
Annals of Operations Research 40(1992)101-124 101

LOCATING FACILITIES WHICH INTERACT: SOME SOLVABLE CASES

Dilip CHHAJED
Department of Business Administration, 350 Commerce West, University of Illinois at Urbana-
Champaign, Champaign, IL 61820, USA

and

Timothy J. LOWE
Department of Management Sciences, University of Iowa, Iowa City, IA 52242, USA

Abstract

The network version of the m-median problem with mutual communication (MMMC)
is to find the location of m new facilities on a network with n nodes such that the sum
of (a) the cost of interaction between the new facilities and n existing facilities on the
network, and (b) the cost of interaction between pairs of new facilities is minimized.
The existing facilities are located at nodes of the network and the interaction cost
between a pair of facilities is a function of the network distance between the facilities.
This problem is shown to be equivalent to a graph-theoretic Node Selection Problem
(NSP). We show that many other problems can be formulated as an NSP. We then
provide a polynomial time algorithm to solve NSP for the case when the flow graph
is Halin. Extensions to other graph families are provided.

1. Introduction

The network version of the m-median problem with mutual communication
(MMMC) is to find the location of m new facilities on a transport network "¢ with
n nodes such that the sum of (a) the cost of interaction between the new facilities
and n existing facilities on the network, and (b) the cost of interaction between pairs
of new facilities is minimized. The existing facilities are located at nodes of the
network and the interaction cost between a pair of facilities is a function of the
network distance between the facilities.

The new facilities can be m production plants, each producing some end
products as well as several components/by-products which are used by other plants.
The existing facilities may be the customer locations or the distribution centers
where the customer demand for the product(s) produced by each plant is known.
The transport network is t h e road network whose nodes include the customer
points/distribution centers and other points which are candidate sites for the location
of new plants.

0 LC. Baltzer AG, Scientific Publishing Company

102 D. Chhajed, T.J. Lowe, Locating facilities which interact

Another application of MMMC is the location of several new machine centers
in a production area. Material movements are made on a transport network (e.g.
network of aisles). Each new machine center will send and/or receive material
to/from one or more existing machine centers whose locations on the transport
network are known. In addition, each new machine will have material flow interaction
with some subset of the other new machines. We assume that the existing machines
are located at nodes of the transport network. There is no loss of generality here,
since as long as each existing machine is on the network, its location can be
declared as a node. We consider problems where the set of possible locations on
the network for each new facility is finite. We can also declare these locations as
nodes of the network.

In the above examples o f MMMC (as well as other examples), it is most
likely the case that the cost o f interaction between certain pairs of facilities will not
depend upon the network distance between their locations. This would occur in the
above examples if there was no material flow between a pair of facilities. In what
follows, we say a pair of facilities interacts only if the cost of interaction is a
function of the network distance between the facilities.

Most of the literature associated with MMMC deals with the case where the
interaction costs are linear in network distances. Kolen [13] has shown that the
problem is NP-hard when ~ is a general network, but is polynomiaUy solvable when
"r is a tree. Picard and Ratliff [17] also give a polynomial time algorithm for the
problem when ~'is a tree. Dearing et al. [7] have shown that the problem is a convex
optimization problem for all data choices if and only if "t" is a tree. Erkut et al. [10]
consider a constrained version of the problem and make use of separation
conditions [11] to obtain a mathematical program. The mathematical program is
equivalent to the original problem if "t is a tree; otherwise, the solution to the
mathematical program provides a lower bound. A computational study of the lower
bound vis-a-vis the original problem is given in Erkut et al. [9].

Xu et al. [19] consider the version of MMMC where the transport network
"ris not necessarily a tree, but "rdoes contain two or more blocks (maximal, nonseparable
subgraphs of "t). They show that by solving a related problem on a "blocking graph"
(which is a tree), information can be obtained which localizes each optimal new
facility to some vertex or block of ~r. The problem then decomposes into a collection
of independent problems, one for each localizing block of ~r.

In this paper, we give a polynomial time algorithm for a class o f network
MMMC problems in which the transport network 'ris general and where the interaction
costs are general functions o f network distances as long as these cost functions are
such that node optimality conditions hold, i.e. there is at least one optimal solution
in which each new facility is located at a node of the transport network. However,
we do require a certain structure with respect to the pairs of new facilities that
interact.

In what follows in this section, we formulate a problem known as the Node
Selection Problem (NSP) and show that MMMC can be represented as an NSP. The

D. Chhajed, T.J. Lowe, Locating facilities which interact 103

problem transformation, which also appears in Chhajed and Lowe [5], makes use
of a graph we call a G-partite graph (to be defined shortly), which captures the
essence of the underlying problem. We end the first section of the paper by citing
four other problems that can be formulated as an NSP.

1.1. NODE SELECTION PROBLEM

Given a graph G = (V(G), E(G)) with node set V(G) and arc set E(G), consider
the following G-partite graph GO: Corresponding to each node u ~ V(G), we have
a node-family tru in G O which contains n~ nodes {uk: k = 1 n~}. Two nodes Uk
and v, (v ~ u) are adjacent in G O if and only if arc (v, u) ~ E(G). Arc (Uk, V,) in
G O is assigned a weight to~. Thus, if (v, u) exists in G, nodes of node families u
and v form a complete bi-partite subgraph of G °. F)gure 1 gives an example of
graph G and a corresponding G-partite graph. Figure 2 shows the weights on the

/ ' L
b w

C

Graph G
(a)

na = nc =2, nb= nd =3

G-Partite Graph G °

(b)

Fig. 1. Graphs G and G °.

~¢eights

1 5

2 7

2 3

4 8

9 6

Weights!

1 5

2!7

2

7 1

10 2

1 2 3
9 11 14

Weighu

1 7

19 6 12 2 4

Fig. 2. Weights on graph G O .

2 3

4 8

5 4

arcs in G °, which are presented in the form of matrices. The entry in row 1 and
column 3 of the first of the matrices in fig. 2 is the weight of the arc joining
node 1 of trc and node 3 of ira. Node families o'u and orv are said to be adjacent

104 D. Chhajed, T.J. Lowe, Locating facilities which interact

if and only if every node in tr~ is adjacent with every node in trv. We will use the
notation (tru, try) to denote all arcs between nodes in o'~ and nodes in try. The graph
G is also referred to as the flow-graph. Given a G-partite graph G °, let S(G °) be
an induced subgraph of G O with one node of each node family and Z(S(G°)) be the
sum of the weights on the arcs in S(G°).

The following Node Selection Problem (NSP) was defined in [5]: Given a
graph G and the corresponding G-partite graph G O with arc weights co, find an S(G °)
such that Z(S(G°)) is minimum. We will denote an optimum solution of NSP by
S*(G°).

The version of the NSP in which there are also weights on nodes in G O and
Z(S(G°)) includes the node weights as well as arc weights can be easily transformed
to a problem with no weights on the nodes. Let nw(t~r) denote the node-weight on
node yr. For those nodes with nW(Vr) ~ O, we identify a node family tr,,, adjacent
to try, and set the weights to~Y of arc (v,, uk) as tOUr" ~-- to~Y + nW(Vr), Vuj, ~ try.
Finally, we delete all node weights. If node v~ is in S(G°), Z(S(G°)) will include
the arc weight nW(Vr). Thus, an NSP in which there are weights on nodes can be
transformed to an equivalent NSP in which there are no weights on nodes.

1.2. MMMC AS NSP

To represent MMMC as an NSP, the flow graph has m nodes (one node for
each new facility). For nodes u and v of G, (u, v) E E(G) if and only if new facilities
u and v interact, i.e. the cost of interaction between the pair depends upon the
distance between them. We then construct a G-partite graph G O with m node families,
one corresponding to each new facility. The node family for node u of G consists
o f n~ nodes, one node corresponding to each of the n,, possible locations for new
facility u on the transport graph 'r. For each new facility u, we select a new facility
u ° such that there is an interaction between new facilities u and u ° and define a
function 6(u, u °) = 1 and t~(u, v) = 0 for all other new facilities v ~: u °. Note that
t~(u, v) may not be equal to 6(v, u). The weight on the arc (uk, vr) in G O is equal
to the sum of (a) t~(u, v) * (interaction costs between new facility u and all existing
facilities if new facility u is located at node k), (b) t~(v, u) * (interaction costs
between new facility v and all existing facilities if new facility v is located
at node r), and (c) interaction cost between new facilities u and v if u is located
at node k and v is located at node r.

S(G °) gives a feasible solution to MMMC with a cost Z(S(G°)). Thus, solving
NSP on a G-partite graph as defined in the preceding paragraph provides a solution
to the MMMC. In [5], a version of the MMMC in which there is a fixed cost of
locating a new facility u at node k is modeled as an NSP.

1.3. ADDITIONAL PROBLEMS AS NSP

We now cite four additional problems that can be posed as Node Selection
Problems.

D. Chhajed, T.J. Lowe, Locating facilities which interact 105

Problem 1 : 0 - 1 quadratic programming

A 0 - 1 quadratic programming problem is [2]:

(QP) min ll2xTQx + cx = ~_~ ~_, qijxixj + ~,~ CiX i, X E {1, 0}.
i - - l . . .n-I jffii+l...n i=l. . .n

To model QP as an NSP, we create a G-partite graph G O (and a flow graph G(Q))
with a node family for each xi (a node for each xi in G(Q)) which has two nodes
nio and nil. Node ni0 (nil) corresponds to the variable xi taking the value 0 (1). Join
two node families (two nodes in G(Q)) if and only if qij ~ O. The weight on arc
(nil, nil) is initially set equal to qij and all other arcs between tri and ~ are initially
given weight 0. To account for the linear costs ci, we select an index j such that
qij ~ 0 and add ci to the weight on arcs (nil, njo) and ~nil, nil). It is easy to see that
NSP on G o is a reformulation of QP.

Problem 2: Product des ign- marketing

Consider the following variation of a product design problem arising in
marketing [8]: A product has to be designed with m attributes. Corresponding to
an attribute u, there are nu discrete levels of the attribute (e.g. color is an attribute
with blue, green and red as three possible "levels"). For each level of each attribute,
we have a measure of customer preference (main effect). In addition, there are two-
way interaction effects between level k of attribute u and level r of attribute v. The
objective is to design a product by choosing a level of each attribute such that the
sum of the main effects and the two-way interaction effects is maximum. Transforming
this product design problem to NSP is similar to the transformation for MMMC
with the fixed locational costs.

Problem 3: Product des ign- engineering

Askin and Goldberg [1] have looked at a product design model focussing on
the engineering attributes of a product, similar to the product design problem from
the marketing perspective described above. Again, a level of each attribute is to be
selected to mi,'fimize the sum of production cost and average cost of quality, which
is a function of target design and the actual performance of a design. Production
costs and the distribution of a quality variable can be an arbitrary function of
attribute levels. A design point is defined by the setting for each attribute. Expermentafion
is carried out by selecting a set of design points and making multiple observations
for each design point. The mean and variance of the quality of each design point
are computed. One way to select a design is to minimize the cost of each attribute
level (main effect) and the cost of quality defined by the square of the bias (difference
between mean quality and the target quality of a design point), multiplied by a cost
coefficient for quality loss. Askin and Goldberg develop a model, called the quadratic
selection model (equivalent to NSP), to solve the problem.

lO6 D. Chhajed, T.J. Lowe, Locating facilities which interact

Problem 4: Public transit schedule

Consider a public mass transit system (trains, subways, busses) [20] where
we are given a set of transfer stations and a set of routes connecting these transfer
stations, a cycle time (amount of time between successive departures at any station
along its route) for each train, known number of passengers who want to change
between routes at transfer stations, and known running times between stations and
stopping times at stations. We want to determine the departure time of each train
within its given cycle at the initial station of its route such that the sum of all
waiting times for all passengers changing routes is minimized. To represent this
problem as an NSP, we construct one node family for each route. The nodes in a
node family correspond to different possible departure times for the train from its
initial station and two node families are adjacent if there are passengers who want
to change between those two routes. The weight on an arc is the total waiting time
of all passengers who want to change between the routes (represented by node
families) at the departure times represented by the end nodes of the arc.

The quadratic assignment problem (and hence the traveling salesman problem)
also can be posed as an NSP. For these two problems, the flow graph will be
complete and so the results of this paper cannot be applied to these two problems
(if the results were applicable, we would have shown that P = NP!). However, the
results of this paper can be used to obtain lower bounds to the QAP and the TSP
be deleting (through Lagrangian relaxation) some of the arcs of the flow graph.

We would like to point out that NSP is a special case of nonserial dynamic
programming. Lipton and Tarjan [15] have given a planar separator theorem and
shown that a nonserial dynamic programming problem, when each variable can take
only two values and the flow graph is planar, can be solved in 2 °(4"~), where m is
the number of nodes in the flow graph. We will return to this in section 5 to
compare the efficiency of our algorithm versus theirs.

Subsequent to the submission of this paper, Chhajed and Lowe [4] developed
a general procedure for solving MMMC when the flow graph is a k-tree. If the
algorithm in that paper was applied to the problem considered herein (flow graph
is Halin), the complexity would be lower than that obtainable via the algorithm in
this paper. However, the general procedure does not provide the same level of
insight as that provided by the approach contained herein.

In the remainder of this paper, we give a polynomial time algorithm for a
class of NSP which is characterized by the structure of the flow graph G. In
section 2, we summarize the results from our earlier paper [5] on solving NSP when
the flow graph is series-parallel. These results will be used in the later sections.
In section 3, we define a reduction operation on the G-partite graph which is similar
to the contraction operation defined for a graph. In section 4, we define a Halin
graph and present a polynomial time algorithm for NSP when the flow graph is
Halin. In concluding the paper in section 5, we show how the results can be
extended to other flow graphs.

D. Chhajed, T.J. Lowe, Locating facilities which interact 107

2. Previous results

In this section, we report some results from our previous paper [5], in which
a polynomial time algorithm for NSP when the flow graph is series-parallel is
given.

DEFINITION

A graph is series-parallel [21] if it can be reduced to an arc by repeated
applications of the following operations:

(G1) Series reduction: Replace any degree-2 node q and the incident arcs (u, q)
and (v, q), u ~: v, by a new arc a'(u, v) incident to u and v.

(G2) Cut reduction: If q is a pendant node (a node of degree one) adjacent to node
u, find a node v ~: q adjacent to u, delete node q and add an additional arc
a'(u, v).

(G3) Parallel reduction: Replace two arcs e and f which are both incident to
nodes u and v by a new arc g incident to u and v.

The new arcs that are added to the graph in the above operations are named
pseudo-arcs in [21]. Richey describes an operation similar to operation (G2), calling
it a Jackknife reduction, but does not add the new arc a'(u, v). If we perform
parallel reduction on (u, v) immediately after the cut reduction, we obtain Richey 's
Jackknife reduction. Thus, although there is a minor difference in the definition of
one operator, which we need for our algorithm, the above definition of a ser ies-
parallel graph is identical to that of Richey.

Three graph operations (GP1, GP2, and GP3) on a G-partite graph are defined
which are similar to the operations (G1), (G2), and (G3) discussed above, so that the
new G-partite graph corresponds to G after the elementary operation. The outcome
of two of these operations will result in parallel arcs in the graph. We emphasize here
that if there are parallel arcs between two given nodes of a G-partite graph G t, and
if this pair of nodes is in a feasible solution S(G °) to NSP, then the parallel arcs are
also in S(G°), so that the arc weights of both arcs contribute to Z(S(G°)).

With each node and each arc of G °, a label is associated in the form of a set
of nodes. Initially, the label of each arc e is set as La(e) = { }, where { } denotes
the empty set, and the label of each node uk is set as Ln(uk) = {Uk}. We will
represent the label of an arc e defined by two nodes p and q by La(p, q) rather than
L~((p, q)). During the graph operations on G °, arcs and nodes of graph G O are
deleted, in some cases (new) arcs are added, and labels of the remaining arcs, as
well as the arc weights, are modified to reflect the change. The labels are used,
basically, to carry pertinent information about the deleted portion of the graph. In
modifying the labels, we typically add two labels, where addition of labels is
defined as the set union operation on the sets corresponding to the two labels. In
the remainder of the paper, we will denote 3, = max {nu: u ~ V(G)}.

108 D. Chhajed, T.J. Lowe, Locating facilities which interact

(GP1):

(GP2):

(GP3)

Series reduction: In this process, a node family trq such that node q is
adjacent to exactly two distinct nodes u and v of G, where q ¢ v ~ u, is
eliminated in G O and node families or, and try are made adjacent. Thus, the
reduced graph has one less node family. This reduction has time complexity
O(Z3).

Cut reduction: Given two node families crq and 0", such that node q has
degree one in G and {(u, v), (q, u) ~E(G)}, we delete node family O'q and
add parallel arcs (0",, cry) between nodes of 0", and try in the G-partite graph.
Also, cut reduction can be done in O(A, 2) time.

Parallel reduction: Given two node families or,, and try such that there are
two arcs between every node uk ~ cry and v, ~ o'v, we replace the parallel
arcs by a single arc. The weights and the labels associated with the two
parallel arcs are added and they form the weight and label, respectively,
of the new arc. Furthermore, parallel reduction can be performed in 0(~. 2)
time.

Additional details about these three reduction operations can be found in the
appendix, where they are presented as procedures. In [5], it has been proven that
each of these operations preserves the solution to NSP. Finally, an algorithm (algorithm
SP) which repeatedly uses the above three reductions to solve NSP on a G-partite
graph when the flow graph is series-parallel is presented in the appendix. If the
flow graph has ra nodes (m node families in G °) and each node family has no more
that ~ members, then algorithm SP is O(mZ~).

3. Contraction reduction

In this section, we define a fourth elementary operation (G4) on G and (GP4)
on G °. In what follows, given two nodes u and v of G (node families o'u and tr v
of GO), when we refer to the set of nodes adjacent to {u, v} (node families adjacent
to {tr,, cry}), we mean those nodes s in G (node families as in G °) adjacent to u
or v or both (adjacent to o', or Cry or both), where s ~: u ~ v.

(G4): Contraction reduction: Contraction of two nodes u and v in G is defined as
the removal of u and v, the insertion of a new node w, and the insertion of
an arc between w and each node which was adjacent to {u, v}.

(GP4): Contract reduction of two super nodes: In this operation, we reduce two
node families tr,, and cry in G O to a single node family trw. If G denotes the
graph G after nodes u and v are contracted, then contracting node families
cru and O'v will result in a G-partite graph corresponding to graph G. The
number of nodes in trw is nu * nw The following procedure gives details of
this process.

D. Chhajed, T.I. Lowe, Locating facilities which interact 109

PROCEDURE CO(~, O'v)

Step 1: Create a node family trw with nu * nv nodes {wr: r = 1 nu * nv}.
For each i = 1 nu and j = 1 nv, with nu > nv, choose the unlabeled
node wr where r satisfies r = nu * (i - I) + j, and set its label Ln(wr) as
Ln(ui) u Ln(vj). Let the function to(r) = [i,j].

Step 2: Choose a node family trs adjacent to {tru, try}.
For every node sk ~ trs and wr ~ trw where r (r) = [i, j] :

Add a new arc a'(sk, w,) with weight,

to~' ~ to~ + o ~ and label

La(s k, Wr) <--- La(S k , ui) u La($ k, l)j).

{Here, to~ and La(sk, ui) (tO~, and Lo(sk,vj)) are def ined to be zero and
the null set, respectively, if tr, and tru (try) are not adjacent.}

Step 3: R e m o v e all the arcs connect ing node family tr, to o'~ and try. I f tr,, and try
become disconnected from the remainder o f G O , then go to step 4; else, go
to step 2.

S tep 4: If tru and try are connected, then choose any node family tr, connected to trw.
Set the weight o f arcs jo in ing nodes in crs and Crw as:

toSff ~ to~ TM + W~ v " r(r) = (i, j) ; V(s k, w r) ~ E(G°),

La(s k, wr) <-- La(s k, w r) u La(U i, vj) " r(r) = (i, j); V(s k, w r) ~ E(G°).

Step 5: Delete tr,, and try. Return.

As an example , consider the G-parti te graph G O shown in fig. 1 and the arc
weight data shown in fig. 2. Suppose we want to contract-reduce node famil ies tr,,
and o'c. Since na = nc = 2, we first create a node family tYw with four nodes as shown
in fig. 3, and set the labels as Ln(Wl) = {al, cl}, Ln(w2) = {al, c2}, Ln(w3) = {a2, cl},
and L~(w4) = {a2, c2}. Also, let r (1) = (1, 1), r (2) = (1, 2), t¢(3) = (2, 1), and
r (4) = (2, 2). In step 2, we choose node family cry,, which happens to be connected
to both tra and trc. We connect o't, and trw (fig. 3) and compute the weights and
labels. Since the labels on arcs in (o'~, o't,) and (trc, crt,) are empty , the labels on the
new arcs are also empty and are not shown in fig. 3. In step 3, we delete arcs
(trt,, tr,,) and (trt,, trc) and go back to step 2, since tr a and trc are still connected to G °.

We n o w choose node tra which is connected to o'~, connec t trw and tra, and
compute the weight and label o f these arcs. We then delete the arcs connect ing
nodes in ira and o'~. This disconnects o'~ and tr, f rom the rest of the graph (fig. 4),
so we go to step 4. Since o'~ and o-~ are connected, we select node o't, which is
connected to trw and mod i fy the weights and labels o f arcs jo in ing O'b and trw. Node
families tr c and tra are now deleted. The final result o f applying procedure CO is
shown in fig. 5.

110 D. Chhajed, T.J. Lowe, Locating facilities which interact

Oa

Ob Od

1 2 3 4

Step 1

oa

%

Od
¢¢eights

h~ 1 2 3 4

1 16 26 i3 23

2 15 1O 16 9

~ 3 22 20 18 16

1

Step 3

Fig. 3. Contraction-reduction: example.

oa

2 qi

wc gh 234757
2 4 9 4 9

3 8 6 8 6

1 2 3 4

Fig. 4. Contraction-reduction example: partial solution.

D. Chhajed, Td. Lowe, Locating facilities which interact 111

I Weights
X 2 3 4!
1 5 7 5 7

2 4 9 i 4 9
3 Ow ~ 8 6 8 6

Weighm
b~ I 234

1 21i33 20 33

2 20 13 23 19

3 27 232526

Label on Each Arc: { }

Node Labels

Ln(w 1) = { al,c 1 }, Ln(w2)= { al,c2), Ln(w3)= { a2,c 1), Ln(w4)= { a2,c2}

Ln(bl)={bl }, Ln(b2)={b2}, Ln(b3)={b3}
Ln(dl)={dl }, Ln(d2)={d2}, Ln(d3)={d3}

Fig. 5. Contraction-reduction: f'mal solution.

The complexity of step 1 is n,, * nv. Step 2 can be carried out in n, * n,, * nv
time, which is repeated for all cr s connected to o', or or,,, giving it a complexity of
O((~sis adjacent to {u, v} ns)* n~ * nv). The complexity of steps 4 and 5 is no larger
than that of step 2. Thus, the complexity of CO is O ((~s is adjacent to {u, v} ns) * nu * nv).
We now show that contraction-reduction preserves an NSP solution on G °.

Let v b e an arbitrary subset of nodes of a G-partite graph G O such that there
is at most one node from each node family in ~. Let S*(G °, ~) be an optimal
solution of a constrained version of NSP on G O with the set of nodes ~" fixed, and
let Z(S*(G °, ~¢)) be the value of this solution. Thus, S*(G °, { }) is a solution to NSP.

LEMMA 1

For a G-partite graph G O with node families o', and o'v, let G O and G_. be the
results of contracting node families cr~ and cry in G O and nodes u and v in G. Given
an optimal solution S*(G_. °) to NSP(G._.°), an optimal solution to NSP(G °) can be
constructed using the nodes and arc labels of S*(G__°).

Proof
Let S*(G °) be an optimal solution to NSP(G °) and let w, . ~ o'w be in this

optimal solution, where o'w is the node family introduced in G o as a result of
contraction of or, and o'v. Let ui. ~ a . and vy° ~ or,, be such that r(r*) = (i*, j*). Let
V* = {q : : (w,.. q :) ~S*(G°)}, i.e. V* is the set of nodes adjacent to w,. in S*(G°).

112 D. Chhajed, T~I. Lowe, Locating facilities which interact

All nodes in W' are also in graph G O and belong to node families adjacent to o'u
and/or o'v. Let A__* denote the set of arcs between w,, and the nodes in ~*.

In order to obtain a solution to NSP(Q.°\o'w, ~*), we can delete the arcs in
* * 0 - * 0 * * 0 * * 0 * • from S ~). That Is, S (G. \o'w, ~) = S (_G.)_A'. S (_G_. \o'w, ~) is also an

optimal solution to NSP(G°\{o'u, cro}, ~¢*) and has the same objective function value
on graphs G_.°\o'w and G°\{o'u, o'v} because these two graphs are the same. If A* is
the set of arcs between {us,, vj,} and nodes in I f , including the arc (u~,, vj.) if it
exists, then the sum of the weights and labels on the arcs in A* are the same as the
sum of the weights and labels on arcs in _A*. Thus, S*(.G_.° \o'w, ~*) u A* is a feasible
solution to I~ISP(G °) with the objective function value Z(S*(G.°)).

* 0 What remains to be shown is that S (G. \~r w, g*) u A* is also an optimal
solution to NSP(G°). To do so, we first assume that a solution S*'(G °) with an
objective function value better flower) than Z(S*(_G.°)) exists and then arrive at a
contradiction. Let ui, ~ ¢ru and vy, ~ cry be such that they are in this optimal solution.
Let w,, ~ o'w be such that tc(r') = (i ' , j ') . Let IV' = {qp," qp, ~ S*'(G°), q is in the set
of nodes adjacent to {u, v} }, A' is the set of arcs between {ui,, vy,} and nodes in
g ' , including the arc (ui,, vj,) if it exists, and A' is the set of arcs between w,, and
the nodes in ~'. Now, S*'(G°)\A ' is an optim~ solution to NSP(G°\{o'u,o'~,}, ~ ')
and NSP(_Q.°\o'w, g ') . Also {S*'(G°\A "} u A__" is a feasible solution to NSP(_G_°).
However, the sum weights and labels on A' and A__' are the same. Thus, we have
obtained a feasible solution to NSP(ff_. °) with a value smaller than Z(S*(.G_.°)), a
contradiction. []

In the next section, we define a Halin graph and give an algorithm to solve
NSP when the flow graph is Halin. This algorithm makes use of GP1 GP4
defined in the previous two sections.

4. Halin graphs

In this section, we give an algorithm to solve (NSP) on a G-partite graph
corresponding to a Halin flow graph. A Halin graph is constructed as follows: Take
a tree T having no nodes of degree 2, with a planar embedding, and add a cycle
% formed by all the leaf nodes of T such that G = T u % remains planar (fig. 6).
A procedure to recognize a Halin graph in polynomial time is given in [22].

Our solution procedure to solve NSP on a Halin flow graph proceeds by first
identifying a set of pairs of nodes of G. Each pair of nodes is contracted, after which
the original flow graph reduces to an outerplanar graph, which is known to be a
series-parallel graph [18]. Corresponding operations are also performed on G O .
Subsequently, we use algorithm SP to solve NSP on this resulting outerplanar graph
and recover the solution to the original problem on the Halin graph. We begin by
introducing some additional notation.

Given a Halin graph G, let C be the set of cycle nodes (i.e. V(g)) and let I
be the non-cycle nodes (non-tip nodes of T). We assume that G has no nodes of

D. Chhajed, T.J. Lowe, Locating facilities which interact 113

Fig. 6. A Halin graph.

degree 2 (see section 5 for relaxation of this assumption). Let ICI = 0 and III = 7/,
so that 0 + 7/= m. Select a node r ~ I which is adjacent to no more than one non-
cycle node. Letting v be the number of cycle nodes adjacent to r, we now number
all of the cycle nodes of G consecutively in a counter-clockwise fashion, in such
a way that the cycle nodes adjacent to r are numbered I, 2 v.

Now direct all of the arcs of T away from node r. If there is a directed path
from node p ~ I to node q ~ V(G), we say that q is a descendant of p, and if p is
adjacent to q, then p (q) is the parent (child) of q (p) . Given any node i ~ L we
denote the set of cycle nodes (C-nodes) which are descendants of i by C(i). We also
define C(i) = {i} for node i ~ 6'. With this construction, we note that for any i ~ L
the member(s) of C(i) are numbered consecutively. In fact, C(r) = { 1 O} and
{ 1, 0} is a subset o f C(i) if and only if i = r. Also, if q ~ I is a descendant of p,
then C(p) D C(q). We also note that i fq is not a descendant of p, then C(q) n C(p) = 0 .

For any node i ~ L we call the youngest child of i that child, denoted by Yi,
which has the lowest numbered C-node as a descendant. If one or more children
of i are themselves C-nodes, the indices of the C-node children are used to define
the youngest child o f i.

As an overview, we will contract every non-cycle node with an appropriately
selected cycle node, i.e. 7/pairs will be contracted and each pair to be contracted
will be made up of a non-cycle node and a matched cycle node. We now specify
for each i ~ I a cycle node (denoted by c(i)) to contract with i. As will be shown
shortly, we choose the nodes c(i) so that:

(i)

(ii)

(iii)

c(i) ;~ c(j) for i ;~j so that each node family of ~o (graph G O after the
contractions) contains no more than ~2 nodes;

the graph G resulting after the 7/contractions is planar; and

each node of Gr is in the exterior boundary of ¢~ so that ¢~ is outerplanar.

114 D. Chhajed, T.J. Lowe, Locating facilities which interact

The nodes c(i) are chosen as follows: For each node i ~ L if Yi ~ C, then
c(i) = Yi. Otherwise, i f y i E [, then c(i) is the largest indexed member (oldest member)
of C(yi). We note in particular that c(r) is that cycle node which is numbered 1
since node r is adjacent to the cycle node numbered 1. An example o f the above
construct ion and definit ions is shown in fig. 7. The dashed lines in the figure are

Im••
14

4 ~ / ~ x i ~ Y 11
,o

5 8
6 7

C(r) = {1 14}, C(s)= {2,3,4}, C(u)=C(x)uC(y)uC(z) = {5,6,7,8,9,10,11,12}

The youngest child of node t is node u.
c(r) = I, c(s) = 2, c(t) = 12, c(u) = 6, c(y) = 7, c(z) = I0, c(v) = 13, c(x) = 5

Fig. 7. An example to show c(.).

between nodes i and c(i) to be contracted. The graph f~ which results f rom the
contract ion is shown in fig. 8. We note that G contains parallel arcs. Figure 9
shows the result o f per forming all parallel reductions on the graph in fig. 8 (after
some rearrangement o f the embedding).

We first show part (i) for the above choice o f c(i) ' s .

LEMMA 2

c(i) ~ c (j) for any i, j E [, i ~ j.

Proo f

Lett ing Yi (Yj) be the youngest child o f i (j) , we have two cases.

Case 1: Yi is not on a directed path from i to j .

D. Chhajed, T.I. Lowe, Locating facilities which interact 115

14

3

3 0

4 ~-'--'l~ ~ ~'~J II

~r 9
8

Fig. 8. Graph after contraction of pairs (*, c(*)).

14
v 13 ~ t12

Y7 8

Fig. 9. Simplification of fig. 8 to show an outerplanar graph.

In this case, C(yi) c~ C(yj) = O so that c(i) ~ c(j). (A similar argument holds
for yj not on a directed path from j to i.)

Case H: Yi is on a directed path from i to j .

Letting q denote the index of the node with the largest number in C(j) , we
note that c(i) ~ q. Since j has at least two descendants, q is strictly greater than any
member o f C(yj) so that q > c(j). Thus, c(i) > c(j). (A similar argument holds for
yj on a directed path from j to i.) []

Parts (ii) and (iii) are established in the following:

116 D. Chhajed, T.J. Lowe, Locating facilities which interact

THEOREM 1

Let t~ be the graph resulting from contracting the pairs {(i, c(i)), i = 1 0}.
Then,

(a) 0 is planar, and
(b) each node of t~ is on the exterior boundary of t~, so that t~ is outerplanar.

Proof
Each pair of consecutive cycle nodes of G is in a unique face of G. From

lemma 2, c (i)~ c(j) for all i , j ~ L i ~ j , so the face of G containing c(i) and
c(i) + 1, denoted by F;, is distinct from the face/~ containing c(j) and c(j) + 1, for
every i , j ~ L For every i ~ L construct an artificial edge in F/connecting i and c(i).
Note that the resulting graph, denoted by G, is planar.

From the definition of contraction of nodes, the contraction of i and c(i) in
G is equivalent to "shrinking" (as defined in [14]) the (artificial) edge (i, c(i)) in G.
In lemma 1 of [14], it is shown that shrinking an edge of a planar graph preserves
planarity. It now follows that contraction of the pairs {(i, c(i))} of G results in t~
planar.

That t~ is outerplanar again follows from the definition of contraction and
the fact that every node i ~ I is contracted with a cycle node of G. []

The above results provide a justification for the following algorithm.

Given:

Output:

Step 0:

Step 1:

Step 3:

Step 4:

ALGORITHM HALIN

A G-partite graph G o corresponding to a Halin flow graph G = T u ~.

Solution to NSP on G °.

Let C= V(~); [= V(G)~V(~); r E [: r is adjacent to two or more nodes in
C. Number these nodes of C adjacent to r in a counter-clockwise fashion,
starting with 1 and continue numbering the remainder of the nodes of 6".

Root T at r. Let C(i) = {j: j is a descendant of i; j ~ C}, Vi ~ !, and let
c(i) = (i1, v i c.
For all i ~ L let Yi be that child of node i : m i n { j : j ~C(i)} ~C(y i) .
Define c(i) = Yi if y / ~ C ; otherwise, c(i) = m a x { j : j E C(yi) } , V i E [.

Contract pairs (i, c(i)), V i ~ / i n G and the corresponding node families in
G °, using (G4) and procedure CO, respectively, deriving graphs t~ and 0 °.

Call algorithm SP to solve NSP on t~ and ~o.

LEMMA 3

The complexity of solving NSP for a Halin flow graph using algorithm
HALIN is O(m~,6).

D. Chhajed, T.J. Lowe, Locating facilities which interact 117

P roof
As we will show, the total effort is dominated by the work in step 4, i.e.

solving the NSP on t~ ° when t~ is series-parallel.
We have argued earlier that to contract cr u and try takes O(nu * nv * ~ng: s

adjacent to {u, u}) effort. Thus, the total effort to create graphs t~ and t~" is
O(gi~Kl~l * Itrc(ol* girt, l: s adjacent to {i, c(i)]). Again, letting ~, be an upper
bound on the number of nodes in any family of the original G-partite graph G O ,
some tr, in the above expression may be the result of a previous contraction operation,
in which case it may have up to ~2 members. However, in any case Itrsl <- ~2. It is
always the case that I~1--- ,I, and Itrc(01-< 2.

Letting ki be the number of nodes adjacent to i ~ / a n d noting that the number
of nodes adjacent to c(i) is 3, we have ~,iG t(ki + 3) = O(m). Thus, the total effort
for creating graphs 0 and ~o is O(m;d). In step 4, w~call algorithm SP with input
graphs G and G °, where G is a series-parallel graph with O(m) nodes and each
node family of t~ ° has no more than ~2 members. Thus, using algorithm SP on
t~ and 0 ° takes O(m£ 6) effort, which is the complexity of algorithm HALIN. []

COROLLARY

Problem MMMC on a t r a n s p o r t graph ~ with n nodes, a Halin flow graph,
and each new facility can be at any one of the n nodes of ~', can be solved, via
algorithm HALIN, in O(mn6).

When the flow graph is a partial k-tree (see, for example, [6]), Chhajed and
Lowe [4] have shown that MMMC can be solved in O(mn k+ l). Since a Halin graph
is a partial 3-tree, we note that MMMC can be solved in O(mn4). However, as we
noted earlier, considerable insight is lost in using the more general approach.

5. Extensions

In this section, we give examples of other graphs for which NSP can be
solved by using GP1 GP4 in polynomial time. Specifically, we define a generalized
Halin graph and g-Halin graphs. Finally, we show that using our results, we obtain
a linear time algorithm for a 0 -1 quadratic programming problem when G O representing
the 0 - 1 quadratic program corresponds to a Halin flow graph.

5.1. GENERALIZED HALIN GRAPHS

We can generalize the definition of a Halin graph to a graph constructed as
G" = T" u %', where T' is a tree (which could have nodes of degree 2) and %' is
a cycle connecting a subset of the leaf nodes of T'. Thus, there may be tip nodes
of T' not in the cycle C' (G' could have nodes of degree 1), and G' could have
nodes of degree 2 on the cycle and on the tree, After maximal application of series

118 D. Chhajed, T.J. Lowe, Locating facilities which interact

and cut-reductions to G' , the resulting graph will be Halin; therefore, recognition
of these graphs and solving NSP on them can be done in the same time complexity
as before.

5.2. R -DECOMPOSABLE GRAPHS

We now give a further generalization of the class of graphs which are solvable
by the repeated application of GP1 GP4 in polynomial time. In defining this
class, there are two important factors to be kept in mind: (i) a graph in the class
should be recognizable in time complexity no larger than the time it will take to
solve NSP, and (ii) there should be limited application of the contraction-reduction.
In particular, if w is the result of contracting two nodes, then w should not be used
in further contractions (in order to bound the number of nodes in any node family
of the G-partite graph).

We first introduce some definitions. The connectivity of a graph is the minimum
number of nodes whose removal results in a disconnected graph. A graph is said
to be n-connected if its connectivity is at least as large as n. The t-decomposition
of a graph, which is unique [3, 12], is a tree T, the nodes of which are graphs. Two
nodes in T are adjacent if and only if they have a common arc, called the marker
arc. In the t-decomposition, (i) every member of V(T) has at least three arcs and
is a polygon (cycle), bond (graph on two nodes with paraUel arcs), or a prime (a
graph which is 3-connected after deleting all loops and aU but one arc in each
parallel class), (ii) only bond members of V(T) have arcs parallel to their parent
marker (defined below), and (iii) no two polygons or bonds have a marker arc in
common. The reverse of decomposition is a merge operation; while merging two
adjacent nodes of T, the common marker arc is identified and then erased. If we
perform all the merge operations (in any order), we obtain the graph G. An
O(V(G) + E(G)) algorithm to compute the t-decomposition is given in [12].

If we direct all arcs of a tree T away from a node D ~ V(T), T is rooted at
D. Given a rooted T, and two nodes H,K ~ V(T) such that arc (a, b) ~ E(H) n E(K)
(i.e. (a, b) is a marker arc of H and K), H is a parent of K if there is a directed
arc from H to K in the rooted tree T. Arc (a, b) is ca~ed the child marker of K. Note
that every node of rooted tree T, except the root node, has one and only one child
marker. For a rooting at node R, let cmn(K, R) denote the nodes {a, b} corresponding
to the end nodes of the child marker of K for ai1 K ~ V(T)\R.

We now define [5] a family of graphs ~r. Graph B is a member of 7r if and
only if there are two terminal (nodes) u and v of 8 such that for arbitrary fixed

* 0 nodes uko ~ cys and VrO ~ cq,, S (G (8), {uko, vro }) can be computed in polynomial
time, where GU(B) is the G-partite graph corresponding to 8. In addition, graph B
should be recognizable in polynomial time. Note that ~ may contain non-planar
graphs, e.g. Ks with any pair of nodes as terminals is in ~. Members of g include
Halin graphs, series-paraUel graphs, as well as graphs obtained by taking a series-
parallel graph or a Halin graph, G, two additional nodes (which will be terminals),

D. Chhajed, T.J. Lowe, Locating facilities which interact 119

a b

Fig. 10. Examples of graphs which are in n.

{u, v}, and connecting node u (v) to an arbitrary subset of nodes of G. The graphs
in fig. 10 are examples of members of n.

G is said to be a n-decomposable graph if there exists a node R such that
when the t-decomposition tree of G is rooted at R, each component H ~ V(T)\
is in n with terminals cmn(H, R) and /~ is in n for some pair of nodes as terminals.
Note that if R is series-parallel or Halin, then R is in n. Figure 11 gives an example
of a x-decomposable graph together with its t-decomposition.

To recognize a x-decomposable graph G, we first find its t-decomposition.
Then we select a node R of this tree, root T at R, and test whether R is in n for
some pair of nodes of R. This can be done in polynomial time since there are at
most O(V(R) 2) pairs of nodes to be tested. If R is in n, we then test for each member
of V(T)\R whether it is in n with terminals cmn(H, R). If the answer is affirmative
for each component in V(T)kR, we are finished; otherwise, we select another unselected
node of T and continue. Thus, determining whether a graph is x-decomposable can
be done in polynomial time.

In order to solve NSP on a x-decomposable flow graph, we first find the node
and root the tree at R. The following recursive step is carried out until node R is

obtained.
Consider a component H (~: R) which is a leaf node in the t-decomposition

tree.

Case I:

Case H:

If H is a polygon, we perform series-reduction on both H and G°(H) until
only the marker arc remains. Merge H with the component adjacent to
it and perform parallel reduction, if necessary.

If H is prime, connect (arcs initially have zero costs) the node families
corresponding to the cmn(H, /~)= {u, v} in G°(H). Select two nodes
uk ~ cru and v, E cr v and compute S*(G°(H), {uk, vr}). This Can be done
in polynomial time since H is in n with terminals cmn(H, R). Set the
weight on the arc (uk, v,) as Z(S*(G°(H), {uk, v,})) and label as nodes in
S*(G°(H), {uk, v,}). Perform this operation for every choice of a node in
o'u and a node in o'v. Delete all arcs and nodes of H except the marker
arc. Merge H with the component adjacent to it and perform parallel
reduction, if necessary.

120 D. Chhajed, T.J. Lowe, Locating facilities which interact

Graph G

~ a2 a l ~

9 " . V
b3

b a2 a21. "" , . ~ f bl bl

..-"..... 7'
1t3

1t4

The t-decomposition of graph G

Fig. 11. A ff,-deeomposable graph.

Case III: If H is a bond, merge H with the component adjacent to it and perform
parallel reduction, if necessary.

In either case, the resulting tree T will have one less node. At the end of the
process, we obtain graph /~ for which NSP can be solved in polynomial time.

D. Chhajed, T.J. Lowe, Locating facili t ies which interact 121

5.3. QUADRATIC ZERO-ONE PROGRAMMING

Pardalos and Jha [16] have provided an algorithm which uses the planar
separator theorem [14,15] and runs in O(mlog(m)2 c'J'l°g'') with c > 0, for quadratic
zero-one programming (see problem 1, section 1) for planar graphs. Halin graphs
have a 3-separator which will make the algorithm in [6] of O(mlog(m)2al°g'n). The
initial m is an upper bound on the complexity of finding a separator and updating
weights. It may be that due to the special structure of a Halin graph and the resulting
components, this can be done in constant time. In addition, the exponent of 3 comes
from the fact that a Halin graph has a 3-separator, but the resulting components and
subeomponents will have a 2-separator. Thus, it may be possible to reduce the
overall upper bound to O(log(m)221°gin) = O(m21ogm). If we represent the quadratic
0 - 1 programming problem as an NSP with flow graph G(Q) (see section 1), then
there will be two nodes in every node family, i.e. ~ = 2. Thus, applying algorithm
Halin to solve the quadratic 0 - 1 programming problem when G(Q) is a Halin graph
will result in a time complexity of O(m26), which is linear. These results are also
applicable when G(Q) is 1r-decomposable. We note that Barahona [2] has provided
a linear time algorithm for quadratic 0 -1 programming when G(Q) is series-
parallel which can also be achieved by formulating the problem as an NSP and
applying algorithm SP.

Appendix

PROCEDURE SR(trq)

Step 1: Let u and v be the two nodes adjacent to node q in G, where q ~: u ~: v.

Step 2: For each pair of nodes Uk ~ tru, V, ~ try, find qpo giving

+ to w = min {to~ + to~} (ties can be arbitrarily broken). to~qp0
rp° qp e trq

Add an arc a'(uk, v,) with weights equal to to.uq o + to~o and let the label
xp i . rp .

of this new arc be L,,,(v,,u k) ~-- Lo(Vr, qpo) u t,atuk,qpo) u Ln(qpo).

Step 3: Delete node family trq. Return (to the caUing algorithm).

PROCEDURE PR(tr M, tyv)

Step 1: Let nodes uk ~ tr~ and v, ~ try be such that there are two arcs between them.
Delete one of these arcs and add its weight to the weight of the other arc.
Also add the label of this deleted arc to the label of the second arc.

Step 2: Continue step 1 until no parallel arcs between nodes of o'u and tr v remain.

Step 3: Return.

122 D. Chhajed, T.J. Lowe, Locating facilities which interact

PROCEDURE CR(~rq, O',)

Step 1: With q a pendant node of G adjacent to u, select an arc (u, v) of G, v ,: q.
(Such an arc exists because we have assumed that (u, q) is not the only arc
of G, and thoughout we assume that G is connected.)

Step 2: For each node uk of o'u,
Find a node qt, o of node family o-q such that

¢0~o = rain {¢ot~ , } (ties can be arbitrarily broken).
qpeaq

In G °, add new arcs a'(uk, v,) for all v, ~ o'v with weights o9~o and set the
labels of these new arcs La.(u k, Vr) ~-- Ln(qpo) u La(qt, o, uk).

Step 3: Delete all the nodes of node family o'v in G °, i.e. delete o'v.

Step 4: Return.

AI.L3ORITHM SP

Step 0: Set k ~ 1, G ° ~-- G °, G k <-- G.
Let 2D denote the list of nodes in Gk with degree 2. PA is the list of node
pairs having parallel arcs in Gk.

Step 1: If Gk is a single arc, then go to step 6; else find a node q ~ V(Gk) with
degree 1 and go to step 2. If there exists no such node, then go to step 3.

Let (q, u) ~E(Gk) be the arc connectin~ q to another node u.
Cut-reduce node families o'u and o', in G~' by calling procedure CR(O'q, o'u).
Cut-reduce nodes u and q in Gk.
Let node v be such that it is adjacent to u in Gk and is used in CR(-). Add
(u, v) to PA.
Set Gk+ 1 <--- G k (after cut-reduction)

G°+l <--- G ° (after cut-reduction)
k ~ - - k + l .

Go to step 5.

If I2DI = 0, then go to step 5; else choose a node q ~2D. Let nodes u and
v be adjacent to q in Gk.

If (u, v) E E(Gk), then add (u, v) to PA.
Series-reduce node family O-q by calling procedure SR(O'q).
Series-reduce node q.
Set Gk+ 1 ~ G k (after series-reduction)

(7°+1 ~ G ° (after series-reduction)

k<---k+l
Delete q from 2D and go to step 5.

Step 2:

Step 3"

Step 4"

D. Chhajed, T.J. Lowe , Locat ing fac i l i t ies which interact 123

Step 5:

Step 6:

If I PA 1 = 0, then go to step 1; else let (u, v) ~ PA.
Parallel-reduce arcs between node families o'u and cry by calling procedure
PR(o'u, cry).
Parallel-reduce arcs between nodes u and v.
Set Gk+ I ,--- G k (after parallel-reduction)

G°+l ~ G O (after parallel-reduction)

k ~ - - k + l
If u (or v) has degree 2 in Gl,, add it to 2D.
Go to step 1.

At this stage, G is a single arc (u, v). Find

g o
tokOrO = min to .

k~ ¢y~ , r¢ {Y o

This is the value of the optimal solution and the solution can be constructed
by La(ukO, VrO) U Ln(uko) U Ln(v:). Stop.

References

[1] R.G. Askin and J.B. Goldberg, Economic optimization in product design, Eng. Opt. 14(1988)
139-152.

[2] F. Barahona, A solvable case of quadratic 0-1 programming, Discr. Appl. Math. 13(1986)23-26.
[3] R.E. Bixby and D.K. Wagner, An almost linear-time algorithm for graph realization, Math. Oper.

Res. 13(1988)99-123.
[4] D. Chhajed and TJ. Lowe, Solving structured multifaeility location problems efficiently, Transp.

Sci. (1993), to appear.
[5] D. Chhajed and T.J. Lowe, M-median and M-center problems with mutual communication: Solvable

special cases, Oper. Res. 40(1992)$56-$66.
[6] D.G. Corneil and J.M. Keil, A dynamic programming approach to the dominating set problem on

K-trees, SIAM J. Alg. Discr. Meth. 8(1987)535-543.
[7] P.M. Dearing, R.L. Francis and T.J. Lowe, Convex location problems on tree networks, (3per. Res.

24(1976)628-642.
[8] S.E. Eriksen and P.D. Berger, A quadratic programming model for product configuration optimization,

Zeits. Oper. Res. 31(1987)B143-B159.
[9] E. Erkut, R.L. Francis and T.J. Lowe, A multimedian problem with interdistance constraints, Environ.

Planning B: Planning and Design 15(1988)181-190.
[10] E. Erkut, R.L. Francis, T.J. Lowe and A. Tamir, Equivalent mathematical programming formulations

of monotonic tree network location problems, Oper. Res. 37(1989)447-461.
[11] R.L. Francis, TJ. Lowe and H.D. Ratliff, Distance constraints for tree network multifacility location

problems, Oper. Res. 26(1978)570-596.
[12] LE. Hopcroft and R.E. Tarjan, Dividing a graph into tricormected components, SIAM J. Comput.

2(1973)135-158.
[13] A. Kolen, Location problems on trees and in the rectilinear plane, Stichting Mathematisch Centrum,

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (1982).
[14] R.L. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36(1979)

177-189.
[151 RJ. Lipton and R.E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput. 9(1980)

615-627.

124 D. Chhajed, T.J. Lowe, Locating facilities which interact

[16] P.M. Pardalos and S. Jha, Graph separation techniques for quadratic zero-one programming (1990),
Computer Science Department, The Pennsylvania State University, to appear in Comput. Math.
Appl.

[17] J.-C. Picard and H.D. Rafliff, A cut approach to the rectilinear distance facility location problem,
Oper. Res. 28(1978)422--433.

[18] T.V. Wimer, Linem" algorithms on k-terminal graphs, Report No. URI-030, Clemson University
(1987).

[19] Y. Xu, R.L Francis and T.J. Lowe, The multimedian problem on a network: Exploiting block
structure, Working Paper, Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL (1988).

[20] W. Domschke, Schedule synchronization for public trmsit networks, OR Spekmnn 11(1989)17-24.
[21] M.B. Richey, Optimal location of a path or tree on a network with cycles, Working Paper, George

Mason University, Fairfax, VA (1989).
[22] G. Comuejols, D. Naddef and W. Pulleyblank, The traveling salesman problem in graphs with 3-

edge cutsets, J. ACM 32(1985)383-410.

