=l. . .n 

To model QP as an NSP, we create a G-partite graph G O (and a flow graph G(Q)) 
with a node family for each xi (a node for each xi in G(Q)) which has two nodes 
nio and nil. Node ni0 (nil) corresponds to the variable xi taking the value 0 (1). Join 
two node families (two nodes in G(Q)) if and only if qij ~ O. The weight on arc 
(nil, nil) is initially set equal to qij and all other arcs between tri and ~ are initially 
given weight 0. To account for the linear costs ci, we select an index j such that 
qij ~ 0 and add ci to the weight on arcs (nil, njo) and ~nil, nil). It is easy to see that 
NSP on G o is a reformulation of QP. 

Problem 2: Product des ign-  marketing 

Consider the following variation of a product design problem arising in 
marketing [8]: A product has to be designed with m attributes. Corresponding to 
an attribute u, there are nu discrete levels of the attribute (e.g. color is an attribute 
with blue, green and red as three possible "levels"). For each level of each attribute, 
we have a measure of customer preference (main effect). In addition, there are two- 
way interaction effects between level k of attribute u and level r of attribute v. The 
objective is to design a product by choosing a level of  each attribute such that the 
sum of the main effects and the two-way interaction effects is maximum. Transforming 
this product design problem to NSP is similar to the transformation for MMMC 
with the fixed locational costs. 

Problem 3: Product des ign-  engineering 

Askin and Goldberg [1] have looked at a product design model focussing on 
the engineering attributes of a product, similar to the product design problem from 
the marketing perspective described above. Again, a level of  each attribute is to be 
selected to mi,'fimize the sum of production cost and average cost of quality, which 
is a function of target design and the actual performance of a design. Production 
costs and the distribution of a quality variable can be an arbitrary function of 
attribute levels. A design point is defined by the setting for each attribute. Expermentafion 
is carried out by selecting a set of  design points and making multiple observations 
for each design point. The mean and variance of the quality of each design point 
are computed. One way to select a design is to minimize the cost of each attribute 
level (main effect) and the cost of quality defined by the square of the bias (difference 
between mean quality and the target quality of a design point), multiplied by a cost 
coefficient for quality loss. Askin and Goldberg develop a model, called the quadratic 
selection model (equivalent to NSP), to solve the problem. 
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Problem 4: Public transit schedule 

Consider a public mass transit system (trains, subways, busses) [20] where 
we are given a set of transfer stations and a set of routes connecting these transfer 
stations, a cycle time (amount of time between successive departures at any station 
along its route) for each train, known number of passengers who want to change 
between routes at transfer stations, and known running times between stations and 
stopping times at stations. We want to determine the departure time of each train 
within its given cycle at the initial station of its route such that the sum of all 
waiting times for all passengers changing routes is minimized. To represent this 
problem as an NSP, we construct one node family for each route. The nodes in a 
node family correspond to different possible departure times for the train from its 
initial station and two node families are adjacent if there are passengers who want 
to change between those two routes. The weight on an arc is the total waiting time 
of  all passengers who want to change between the routes (represented by node 
families) at the departure times represented by the end nodes of the arc. 

The quadratic assignment problem (and hence the traveling salesman problem) 
also can be posed as an NSP. For these two problems, the flow graph will be 
complete and so the results of this paper cannot be applied to these two problems 
(if the results were applicable, we would have shown that P = NP!). However, the 
results of this paper can be used to obtain lower bounds to the QAP and the TSP 
be deleting (through Lagrangian relaxation) some of the arcs of the flow graph. 

We would like to point out that NSP is a special case of nonserial dynamic 
programming. Lipton and Tarjan [15] have given a planar separator theorem and 
shown that a nonserial dynamic programming problem, when each variable can take 
only two values and the flow graph is planar, can be solved in 2 °(4"~), where m is 
the number of  nodes in the flow graph. We will return to this in section 5 to 
compare the efficiency of our algorithm versus theirs. 

Subsequent to the submission of this paper, Chhajed and Lowe [4] developed 
a general procedure for solving MMMC when the flow graph is a k-tree. If the 
algorithm in that paper was applied to the problem considered herein (flow graph 
is Halin), the complexity would be lower than that obtainable via the algorithm in 
this paper. However, the general procedure does not provide the same level of 
insight as that provided by the approach contained herein. 

In the remainder of this paper, we give a polynomial time algorithm for a 
class of NSP which is characterized by the structure of the flow graph G. In 
section 2, we summarize the results from our earlier paper [5] on solving NSP when 
the flow graph is series-parallel. These results will be used in the later sections. 
In section 3, we define a reduction operation on the G-partite graph which is similar 
to the contraction operation defined for a graph. In section 4, we define a Halin 
graph and present a polynomial time algorithm for NSP when the flow graph is 
Halin. In concluding the paper in section 5, we show how the results can be 
extended to other flow graphs. 
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2. Previous results 

In this section, we report some results from our previous paper [5], in which 
a polynomial time algorithm for NSP when the flow graph is series-parallel  is 
given. 

DEFINITION 

A graph is series-parallel [21] if it can be reduced to an arc by repeated 
applications of  the following operations: 

(G1) Series reduction: Replace any degree-2 node q and the incident arcs (u, q) 
and (v, q), u ~: v, by a new arc a'(u, v) incident to u and v. 

(G2) Cut reduction: If  q is a pendant node (a node of  degree one) adjacent to node 
u, find a node v ~: q adjacent to u, delete node q and add an additional arc 
a'(u, v). 

(G3) Parallel reduction: Replace two arcs e and f which are both incident to 
nodes u and v by a new arc g incident to u and v. 

The new arcs that are added to the graph in the above operations are named 
pseudo-arcs in [21]. Richey describes an operation similar to operation (G2), calling 
it a Jackknife reduction, but does not add the new arc a'(u, v). If we perform 
parallel reduction on (u, v) immediately after the cut reduction, we obtain Richey 's  
Jackknife reduction. Thus, although there is a minor difference in the definition of  
one operator, which we need for our algorithm, the above definition of  a ser ies-  
parallel graph is identical to that of  Richey. 

Three graph operations (GP1, GP2, and GP3) on a G-partite graph are defined 
which are similar to the operations (G1), (G2), and (G3) discussed above, so that the 
new G-partite graph corresponds to G after the elementary operation. The outcome 
of two of  these operations will result in parallel arcs in the graph. We emphasize here 
that if there are parallel arcs between two given nodes of  a G-partite graph G t, and 
if this pair of  nodes is in a feasible solution S(G °) to NSP, then the parallel arcs are 
also in S(G°), so that the arc weights of  both arcs contribute to Z(S(G°)). 

With each node and each arc of G °, a label is associated in the form of  a set 
of nodes. Initially, the label of  each arc e is set as La(e) = { }, where { } denotes 
the empty set, and the label of  each node uk is set as Ln(uk) = {Uk}. We will 
represent the label of  an arc e defined by two nodes p and q by La(p, q) rather than 
L~((p, q)). During the graph operations on G °, arcs and nodes of  graph G O are 
deleted, in some cases (new) arcs are added, and labels of  the remaining arcs, as 
well as the arc weights, are modified to reflect the change. The labels are used, 
basically, to carry pertinent information about the deleted portion of  the graph. In 
modifying the labels, we typically add two labels, where addition of  labels is 
defined as the set union operation on the sets corresponding to the two labels. In 
the remainder of  the paper, we will denote 3, = max {nu: u ~ V(G)}. 
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(GP1): 

(GP2): 

(GP3) 

Series reduction: In this process, a node family trq such that node q is 
adjacent to exactly two distinct nodes u and v of G, where q ¢ v ~ u, is 
eliminated in G O and node families or, and try are made adjacent. Thus, the 
reduced graph has one less node family. This reduction has time complexity 
O(Z3). 

Cut reduction: Given two node families crq and 0", such that node q has 
degree one in G and {(u, v), (q, u) ~E(G)},  we delete node family O'q and 
add parallel arcs (0",, cry) between nodes of 0", and try in the G-partite graph. 
Also, cut reduction can be done in O(A, 2) time. 

Parallel reduction: Given two node families or,, and try such that there are 
two arcs between every node uk ~ cry and v, ~ o'v, we replace the parallel 
arcs by a single arc. The weights and the labels associated with the two 
parallel arcs are added and they form the weight and label, respectively, 
of the new arc. Furthermore, parallel reduction can be performed in 0(~. 2) 
time. 

Additional details about these three reduction operations can be found in the 
appendix, where they are presented as procedures. In [5], it has been proven that 
each of these operations preserves the solution to NSP. Finally, an algorithm (algorithm 
SP) which repeatedly uses the above three reductions to solve NSP on a G-partite 
graph when the flow graph is series-parallel is presented in the appendix. If the 
flow graph has ra nodes (m node families in G °) and each node family has no more 
that ~ members, then algorithm SP is O(mZ~). 

3. Contraction reduction 

In this section, we define a fourth elementary operation (G4) on G and (GP4) 
on G °. In what follows, given two nodes u and v of G (node families o'u and tr v 
of GO), when we refer to the set of nodes adjacent to {u, v} (node families adjacent 
to {tr,, cry}), we mean those nodes s in G (node families as in G °) adjacent to u 
or v or both (adjacent to o', or Cry or both), where s ~: u ~ v. 

(G4): Contraction reduction: Contraction of two nodes u and v in G is defined as 
the removal of  u and v, the insertion of a new node w, and the insertion of 
an arc between w and each node which was adjacent to {u, v}. 

(GP4): Contract reduction of two super nodes: In this operation, we reduce two 
node families tr,, and cry in G O to a single node family trw. If G denotes the 
graph G after nodes u and v are contracted, then contracting node families 
cru and O'v will result in a G-partite graph corresponding to graph G. The 
number of nodes in trw is nu * nw The following procedure gives details of 
this process. 
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PROCEDURE CO(~, O'v) 

Step 1: Create a node family trw with nu * nv nodes {wr: r = 1 . . . . .  nu * nv}. 
For  each i = 1 . . . . .  nu and j = 1 . . . . .  nv, with nu > nv, choose the unlabeled 
node wr where r satisfies r = nu * ( i -  I) + j,  and set its label Ln(wr) as 
Ln(ui) u Ln(vj). Let the function to(r) = [i,j]. 

Step 2: Choose  a node  family trs adjacent to {tru, try}. 
For  every node sk ~ trs and wr ~ trw where r ( r )  = [i, j ] :  

Add a new arc a'(sk, w,) with weight,  

to~' ~ to~ + o ~  and label 

La(s k, Wr) <--- La(S k , ui) u La($ k, l)j). 

{Here, to~ and La(sk, ui) ( tO~,  and Lo(sk,vj))  are def ined to be zero and 
the null  set, respectively, if tr, and tru (try) are not  adjacent.} 

Step 3: R e m o v e  all the arcs connect ing node  family tr, to o'~ and try. I f  tr,, and try 
become disconnected from the remainder  o f  G O , then go to step 4; else, go 
to step 2. 

S tep  4: If  tru and try are connected, then choose any node family tr, connected to trw. 
Set  the weight  o f  arcs jo in ing nodes in crs and Crw as: 

toSff ~ to~ TM + W~ v " r(r)  = (i, j) ;  V(s k, w r) ~ E(G°),  

La(s k, wr) <-- La(s k, w r) u La(U i, vj)  " r(r)  = (i, j); V(s k, w r) ~ E(G°).  

Step  5: Delete  tr,, and try. Return.  

As an example ,  consider  the G-parti te graph G O shown in fig. 1 and the arc 
weight  data shown in fig. 2. Suppose  we want  to contract-reduce node  famil ies  tr,, 
and o'c. Since na = nc = 2, we first create a node  family tYw with four  nodes  as shown 
in fig. 3, and set the labels as Ln(Wl) = {al, cl}, Ln(w2) = {al, c2}, Ln(w3) = {a2, cl}, 
and L~(w4) = {a2, c2}. Also,  let r (1 )  = (1, 1), r ( 2 )  = (1, 2), t¢(3) = (2, 1), and 
r (4)  = (2, 2). In step 2, we choose node  family cry,, which  happens  to be connected  
to both tra and trc. We connect  o't, and trw (fig. 3) and compute  the weights  and 
labels. Since the labels on  arcs in (o'~, o't,) and (trc, crt,) are empty ,  the labels on  the 
new arcs are also empty  and are not  shown in fig. 3. In step 3, we delete  arcs 
(trt,, tr,,) and (trt,, trc) and go back to step 2, since tr a and trc are still connected to G °. 

We n o w  choose  node  tra which  is connected  to o'~, connec t  trw and tra, and 
compute  the weight  and label o f  these arcs. We then delete the arcs connect ing  
nodes in ira and o'~. This  disconnects  o'~ and tr, f rom the rest of  the graph (fig. 4), 
so we go to step 4. Since o'~ and o-~ are connected,  we select  node  o't, which  is 
connected to trw and mod i fy  the weights  and labels o f  arcs jo in ing  O'b and trw. Node  
families tr c and tra are now deleted. The  final result  o f  applying procedure  CO is 
shown in fig. 5. 
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Node Labels 

Ln(w 1) = { al,c 1 }, Ln(w2)= { al,c2 ), Ln(w3)= { a2,c 1 ), Ln(w4)= { a2,c2} 

Ln(bl)={bl }, Ln(b2)={b2}, Ln(b3)={b3} 
Ln(dl)={dl }, Ln(d2)={d2}, Ln(d3)={d3} 

Fig. 5. Contraction-reduction: f'mal solution. 

The complexity of step 1 is n,, * nv. Step 2 can be carried out in n, * n,, * nv 
time, which is repeated for all cr s connected to o', or or,,, giving it a complexity of 
O((~sis adjacent to {u, v} ns)* n~ * nv). The complexity of steps 4 and 5 is no larger 
than that of step 2. Thus, the complexity of CO is O ((~s is adjacent to {u, v} ns) * nu * nv). 
We now show that contraction-reduction preserves an NSP solution on G °. 

Let v b e  an arbitrary subset of nodes of a G-partite graph G O such that there 
is at most one node from each node family in ~. Let S*(G °, ~) be an optimal 
solution of a constrained version of NSP on G O with the set of nodes ~" fixed, and 
let Z(S*(G °, ~¢)) be the value of this solution. Thus, S*(G °, { }) is a solution to NSP. 

LEMMA 1 

For a G-partite graph G O with node families o', and o'v, let G O and G_. be the 
results of contracting node families cr~ and cry in G O and nodes u and v in G. Given 
an optimal solution S*(G_. °) to NSP(G._.°), an optimal solution to NSP(G °) can be 
constructed using the nodes and arc labels of S*(G__°). 

Proof 
Let S*(G °) be an optimal solution to NSP(G °) and let w, .  ~ o'w be in this 

optimal solution, where o'w is the node family introduced in G o as a result of  
contraction of or, and o'v. Let ui. ~ a .  and vy° ~ or,, be such that r(r*) = (i*, j*). Let 
V* = {q : :  (w,.. q : )  ~S*(G°)},  i.e. V* is the set of nodes adjacent to w,. in S*(G°). 
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All nodes in W' are also in graph G O and belong to node families adjacent to o'u 
and/or o'v. Let A__* denote the set of arcs between w,, and the nodes in ~*. 

In order to obtain a solution to NSP(Q.°\o'w, ~*), we can delete the arcs in 
* * 0 - * 0 * * 0 * * 0 * • from S ~ ). That Is, S (G. \o'w, ~ ) = S (_G.)\_A'. S (_G_. \o'w, ~ ) is also an 

optimal solution to NSP(G°\{o'u, cro}, ~¢*) and has the same objective function value 
on graphs G_.°\o'w and G°\{o'u, o'v} because these two graphs are the same. If A* is 
the set of arcs between {us,, vj,} and nodes in I f ,  including the arc (u~,, vj.) if it 
exists, then the sum of the weights and labels on the arcs in A* are the same as the 
sum of the weights and labels on arcs in _A*. Thus, S*(.G_.° \o'w, ~*) u A* is a feasible 
solution to I~ISP(G °) with the objective function value Z(S*(G.°)). 

* 0 What remains to be shown is that S (G. \~r w, g*)  u A* is also an optimal 
solution to NSP(G°). To do so, we first assume that a solution S*'(G °) with an 
objective function value better flower) than Z(S*(_G.°)) exists and then arrive at a 
contradiction. Let ui, ~ ¢ru and vy, ~ cry be such that they are in this optimal solution. 
Let w,, ~ o'w be such that tc(r') = (i ' , j ' ) .  Let IV' = {qp," qp, ~ S*'(G°), q is in the set 
of nodes adjacent to {u, v} }, A' is the set of arcs between {ui,, vy,} and nodes in 
g ' ,  including the arc (ui,, vj,) if it exists, and A' is the set of arcs between w,, and 
the nodes in ~'.  Now, S*'(G°)\A ' is an optim~ solution to NSP(G°\{o'u,o'~,}, ~ ' )  
and NSP(_Q.°\o'w, g ' ) .  Also {S*'(G°\A "} u A__" is a feasible solution to NSP(_G_°). 
However, the sum weights and labels on A' and A__' are the same. Thus, we have 
obtained a feasible solution to NSP(ff_. °) with a value smaller than Z(S*(.G_.°)), a 
contradiction. [] 

In the next section, we define a Halin graph and give an algorithm to solve 
NSP when the flow graph is Halin. This algorithm makes use of GP1 . . . . .  GP4 
defined in the previous two sections. 

4. Halin graphs 

In this section, we give an algorithm to solve (NSP) on a G-partite graph 
corresponding to a Halin flow graph. A Halin graph is constructed as follows: Take 
a tree T having no nodes of  degree 2, with a planar embedding, and add a cycle 
% formed by all the leaf nodes of T such that G = T u % remains planar (fig. 6). 
A procedure to recognize a Halin graph in polynomial time is given in [22]. 

Our solution procedure to solve NSP on a Halin flow graph proceeds by first 
identifying a set of  pairs of nodes of  G. Each pair of nodes is contracted, after which 
the original flow graph reduces to an outerplanar graph, which is known to be a 
series-parallel graph [18]. Corresponding operations are also performed on G O . 
Subsequently, we use algorithm SP to solve NSP on this resulting outerplanar graph 
and recover the solution to the original problem on the Halin graph. We begin by 
introducing some additional notation. 

Given a Halin graph G, let C be the set of cycle nodes (i.e. V(g)) and let I 
be the non-cycle nodes (non-tip nodes of T). We assume that G has no nodes of 
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Fig. 6. A Halin graph. 

degree 2 (see section 5 for relaxation of  this assumption). Let ICI = 0 and III = 7/, 
so that 0 + 7/= m. Select a node r ~ I which is adjacent to no more than one non- 
cycle node. Letting v be the number of  cycle nodes adjacent to r, we now number 
all of  the cycle nodes of  G consecutively in a counter-clockwise fashion, in such 
a way that the cycle nodes adjacent to r are numbered I, 2 . . . . .  v. 

Now direct all of  the arcs of  T away from node r. If there is a directed path 
from node p ~ I to node q ~ V(G), we say that q is a descendant of p, and if p is 
adjacent to q, then p (q) is the parent (child) of  q (p) .  Given any node i ~ L we 
denote the set of  cycle nodes (C-nodes) which are descendants of  i by C(i). We also 
define C(i) = {i} for node i ~ 6'. With this construction, we note that for any i ~ L 
the member(s) of  C(i) are numbered consecutively. In fact, C(r) = { 1 . . . . .  O} and 
{ 1, 0} is a subset o f  C(i) if and only if i = r. Also, if q ~ I is a descendant of  p, 
then C(p) D C(q). We also note that i fq  is not a descendant of  p, then C(q) n C(p) = 0 .  

For any node i ~ L we call the youngest child of  i that child, denoted by Yi, 
which has the lowest numbered C-node as a descendant. If one or more children 
of i are themselves C-nodes, the indices of  the C-node children are used to define 
the youngest  child o f  i. 

As an overview, we will contract every non-cycle node with an appropriately 
selected cycle node, i.e. 7/pairs will be contracted and each pair to be contracted 
will be made up of  a non-cycle node and a matched cycle node. We now specify 
for each i ~ I a cycle node (denoted by c(i)) to contract with i. As will be shown 
shortly, we choose the nodes c(i) so that: 

(i) 

(ii) 

(iii) 

c(i) ;~ c(j)  for i ;~j so that each node family of  ~o (graph G O after the 
contractions) contains no more than ~2 nodes; 

the graph G resulting after the 7/contractions is planar; and 

each node of  Gr is in the exterior boundary of  ¢~ so that ¢~ is outerplanar. 
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The  nodes c(i) are chosen as follows: For each node i ~ L if  Yi ~ C, then 
c(i) = Yi. Otherwise, i f y  i E [, then c(i) is the largest indexed member  (oldest member)  
of  C(yi).  We note in particular that c(r) is that cycle node which is numbered  1 
since node r is adjacent to the cycle node numbered 1. An example  o f  the above 
construct ion and definit ions is shown in fig. 7. The dashed lines in the figure are 

Im•• 
14 

4 ~  / ~ x  i ~ Y  11 
,o 

5 8 
6 7 

C(r) = {1 ..... 14}, C(s)= {2,3,4}, C(u)=C(x)uC(y)uC(z) = {5,6,7,8,9,10,11,12} 

The youngest child of node t is node u. 
c(r) = I, c(s) = 2, c(t) = 12, c(u) = 6, c(y) = 7, c(z) = I0, c(v) = 13, c(x) = 5 

Fig. 7. An example to show c(. ). 

between nodes  i and c(i) to be contracted. The  graph f~ which results f rom the 
contract ion is shown in fig. 8. We note that G contains parallel arcs. Figure 9 
shows the result o f  per forming all parallel reductions on the graph in fig. 8 (after 
some rearrangement  o f  the embedding).  

We first show part (i) for the above choice o f  c( i) ' s .  

LEMMA 2 

c(i) ~ c ( j )  for any i, j E [, i ~ j. 

Proo f  

Lett ing Yi (Yj) be the youngest  child o f  i ( j ) ,  we have two cases. 

Case 1: Yi is not  on  a directed path from i to j .  
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14 

3 

3 0 

4 ~-'--'l~ ~ ~'~J II 

~r 9 
8 

Fig. 8. Graph after contraction of pairs (*, c(*)). 

14 
v 13 ~ t12 

Y7 8 

Fig. 9. Simplification of fig. 8 to show an outerplanar graph. 

In this case, C(yi) c~ C(yj) = O so that c(i) ~ c(j).  (A similar argument holds 
for yj not  on a directed path from j to i.) 

Case H: Yi is on a directed path from i to j .  

Letting q denote the index of  the node with the largest number in C(j ) ,  we 
note that c(i) ~ q. Since j has at least two descendants, q is strictly greater than any 
member o f  C(yj) so that q > c(j).  Thus, c(i) > c(j).  (A similar argument holds for 
yj on a directed path from j to i.) [] 

Parts (ii) and (iii) are established in the following: 
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THEOREM 1 

Let t~ be the graph resulting from contracting the pairs {(i, c(i)), i = 1 . . . . .  0}. 
Then, 

(a) 0 is planar, and 
(b) each node of t~ is on the exterior boundary of t~, so that t~ is outerplanar. 

Proof  
Each pair of  consecutive cycle nodes of G is in a unique face of G. From 

lemma 2, c ( i )~  c( j )  for all i , j  ~ L i ~ j ,  so the face of G containing c(i) and 
c(i) + 1, denoted by F;, is distinct from the face/~ containing c( j )  and c( j )  + 1, for 
every i , j  ~ L For every i ~ L construct an artificial edge in F/connecting i and c(i). 
Note that the resulting graph, denoted by G,  is planar. 

From the definition of contraction of nodes, the contraction of i and c(i) in 
G is equivalent to "shrinking" (as defined in [14]) the (artificial) edge (i, c(i)) in G. 
In lemma 1 of [14], it is shown that shrinking an edge of a planar graph preserves 
planarity. It now follows that contraction of the pairs {(i, c(i))} of G results in t~ 
planar. 

That t~ is outerplanar again follows from the definition of contraction and 
the fact that every node i ~ I is contracted with a cycle node of G. [] 

The above results provide a justification for the following algorithm. 

Given: 

Output:  

Step 0: 

Step 1: 

Step 3: 

Step 4: 

ALGORITHM HALIN 

A G-partite graph G o corresponding to a Halin flow graph G = T u ~. 

Solution to NSP on G °. 

Let C= V(~); [=  V(G)~V(~); r E [: r is adjacent to two or more nodes in 
C. Number these nodes of C adjacent to r in a counter-clockwise fashion, 
starting with 1 and continue numbering the remainder of  the nodes of  6". 

Root T at r. Let C(i) = {j: j is a descendant of i; j ~ C}, Vi ~ !, and let 
c(i) = (i1,  v i  c.  
For all i ~ L let Yi be that child of  node i : m i n { j : j  ~C(i)} ~C(y i ) .  
Define c(i) = Yi if y / ~ C ;  otherwise, c(i) = m a x { j : j  E C( yi) } , V i E [. 

Contract pairs (i, c(i)), V i  ~ / i n  G and the corresponding node families in 
G °, using (G4) and procedure CO, respectively, deriving graphs t~ and 0 °. 

Call algorithm SP to solve NSP on t~ and ~o. 

LEMMA 3 

The complexity of solving NSP for a Halin flow graph using algorithm 
HALIN is O(m~,6). 
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P roof 
As we will show, the total effort is dominated by the work in step 4, i.e. 

solving the NSP on t~ ° when t~ is series-parallel. 
We have argued earlier that to contract cr u and try takes O(nu * nv * ~ng: s 

adjacent to {u, u}) effort. Thus, the total effort to create graphs t~ and t~" is 
O(gi~Kl~l  * Itrc(ol* girt,  l: s adjacent to {i, c(i)]). Again, letting ~, be an upper 
bound on the number of nodes in any family of the original G-partite graph G O , 
some tr, in the above expression may be the result of a previous contraction operation, 
in which case it may have up to ~2 members. However, in any case Itrsl <- ~2. It is 
always the case that I~1--- ,I, and Itrc(01-< 2. 

Letting ki be the number of nodes adjacent to i ~ / a n d  noting that the number 
of nodes adjacent to c(i) is 3, we have ~,iG t(ki + 3) = O(m). Thus, the total effort 
for creating graphs 0 and ~o is O(m;d). In step 4, w~call algorithm SP with input 
graphs G and G °, where G is a series-parallel graph with O(m) nodes and each 
node family of t~ ° has no more than ~2 members. Thus, using algorithm SP on 
t~ and 0 ° takes O(m£ 6) effort, which is the complexity of algorithm HALIN. [] 

COROLLARY 

Problem MMMC on a t r a n s p o r t  graph ~ with n nodes, a Halin flow graph, 
and each new facility can be at any one of the n nodes of ~', can be solved, via 
algorithm HALIN, in O(mn6). 

When the flow graph is a partial k-tree (see, for example, [6]), Chhajed and 
Lowe [4] have shown that MMMC can be solved in O(mn k+ l). Since a Halin graph 
is a partial 3-tree, we note that MMMC can be solved in O(mn4). However, as we 
noted earlier, considerable insight is lost in using the more general approach. 

5. Extensions 

In this section, we give examples of other graphs for which NSP can be 
solved by using GP1 . . . . .  GP4 in polynomial time. Specifically, we define a generalized 
Halin graph and g-Halin graphs. Finally, we show that using our results, we obtain 
a linear time algorithm for a 0 -1  quadratic programming problem when G O representing 
the 0 - 1  quadratic program corresponds to a Halin flow graph. 

5.1. GENERALIZED HALIN GRAPHS 

We can generalize the definition of a Halin graph to a graph constructed as 
G" = T" u %', where T' is a tree (which could have nodes of degree 2) and %' is 
a cycle connecting a subset of the  leaf nodes of  T'. Thus, there may be tip nodes 
of T' not in the cycle C'  (G'  could have nodes of degree 1), and G' could have 
nodes of degree 2 on the cycle and on the tree, After maximal application of series 
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and cut-reductions to G' ,  the resulting graph will be Halin; therefore, recognition 
of  these graphs and solving NSP on them can be done in the same time complexity 
as before. 

5.2. R -DECOMPOSABLE GRAPHS 

We now give a further generalization of the class of graphs which are solvable 
by the repeated application of GP1 . . . . .  GP4 in polynomial time. In defining this 
class, there are two important factors to be kept in mind: (i) a graph in the class 
should be recognizable in time complexity no larger than the time it will take to 
solve NSP, and (ii) there should be limited application of the contraction-reduction. 
In particular, if w is the result of  contracting two nodes, then w should not be used 
in further contractions (in order to bound the number of nodes in any node family 
of  the G-partite graph). 

We first introduce some definitions. The connectivity of a graph is the minimum 
number of  nodes whose removal results in a disconnected graph. A graph is said 
to be n-connected if its connectivity is at least as large as n. The t-decomposition 
of a graph, which is unique [3, 12], is a tree T, the nodes of which are graphs. Two 
nodes in T are adjacent if and only if they have a common arc, called the marker 
arc. In the t-decomposition, (i) every member of V(T) has at least three arcs and 
is a polygon (cycle), bond (graph on two nodes with paraUel arcs), or a prime (a 
graph which is 3-connected after deleting all loops and aU but one arc in each 
parallel class), (ii) only bond members of V(T) have arcs parallel to their parent 
marker (defined below), and (iii) no two polygons or bonds have a marker arc in 
common. The reverse of  decomposition is a merge operation; while merging two 
adjacent nodes of  T, the common marker arc is identified and then erased. If we 
perform all the merge operations (in any order), we obtain the graph G. An 
O(V(G) + E(G)) algorithm to compute the t-decomposition is given in [12]. 

If we direct all arcs of a tree T away from a node D ~ V(T), T is rooted at 
D. Given a rooted T, and two nodes H,K ~ V(T) such that arc (a, b) ~ E(H) n E(K) 
(i.e. (a, b) is a marker arc of H and K), H is a parent of K if  there is a directed 
arc from H to K in the rooted tree T. Arc (a, b) is ca~ed the child marker of  K. Note 
that every node of rooted tree T, except the root node, has one and only one child 
marker. For a rooting at node R, let cmn(K, R) denote the nodes {a, b} corresponding 
to the end nodes of  the child marker of K for ai1 K ~ V(T)\R. 

We now define [5] a family of graphs ~r. Graph B is a member of 7r if and 
only if there are two terminal (nodes) u and v of 8 such that for arbitrary fixed 

* 0 nodes uko ~ cys and VrO ~ cq,, S (G (8), {uko, vro }) can be computed in polynomial 
time, where GU(B) is the G-partite graph corresponding to 8. In addition, graph B 
should be recognizable in polynomial time. Note that ~ may contain non-planar 
graphs, e.g. Ks with any pair of  nodes as terminals is in ~. Members of  g include 
Halin graphs, series-paraUel graphs, as well as graphs obtained by taking a series- 
parallel graph or a Halin graph, G, two additional nodes (which will be terminals), 
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a b 

Fig. 10. Examples of graphs which are in n. 

{u, v}, and connecting node u (v) to an arbitrary subset of nodes of G. The graphs 
in fig. 10 are examples of members of n. 

G is said to be a n-decomposable graph if there exists a node R such that 
when the t-decomposition tree of G is rooted at R, each component H ~ V(T)\ 
is in n with terminals cmn(H, R) and /~ is in n for some pair of nodes as terminals. 
Note that if R is series-parallel or Halin, then R is in n. Figure 11 gives an example 
of a x-decomposable graph together with its t-decomposition. 

To recognize a x-decomposable graph G, we first find its t-decomposition. 
Then we select a node R of this tree, root T at R, and test whether R is in n for 
some pair of  nodes of R. This can be done in polynomial time since there are at 
most O(V(R) 2) pairs of nodes to be tested. If R is in n, we then test for each member 
of V(T)\R whether it is in n with terminals cmn(H, R). If the answer is affirmative 
for each component in V(T)kR, we are finished; otherwise, we select another unselected 
node of T and continue. Thus, determining whether a graph is x-decomposable can 
be done in polynomial time. 

In order to solve NSP on a x-decomposable flow graph, we first find the node 
and root the tree at R. The following recursive step is carried out until node R is 

obtained. 
Consider a component H (~: R) which is a leaf node in the t-decomposition 

tree. 

Case I: 

Case H: 

If H is a polygon, we perform series-reduction on both H and G°(H) until 
only the marker arc remains. Merge H with the component adjacent to 
it and perform parallel reduction, if necessary. 

If H is prime, connect (arcs initially have zero costs) the node families 
corresponding to the cmn(H, /~)= {u, v} in G°(H). Select two nodes 
uk ~ cru and v, E cr v and compute S*(G°(H), {uk, vr}). This Can be done 
in polynomial time since H is in n with terminals cmn(H, R). Set the 
weight on the arc (uk, v,) as Z(S*(G°(H), {uk, v,})) and label as nodes in 
S*(G°(H), {uk, v,}). Perform this operation for every choice of a node in 
o'u and a node in o'v. Delete all arcs and nodes of H except the marker 
arc. Merge H with the component adjacent to it and perform parallel 
reduction, if necessary. 
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Graph G 

~ a2 a l ~  

9 " . V  
b3 

b a2 a21. "" , . ~ f  bl bl 

..-"..... 7' 
1t3 

1t4 

The t-decomposition of graph G 

Fig. 11. A ff,-deeomposable graph. 

Case III: If H is a bond, merge H with the component adjacent to it and perform 
parallel reduction, if necessary. 

In either case, the resulting tree T will have one less node. At the end of the 
process, we obtain graph /~ for which NSP can be solved in polynomial time. 
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5.3. QUADRATIC ZERO-ONE PROGRAMMING 

Pardalos and Jha [16] have provided an algorithm which uses the planar 
separator theorem [14,15] and runs in O(mlog(m)2 c'J'l°g'') with c > 0, for quadratic 
zero-one programming (see problem 1, section 1) for planar graphs. Halin graphs 
have a 3-separator which will make the algorithm in [6] of O(mlog(m)2al°g'n). The 
initial m is an upper bound on the complexity of finding a separator and updating 
weights. It may be that due to the special structure of a Halin graph and the resulting 
components, this can be done in constant time. In addition, the exponent of 3 comes 
from the fact that a Halin graph has a 3-separator, but the resulting components and 
subeomponents will have a 2-separator. Thus, it may be possible to reduce the 
overall upper bound to O(log(m)221°gin) = O(m21ogm). If we represent the quadratic 
0 - 1  programming problem as an NSP with flow graph G(Q) (see section 1), then 
there will be two nodes in every node family, i.e. ~ = 2. Thus, applying algorithm 
Halin to solve the quadratic 0 - 1  programming problem when G(Q) is a Halin graph 
will result in a time complexity of O(m26), which is linear. These results are also 
applicable when G(Q) is 1r-decomposable. We note that Barahona [2] has provided 
a linear time algorithm for quadratic 0 -1  programming when G(Q) is series-  
parallel which can also be achieved by formulating the problem as an NSP and 
applying algorithm SP. 

Appendix 

PROCEDURE SR(trq) 

Step 1: Let u and v be the two nodes adjacent to node q in G, where q ~: u ~: v. 

Step 2: For each pair of  nodes Uk ~ tru, V, ~ try, find qpo giving 

+ to w = min {to~ + to~} (ties can be arbitrarily broken). to~qp0 
rp° qp e trq 

Add an arc a'(uk, v,) with weights equal to to.uq o + to~o and let the label 
xp i . rp . 

of this new arc be L,,,(v,,u k) ~-- Lo(Vr, qpo) u t,atuk,qpo) u Ln(qpo). 

Step 3: Delete node family trq. Return (to the caUing algorithm). 

PROCEDURE PR(tr M, tyv) 

Step 1: Let nodes uk ~ tr~ and v, ~ try be such that there are two arcs between them. 
Delete one of  these arcs and add its weight to the weight of the other arc. 
Also add the label of this deleted arc to the label of  the second arc. 

Step 2: Continue step 1 until no parallel arcs between nodes of o'u and tr v remain. 

Step 3: Return. 



122 D. Chhajed, T.J. Lowe, Locating facilities which interact 

PROCEDURE CR(~rq, O',) 

Step 1: With q a pendant node of G adjacent to u, select an arc (u, v) of G, v ,: q. 
(Such an arc exists because we have assumed that (u, q) is not the only arc 
of  G, and thoughout we assume that G is connected.) 

Step 2: For each node uk of o'u, 
Find a node qt, o of node family o-q such that 

¢0~o = rain {¢ot~ , } (ties can be arbitrarily broken). 
qpeaq 

In G °, add new arcs a'(uk, v,) for all v, ~ o'v with weights o9~o and set the 
labels of these new arcs La.(u k, Vr) ~-- Ln(qpo ) u La(qt, o, uk). 

Step 3: Delete all the nodes of node family o'v in G °, i.e. delete o'v. 

Step 4: Return. 

AI.L3ORITHM SP 

Step 0: Set k ~ 1, G ° ~-- G °, G k <-- G. 
Let 2D denote the list of nodes in Gk with degree 2. PA is the list of node 
pairs having parallel arcs in Gk. 

Step 1: If Gk is a single arc, then go to step 6; else find a node q ~ V(Gk) with 
degree 1 and go to step 2. If there exists no such node, then go to step 3. 

Let (q, u) ~E(Gk) be the arc connectin~ q to another node u. 
Cut-reduce node families o'u and o', in G~' by calling procedure CR(O'q, o'u). 
Cut-reduce nodes u and q in Gk. 
Let node v be such that it is adjacent to u in Gk and is used in CR(-). Add 
(u, v) to PA. 
Set Gk+ 1 <--- G k (after cut-reduction) 

G°+l <--- G ° (after cut-reduction) 
k ~ - - k + l .  

Go to step 5. 

If I2DI = 0, then go to step 5; else choose a node q ~2D. Let nodes u and 
v be adjacent to q in Gk. 

If (u, v) E E(Gk), then add (u, v) to PA. 
Series-reduce node family O-q by calling procedure SR(O'q). 
Series-reduce node q. 
Set Gk+ 1 ~ G k (after series-reduction) 

(7°+1 ~ G ° (after series-reduction) 

k<---k+l  
Delete q from 2D and go to step 5. 

Step 2: 

Step 3" 

Step 4" 
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Step 5: 

Step 6: 

If I PA 1 = 0, then go to step 1; else let (u, v) ~ PA. 
Parallel-reduce arcs between node families o'u and cry by calling procedure 
PR(o'u, cry). 
Parallel-reduce arcs between nodes u and v. 
Set Gk+ I ,--- G k (after parallel-reduction) 

G°+l ~ G O (after parallel-reduction) 

k ~ - - k + l  
If u (or v) has degree 2 in Gl,, add it to 2D. 
Go to step 1. 

At this stage, G is a single arc (u, v). Find 

g o  
tokOrO = min to . 

k~ ¢y~ , r¢ {Y o 

This is the value of the optimal solution and the solution can be constructed 
by La(ukO, VrO ) U Ln(uko ) U Ln(v:  ). Stop. 
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