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Abstract 

Locating transshipment facilities and allocating origins and destinations to transshipment 
facilities are important decisions for many distribution and logistic systems. Models that 
treat  demand as a continuous density over the service region often assume certain 
facility locations or a certain allocation of demand. It may be assumed that facility 
locations lie on a rectangular grid or that demand is allocated to the nearest facility or 
allocated such that each facility serves an equal amount of demand. These assumptions 
result in suboptimal distribution systems. This paper compares the transportation cost for 
suboptimal location and allocation schemes to the optimal cost to determine if suboptimal 
location and allocation schemes can produce nearly optimal transportation costs. Analytical 
results for distribution to a continuous demand show that nearly optimal costs can be 
achieved with suboptimal locations. An example of distribution to discrete demand points 
indicates the difficulties in applying these results to discrete demand problems. 

1. Introduction 

Transportation economies of scale provide an incentive to consolidate shipments 
into large vehicle loads. However, large vehicles may be prevented from visiting 
origins and destinations, due to their size or the lack of infrastructure (e.g. railroads, 
aircraft). Transshipment facilities provide the capability to transfer shipments between 
different vehicles or modes of transportation. This paper addresses the inter-dependent 
problems of locating given numbers of transshipment facilities and allocating demand 
to these facilities to minimize transportation cost. The cost when suboptimal location 
and allocation schemes are utilized is compared to the optimal cost to determine if 
simpler suboptimal location and allocation schemes may result in nearly optimal 
transportation costs. 

Two types of distribution systems are analyzed. One-to-many distribution 
systems contain a single origin, many destinations and a number of transshipment 
facilities, which are referred to as terminals in this paper. Shipments travel from the 
origin to a terminal on one vehicle and then from the terminal to the destination 
on a second vehicle, or they travel from the origin directly to a destination on a 
single vehicle without transshipment. One-to-many distribution systems concentrate 
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flows on the origin-to-terminal links. Many-to-many distribution systems contain 
many origins, many destinations and a number of transshipment facilities, which are 
referred to as hubs in this paper. Shipments travel from an origin to a destination 
via either one or two hubs. Many-to-many distribution systems concentrate flows 
most heavily on the hub-to-hub links. 

This paper concentrates primarily on continuous approximation models in 
which demand is modeled as a continuous density over the service region. In this 
case, average transportation distances and costs can be expressed as a function of 
the density of demand (see Eilon et al. [11] and Daganzo [7]). 

Continuous approximation models have been used by several authors to analyze 
one-to-many distribution with one (Geoffrion [12, 13], Han [18], Daganzo [9], and 
Campbell [1,3,4]) or more (Daganzo and Newell [10]) transshipments. A two-step 
procedure is used in these models to locate terminals and allocate demand. The first 
step allocates demand by partitioning the service region into non-overlapping subregions. 
(Throughout this paper, the word subregion refers to the area allocated to a transshipment 
facility.) The second step locates one transshipment terminal in each subregion. 
Although terminals are often assumed to be located in the center of each subregion 
[4,9,10, 18], Geoffrion [12,13] showed that the optimal location for each facility 
is displaced from the center of the subregion toward the origin. However, Geoffrion 
did not use subregions based on the optimal allocation of demand. Campbell [3] 
derived the optimal location and allocation schemes for one-to-many distribution to 
a uniform demand density using the rectilinear metric. Unlike the basic location- 
allocation problem (Cooper [6]), all destinations should not generally be allocated 
to the nearest facility. 

The many-to-one collection problem in which shipments or people move 
from many origins to a single destination via transshipment facilities can be handled 
in a manner similar to that for one-to-many distribution by reversing the direction 
of flows. Applications of many-to-one collection include passenger transportation 
(Kanafani [19], and Mirchandani and Odoni [22]) and waste disposal (Marks and 
Liebman [21], and Wirasinghe and Waters [24]). 

Continuous approximation models have also been used to analyze many-to- 
many distribution problems with uniform or slowly varying densities of demand. 
Hall [15,16], and Hall and Daganzo [17] focused on how to route shipments via 
transshipment facilities, i.e. how to allocate origins and destinations to hubs. Daganzo 
[8] developed a more complete model that includes transportation and inventory 
costs. All these works employ the rectilinear metric and rely on a two-step procedure 
for location and allocation. The first step locates facilities by assuming that hubs 
are arranged in a rectangular grid. The second step allocates demand (i.e. defines 
subregions) by subdividing the area between the hubs. Campbell [2] derives the 
optimal location and allocation scheme for many-to-many distribution to a uniform 
density of demand using the rectilinear metric. 

Most previous research using continuous approximation models for one-to- 
mmy and many-to-many distribution assumes either the facility locations (e.g. a 
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grid of terminals) or the allocation of demand (e.g. a partition of the service region 
into non-overlapping subregions). The assumed locations or allocation are generally 
not optimal. The present paper compares the cost for suboptimal location-allocation 
schemes to the optimal cost to investigate the effectiveness of some of the assumptions 
commonly used in continuous models. 

Two types of transportation are included in this paper to model transportation 
economies of scale. For one-to-many distribution, linehaul transportation refers to 
transportation between the origin and a terminal, and local transportation refers to 
transportation between a terminal and destination. For many-to-many distribution, 
linehaul transportation refers to transportation between two hubs and local transportation 
refers to transportation between an origin or destination and a hub. The transportation 
rate for linehaul transportation is generally less than-the rate for local transportation 
because of economies of scale in transportation. 

Like the basic location-allocation problem, local vehicles are restricted to 
stop at a single origin or destination. If local vehicles stop at multiple origins or 
destinations, then the distribution problem is often termed a location-routing problem. 
Laporte [20] provided a recent summary of research on location-routing problems. 
Continuous approximation models for location-routing problems have been developed 
for one-to-many distribution (Campbell [1,4]) and many-to-many distribution 
(Daganzo [8]) with transshipments. 

The remainder of the paper is organized in four sections. Section 2 presents 
the optimal locations, allocation and transportation cost for one-to-many and many- 
to-many distribution. Section 3 defines suboptimal location and allocation schemes 
and compares the cost for combinations of these suboptimal schemes to the optimal 
cost. Section 4 considers problems with a discrete demand to illustrate the degree 
to which the results for distribution to a continuous demand apply to distribution 
to a discrete demand. Section 5 contains conclusions. 

2. Optimal locations, allocation and cost 

This section presents the optimal locations, allocation and transportation cost 
for one-to-many and many-to-many distribution to a uniform density of demand. 
Consider a square service region of side X in which travel follows the rectilinear 
metric and the directions of  travel are parallel to the sides of  the region. The two 
perpendicular components of travel can be treated independently, so the average 
cost can be viewed as twice the average cost to serve a one-dimensional region of 
length X. This section presents results for distribution to a one-dimensional region. 
Results for distribution in two dimensions with the rectilinear metric can be easily 
derived, as in Campbell [2,3]. 

Let K be the number of transshipment facilities and let fl be the local 
transportation cost per shipment per unit distance. Let a be the ratio of the linehaul 
to local transportation cost per shipment per unit distance, where 0 < a < 1, so that 
a/3 is the linehaul transportation cost per shipment per unit distance. When a = 1, 
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local and linehaul transportation costs are equivalent. As a decreases, linehaul cost 
decreases and in the limiting case of  ct = 0, linehaul transportation incurs no cost. 

2.1. ONE-TO-MANY DISTRIBUTION 

Suppose the origin is in the center of  a one-dimensional service region of 
length X and the origin is also a terminal. Destinations are distributed over the 
service region according to a uniform distribution. The optimal transportation cost, 
terminal locations and allocation scheme were determined in Campbell [3] and the 
results are presented here. 

The optimal transportation cost Co is 

Co = fiX a K + l  
4 a + K " (1) 

Let xi denote the location of  terminal i measured from the left end of  the service 
region. The optimal terminal locations are 

X 2 i - 1  + tx 
xi= 2 K+ot  ' i = 1 ,  2 . . . . .  K. (2) 

2.2. MANY-TO-MANY DISTRIBUTION 

Consider again a one-dimensional service region of  length X containing 
origins and destinations distributed according to a uniform distribution. The 
optimal transportation cost, hub locations and allocation scheme were determined 
in Campbell [2] and a summary of  the results follows. 

The optimal transportation cost C~t is 

where 

aflX [ A3 1 -  t~ A2 + BI(I _ A)3 + 3 B2 (I _ A)2 ] (3) CM = 6 2 +  + 3  a a ' 

+ B- 2 + y[(lr + B2)2 - a ( 2 -  tz)(1-/?.1)] 1/2" 1 
A = 1 + , (4) 

a(1  - 

v = - l ,  if K = 2  

and 

T" = +1, if K > 2 ,  

l + a  2 
B I =  

(K - 1) .2 ' 

1 - a 2 
B 2 =  K - l "  
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The optimal location of hub i is given by 

X i - 1  
x i = - ~ A + X ( 1 - A )  ~ - - i ,  i = 1 , 2  . . . . .  K. (5) 

For both one-to-many and many-to-many distribution, the routing of shipments 
defines the allocation. Consider an interval between adjacent transshipment facilities 
(i.e. terminals or hubs) of width S. A general rule that defines the optimal allocation 
and routing for both one-to-many and many-to-many distribution is as follows: 

(i) All demand within a distance 

(1 - a)S/2 

of a transshipment facility should be allocated to (i.e. routed via) the nearest 
facility. 

(ii) All demand not within a distance 

(1 - a)S/2 

of a transshipment facility should be routed to minimize the travel distance. 
This may result in "allocation" to more than one facility. 

Part (ii) of the above rule produces a unique allocation of all demand for one- 
to-many distribution, since there is only one origin. However, all demand is not 
allocated to the nearest terminal. For many-to-many distribution systems, part (ii) 
allows demand points farther than ( 1 -  a)S/2 from a hub to send and receive 
shipments via two different hubs. This is a prime difference between the allocation 
pattern in one-to-many and many-to-many distribution: unique allocation for many- 
to-many distribution is optimal only if a =  0. 

When c~ = 0, there is no cost for inter-hub transportation, so each shipment 
is allocated to the nearest hub to minimize local transportation cost. Thus, when 

= 0, and only when a = 0, the optimal location-allocation scheme is to divide the 
service region into K subregions and locate a facility in the center of each subregion. 
When a = 1, transshipments are not needed and minimizing the total transportation 
distance minimizes the total transportation cost. 

3. Comparison o f  location-al location combinations 

The previous section presented the optimal transportation cost, locations and 
allocation for one-to-many and many-to-many distribution to a uniform density of 
demand. This section investigates several simpler non-optimal, but commonly used 
schemes for allocation and location. Three allocation schemes (the optimal scheme 
and two simpler schemes) and two location schemes (the optimal scheme and one 
simpler scheme) are combined to form composite suboptimal location-allocation 
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strategies. The cost for these suboptimal strategies is compared to the optimal cost 
to determine whether simpler location and allocation schemes can produce near- 
optimal costs. 

The three allocation schemes considered are: 

OA - Optimal Allocation. 

Allocate demand to minimize the transportation cost for a given location 
scheme. 

NA - Nearest Allocation. 

Allocate all demand to the nearest facility. 

EA - Equal Allocation. 

Divide the service region into equal size non-overlapping subregions, one for 
each facility. 

The NA and EA allocation schemes require that each point in the service 
region be allocated to only one facility, unlike the optimal OA allocation scheme. 
Note that the allocation for the EA allocation scheme is independent of the facility 
locations. 

The two location schemes considered are: 

OL - Optimal Location. 

Locate facilities to minimize the transportation cost for a given allocation 
scheme. 

CL - Central Location. 

Locate K facilities in the center of regions of size X/K. However, these 
regions of size X/K do not define the allocation. 

The central facility locations for the CL location scheme are independent of 
the allocation scheme and are given by: 

X 
x i =  ~ - ( 2 i - 1 ) ,  i = 1 , 2  . . . . .  K. (6) 

The two location schemes (OL and CL) and three allocation schemes (OA, 
NA and EA) can be combined in six ways. The combination OL-OA,  which 
produces the optimal transportation cost, was presented in the previous section. The 
other combinations introduce suboptimality in the location and/or allocation decisions. 
Two suboptimal combinations using OL are possible: O L - N A  and OL-EA.  Three 
suboptimal combinations using CL are possible: CL-OA,  C L - N A  and CL-EA. 
However, C L - E A  is identical to CL-NA,  since central location and allocation to 
the nearest facility imply that each subregion is the same size. 
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This section compares the transportation cost for four suboptimal combinations 
OL-NA, OL-EA,  CL-OA,  and C L - N A  to the cost for the optimal combination 
OL-OA. One-to-many distribution is considered first, followed by many-to-many 
distribution. 

3.1. ONE-TO-MANY DISTRIBUTION 

The transportation cost and terminal locations for the four suboptimal location- 
allocation combinations are considered in turn. The transportation cost and terminal 
locations are indicated using the notation Co(y, z) and xi(y, z), respectively, where 
y indicates the location scheme (O for OL or C for CL) and z indicates the allocation 
scheme (O for OA, N for NA or E for EA). Let the number of terminals be odd, 
so that there is an even number of terminals to the left and right of the origin, since 
the origin is itself one of the terminals. Because the demand is uniformly distributed, 
the optimal terminal locations are symmetric about the origin. 

OL-NA: The 
repeated here. 

results for O L - N A  were derived in Campbell [3] and are 

Co(O, N) = fiX (otK + 1) (1 - a )  + a 2 
4 ( K - 1 ) ( 1 - a ) + l  ' (7) 

X ( 2 i - 1 ) ( 1 - a ) + a  
xi (O,N)= T ( K - 1 ) ( 1 - a ) + l "  (8) 

OL-EA: For the combination OL-EA, one terminal is located in each subregion 
of size X/K. Consider the ith terminal at location xi to the left of the origin. The 
average transportation cost in subregion i is T/, where 

Ti = °tfl(X/2 - xi) + "~ - xi + 2X xi 

The first term accounts for linehaul transportation to the terminal. The second and 
third terms are for local transportation within the subregion to the right and left of 
terminal i, respectively. The optimal terminal locations minimize eq. (9) and are 
given by 

xi(O, E) = ~ (2i - 1 + a ) ,  i = 1, 2 . . . .  , (K - 1)/2. (10) 

Terminal locations for i > K/2 are given by X - xK_i + 1(O, E) because of symmetry. 
The average transportation cost over the service region is 

(K-I)I2 2 
Co(O,E)= ~- ~ T/+ 

i=1 4K2 " 
(11) 
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The first term in eq. (11) accounts for the transportation cost in the K -  1 subregions 
to the left and right of the central subregion, which contains the origin. The last 
term in eq. (11) accounts for the transportation cost in the central subregion containing 
the origin. From eqs. (9)-(11), 

C 0 ( O , E ) = ~ - [ t Z ( K 2 1 )  + (1K~X) + t z ] .  (12) 

The OL-EA combination corresponds to that employed by Geoffrion [12, 13] and 
Campbell [1], in which terminals are displaced from the center of the subregion 
toward the origin to reduce transportation costs. 

C L - O A :  The terminal locations for CL-OA are given by eq. (6) and the 
transportation cost (from Campbell [3]) is 

Note that the cost for CL-OA is identical to the cost for OL-EA although the 
terminal locations and the allocation are different. 

CL-NA:  The terminal locations for CL-NA are given by eq. (6) and the 
transportation cost (from Campbell [3]) is 

C o ( C , N )  = + + a  . (14) 

Figure 1 is a comparison of the transportation cost for each suboptimal 
combination to the optimal transportation cost for a = 0.5. Each curve is the percentage 
difference between the transportation cost for the optimal combination and the 
transportation cost for OL-OA as a function of the number of terminals. Combinations 
OL-EA and CL-OA are nearly optimal. The combinations that allocate to the 
nearest terminal are not nearly optimal, even for large K. Both combinations with 
nearest allocation converge to a common value that is larger than that for the other 
two suboptimal combinations. Table 1 displays the maximum percentage difference 
between the transportation cost for suboptimal combinations and the transportation 
cost for OL-OA, and the values of a and K that produce the maximum difference. 
All the maximum differences occur for small numbers of terminals, but even with 
large numbers of terminals, OL-EA and CL-OA are clearly superior to combinations 
that allocate to the nearest terminal. 

3.2. MANY-TO-MANY DISTRIBUTION 

The transportation costs and hub locations for the suboptimal combinations 
OL-NA, OL-EA, CL-OA and CL-NA for many-to-many distribution are presented 
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Fig. 1. Transportation cost comparison for one-to- 
many distribution to a continuous demand with o~ = 0.5. 

40 

Table 1 

Maximum percentage difference for one-to-many distribution. 

Maximum % 
Scheme difference a K 

O L - N A  5.95 0.719 5 

OL-EA 1.15 0.577 3 

CL-OA 1.15 0.577 3 

C L - N A  22.22 1.0 3 

in rum. A notation similar to that in the previous section is used (e.g. CM(O, N) is 
the transportation cost for many-to-many distribution using optimal hub locations 
and allocation to the nearest hub). 

OL-NA: The results for OL-NA were derived in Campbell [2] and are 
repeated here. 

CM(O'N) = °tflX I2 + E3 + 3'! - a' E2 + FI(1- E)3 + -~ F2(1- E)2 a , (15) 

where 
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E = (2 + a)/4,  if K = 2, 

and 

1 + F 2 - [(1 + F2) 2 - or(2 - a)(1 - Fl)] 1/2 
E = I -  

= 
(K - 1) 2 ' 

o:(1 - F~) 

1 
F2 = K _  1 • 

, if K > 2 ,  

The optimal location of hub i is given by 

X i - 1  
x i ( O , N ) =  T E + X ( 1 - E )  K - I '  i = 1 , 2  . . . . .  K. (17) 

Note the similarity between eqs. (15)-(17) for O L - N A  and eqs. ( 3 ) - (5 ) fo r  
OL-OA.  

O L - E A :  The derivation of the transportation cost and hub locations for the 
combination O L - E A  is contained in appendix A. The results are 

where 

By symmetry, 

(0, E) = otflX [2 + Cu 
6 L 

a 2 3 ~.~.] (18) 
K 3 K "~ + 0tK ~ j  

xi(O, E) = 2~[0~ + (2i - 1)(1 - a /K)] ,  i = 1, 2, 

[ K / 2  if K is even, 
K '  

[ (K + 1)/2 if K is odd. 

. . . .  K', (19) 

xi(O,E) = X - xk_i+l(O,E ),  i = K '  + 1, K '  + 2 . . . . .  K. 

C L - O A :  The hub locations for CL-OA are given by eq. (6). The transportation 
cost can be derived from eq. (6) and eqs. (1), (4), (19) and (21) in Campbell [2]: 

a2 
Cu(C,O)= aOx 2 -  + 

6 2 r 
1S] 

Kz + 3 . (20) 

C L - N A :  The hub locations for CL-NA are given by eq. (6). The transportation 
cost can be derived following the procedure in Campbell [2]: 

CM(C,N)= a f l X [ 2 _  2 3 ]  
6 + ' h T "  (21) 
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Figure 2 shows the hub locations and the allocation for the four suboptimal 
location-allocation combinations and the optimal combination for ¢x = 0.5. For the 
two combinations with optimal allocation, each interval between two adjacent hubs 
is divided into three subintervals. Origins and destinations in the central subinterval 
between each pair of hubs are allocated to both hubs. The other three combinations 
require allocation to a single hub. 

Figure 3 is a comparison of the transportation cost for each suboptimal 
combination to the optimal transportation cost for a = 0.5. Each curve is the percentage 
difference between the transportation cost for a suboptimal combination and the 
transportation cost for O L - O A  as a function of the number of hubs. The cost 
resulting from the C L - O A  combination is nearly optimal, as was true for one-to- 
mmy distribution. However, unlike one-to-many distribution, the OL-EA combination 
is not nearly optimal and produces a transportation cost closer to that for the 
combinations with nearest allocation than to that for the C L - O A  combination. Both 
combinations that allocate to the nearest hub perform relatively poorly and the 
transportation costs for these combinations converge to a common value. 

The results for one-to-many and many-to-many distribution with a continuous 
demand suggest that the combination of central location and optimal allocation is 
nearly optimal. The results also indicate that allocation to the nearest facility produces 
relatively poor results, even when optimal locations are utilized. These results seem 
to suggest that allocating demand optimally may be more important than locating 
facilities optimally. 

These results have implications for modeling distribution systems. If facilities 
are assumed to be centrally located, then a nearly optimal transportation cost can 
be achieved by optimally allocating the demand. Thus, assuming a rectangular grid 
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Fig. 3. Transpor ta t ion cost  compar ison for many- to-  
many distribution to a continuous demand with a = 0.5. 

of facilities is not unreasonable as long as demand is allocated optimally. For one- 
to-many distribution, if the allocation of demand is assumed by dividing the service 
region into equal subregions, then a nearly optimal transportation cost can be achieved 
by optimally locating the terminals. 

Allocation to the nearest facility produces poor results for both one-to-many 
and many-to-many distribution, even when facilities are optimally located. The 
simple assumption that facilities are located in the center of regions of equal size 
may be far from optimal, unless local transportation is very expensive relative to 
linehaul transportation (i.e. a is close to 1). 

4. Discrete demand 

One important assumption in the preceding analysis is that demand is 
continuously distributed according to a uniform distribution over the service region. 
This section compares the transportation cost for the suboptimal location-allocation 
combinations to the optimal transportation cost for discrete demand problems, to 
see how well the conclusions from the continuous demand analysis apply to problems 
with discrete demand. Origins and destinations are specified sites (i.e. points) in the 
service region and transshipment facilities are restricted to be located at these sites. 
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This gives rise to a network formulation of the one-to-many and many-to-many 
distribution problems. 

As in the previous section, the optimal location (OL) scheme and the optimal 
allocation (OA) scheme minimize the transportation cost and the nearest allocation 
(NA) scheme allocates all demand to the nearest facility. However, the equal allocation 
(EA) and central location (CL) schemes are not as straightforward for discrete 
demand points as for a continuous uniform demand density. 

For a continuous uniform demand density, division of the service region into 
K equal area subregions also results in K equal demand subregions. This is not true 
in general for non-uniform or discrete demands. Thus, the EA scheme is based on 
dividing the service region into K contiguous non-overlapping subregions which 
contain approximately equal amounts of demand. These-subregions should be reasonably 
compact (i.e. not too elongated) to minimize local transportation cost. There may 
be a very large number of ways to divide a set of demand points into K spatially 
contiguous subsets of approximately equal demand. Selecting different subsets of 
demand will produce different allocations and different results. Only one division 
of the demand into subsets for each value of K is explored in this paper. 

For distribution to a continuous uniform demand density, the CL scheme 
produces locations that are central with respect to both the area of the subregion 
and the demand in the subregion. For discrete demand points, the locations for the 
CL schemes are determined by first dividing the demand into K compact subsets 
of approximately equal demand, and then locating a facility at the demand point 
closest to the center of gravity of each subset of demand. A more exact method 
would locate the facility by solving a 1-median problem for each subset of demand. 
However, the center of gravity method is simpler and, in many cases, the demand 
point closest to the center of gravity is also the median. 

4.1. ONE-TO-MANY DISTRIBUTION 

The location-allocation problem for one-to-many distribution with discrete 
destinations can be formulated as a p-median problem (Hakimi [14]) in which the 
cost to allocate a destination at site i to a terminal at site j is 

where 

d0j 
wi 

= + adoj), 

is the distance from site j to site i, 

is the distance from the origin to site j, and 

is the demand at site i. 

This is a special case of the p-median problem in which one site (the origin) is 
allocated to all the terminals. Each terminal location is influenced by the ratio of 
the local and linehaul transportation rates and by the weight of the origin allocated 
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to the terminal. The allocation of destinations to terminals determines the amount 
of demand served by each terminal and thus, the weight of the origin allocated to 
each terminal. Unlike the basic p-median problem, all destinations should not be 
allocated to the nearest terminal. 

The location, allocation and transportation cost were found for the optimal 
and suboptimal combinations by enumerating the location and allocation patterns 
for an example consisting of 50 sites (destinations) in a square service region (from 
p. 57 of Eilon et al. [11]). All destinations were assumed to have the same demand 
and Euclidean distances were used. The origin was assumed to be located at the 
lower left-hand comer of the square service region, instead of in the center of the 
service region. Thus, the square service region may be viewed as one-quarter of  a 
larger service region that contains a centrally located origin. 

Results for one-to-many distribution via 2, 3 and 4 terminals are contained 
in table 2. This table shows the percentage cost difference between the cost for each 
suboptimal combination and the optimal cost for two values of tx. The results for 

0.5 

0.83 

Table 2 

Transportation cost comparison for one- 
to-many distribution to a discrete demand. 

Percentage cost differences 

Combination K = 2 K = 3 K = 4 

OL-EA 1.04 2.31 3.53 
OL-NA 0.99 3.05 2.10 
CL-OA 4.90 2.98 4.24 
C L - N A  8.73 7.96 11.63 

OL-EA 3.37 4.80 2.95 
OL-NA 3.85 3.63 2.69 
CL-OA 3.14 2.50 2.27 
CL-NA 18.62 14.74 18.52 

a = 0.5 differ from the continuous demand results (shown in fig. 1) in that the 
C L - O A  and O L - E A  combinations are not nearly optimal and O L - N A  performs 
about as well or better than C L - O A  and OL-EA.  However, the poor results for 
C L - N A  are similar to the continuous results. 

For discrete demand problems, a combination with nearest allocation may be 
better than either C L - O A  or OL-EA,  especially if tt is small, since small values of 
tt favor schemes with allocation to the nearest facility. (For ct = 0, allocation to the 
nearest facility is optimal.) The C L - O A  combination tends to perform better, relative 
to the other suboptimal combinations, for large values of ct, since large values of a 
place more emphasis on the allocation of destinations to reduce linehaul transportation 
cost. In the lower part of table 2 (tx = 0.83), the C L - O A  combination produces lower 
costs than the other suboptimal combinations, but only by a small amount. 
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n - "  

p = 

4.2. MANY-TO-MANY DISTRIBUTION 

The location-allocation problem for many-to-many distribution with discrete 
demand (i.e. origins and destinations) can be formulated as an integer programming 
problem as follows. Assume that every demand site is both an origin and a destination. 
Define: 

number of demand sites; 

number of terminals to be located; 

1 if the flow from site i to sitej goes via first hub k and then hub m, 
Xijkm -" 0 otherwise; 

1 if a hub is established at site j ,  

Yk = 0 otherwise; 

Cijk,n = transportation cost to deliver demand wij from site i to site j via hubs at 
sites k and m (in order i - k - m - j ) .  

The location-allocation problem for many-to-many distribution can then be 
formulated as follows: 

n n n n 

M T M  m i n i m i z e  ~ E E E XiflenCij km (22) 
i=l j=l k=l m=l 

n n 

subject to ~,  E Xijkm = 1, for all i, j ,  (23) 
k=l m=l 

n 

Yk = P, (24) 
k=l 
0 ~ Xijkm <- Yk, for all i, j ,  k, m, (25a) 

0 < Xijkm < Ym, for all i, j ,  k, m. (25b) 

Constraints (23) ensure that every origin-destination pair is muted via hubs. 
If k = m in constraint (23), then shipments are routed via only one hub. If k ~: m, 
then shipments are routed via two hubs. Constraint (24) establishesp hubs. Constraints 
(25a) and (25b) prevent the routing of shipments via sites that do not have hubs. 
These constraints are an interesting feature of the problem, since setting Xijkm equal 
to one forces two hubs to be established (unless k = m). 

If the transportation cost is proportional to the distance between two sites and 
a is the ratio of the linehaul to local transportation rate, then 

= + + ad ), 

where 
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dij is the travel distance from site i to site j ,  and 

wq is the demand for origin-dest inat ion pair i,j. 

In general, C.km = 0, since wii = O. 
Problem M T M  corresponds to the O L - O A  combination. This is a different 

problem than the hub location problem formulated by O'Kelly [23], because each 
site is not restricted to be allocated to only one hub. Problem M T M  can be 
converted to O'Kelly 's  hub location problem by adding constraints that restrict each 
origin and destination to send and receive all shipments via a single hub (see 
Campbell [5]). 

Instead of  solving integer programming formulations, the locat ion-al locat ion 
problems corresponding to the four suboptimal combinations and to the optimal 
combination were solved by enumeration for an example that has 20 demand sites 
in a square service region. (The 20 sites are the first 20 of  the 50 from p. 57 of  Eilon 
et al. [11].) Each site is both an origin and a destination and all or igin-dest inat ion 
pairs were assumed to have the same demand. 

The terminal locations, the allocation and the transportation cost with 2, 3, 
4 and 5 hubs and tx = 0.5 were found by enumeration. Solutions for problems with 
more demand sites or larger numbers of  hubs required excessive amounts of  computer 
time for enumeration. The results, which are shown in table 3, differ from the 
continuous demand results (shown in fig. 3) in that the C L - O A  combination is not 
clearly superior to the other suboptimal combinations. However, C L - O A  is the best 
combination and C L - N A  is the worst combination, as was true for a continuous 
demand. 

Table 3 

Transportation cost comparison for many-to-many 
distribution to a discrete demand with a = 0.5. 

Percentage cost difference 

Combination K = 2 K = 3 K = 4 K = 5 

OL-EA 6.66 6.98 4.22 3.92 
OL-NA 4.76 3.96 3.44 4.48 
CL-OA 4.36 2.39 3.09 0.15 
CL-NA 6.67 9.59 12.18 4.98 

Figure 4 shows the optimal hub locations and the optimal allocation for three 
hubs. This figure does not show the routing of  each shipment, but does show which 
transportation links are used in the optimal distribution system, i.e. for the O L - O A  
combination. Of the seventeen demand sites not occupied by hubs, two send shipments 
to all three hubs, six send shipments to two hubs, and nine are allocated to a single 
hub. Table 4 shows how many sites are allocated to different numbers o f  hubs for 
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Fig. 4. Location-e~locadon for a = 0.5 and K = 3. 

Table 4 

Allocation of sites for many-to-many distribution. 

Number of sites allocated to: 

K I hub 2 hubs 3 hubs 

2 13 5 - 
3 9 6 2 
4 9 5 2 
5 7 6 2 

the example problem with 2, 3 4 and 5 hubs and a = 0.5. For smaller values of 
more sites should be allocated to a single facility, because minimizing local 
transportation distance is more important than linehaul distance. 

5. Conclusions 

This paper compared the transportation cost resulting from suboptimal location 
and allocation schemes to the optimal cost. Results from distribution to a continuous 
demand indicated that nearly optimal costs can be achieved by centrally locating 
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the transshipment facilities and optimally allocating the demand. For one-to-many 
distribution, the equal allocation scheme was also nearly optimal if terminals were 
optimally located. The combination of centrally located facilities and allocation to 
the nearest facility produced poor results for both one-to-many and many-to-many 
distribution. 

The discrete demand results differed from the continuous demand results in 
important ways. The combination of central location and optimal allocation was not 
nearly optimal, nor was it significantly better than the combinations that used 
optimal locations (i.e. optimal location with nearest allocation and optimal location 
with equal allocation). Another difference was that allocation to the nearest facility 
may produce good results (as good as the other suboptimal combinations considered) 
for discrete problems. Thus, the suggestion from the continuous results that allocation 
to the nearest facility is undesirable, is not supported by the discrete results. However, 
one similarity in the discrete and continuous results was the poor performance of 
the combination of central location and allocation to the nearest facility. 

These results indicate that caution must be exercised when applying results 
based on a continuous uniform density of demand to problems with discrete demand 
points. The continuous demand results indicate the limiting case when the number 
of demand sites is very large and the demand sites are randomly scattered over the 
service region. If the number of demand sites is small or the demand is clustered, 
then the continuous results would not apply. When the number of discrete demand 
points is small relative to the number of facilities, then the cost to serve a discrete 
demand is likely to be less than the cost to serve a continuous demand, especially 
for small ct. Thus, the difference between the continuous and discrete results may 
not be surprising in view of the non-uniform nature of the discrete demand. 

For many-to-many distribution, allocation to a single hub is generally not 
optimal. The combination of optimal location and optimal allocation for many-to- 
many distribution provides a lower bound on the optimal cost for the hub location 
problem that requires each demand point to be allocated to a single hub. This lower 
bound is likely to be better for smaller values of a, since the continuous results 
indit:ate that the area in which demand should be allocated to more than one hub 
decreases as a increases. Thus, the optimal locations for the many-to-many distribution 
problem may provide a starting point for solving the hub location problem with 
unique allocation. The discrete form of the many-to-many distribution problem is 
easier to solve than the discrete form of the hub location problem with unique 
allocation. However, converting the solution from the many-to-many distribution 
problem to solve the problem with unique allocation requires overcoming the 
combinatorics of uniquely allocating all the demand points to a single hub. 

Appendix 

This appendix formulates the transportation cost for the combination of optimal 
location and equal allocation (OL-EA) for many-to-many distribution. If origins 



J.F. Campbell, Location and allocation for distribution systems 95 

and destinations are distributed according to a uniform distribution over a line 
segment of length X, then the average distance between an origin and destination 
is X/3. If hubs were located at all origins and destinations, then all travel would be 
on linehaul vehicles and the average transportation cost would be aflX/3. However, 
there is generally not a hub at every origin and destination, so the average transportation 
cost is larger than aflXI3. 

For an origin-destination pair separated by a distance d, define the circuity 
cost to be the transportation cost in excess of arid. The average circuity cost is the 
amount by which the average transportation cost exceeds aflX/3. The circuity cost 
accounts for the local transportation and for the additional cost due to backtracking 
to a hub. The average transportation cost can be written as 

CM(O, E) - otflX/3 + Q, (AI) 

where Q is the average circuity cost. 
The EA allocation scheme divides the one-dimensional service region of 

length X into K subregions of length X/K. The average circuity cost can be written 
as the average of the average circuity cost incurred in each subregion of size X/K: 

K 

Q = ~_~ qi/K, 
i=1 

(A2) 

where qi is the average circuity cost in subregion i. 
Circuity cost is incurred in a subregion for travel between the hub and all the 

origins and destinations located in that subregion. There are two cases to consider 
to determine the circuity cost in a subregion. The probability of each case and the 
circuity cost for each case are derived for subregion i. 

Case 1: Either the origin or destination is in the subregion. 

The probability that an origin is in subregion i of length X/K is 1/K. The 
probability that a destination is outside of subregion i is ( K -  1)/K. Let/ '1  be the 
probability of case 1. 

PI = 2 ( K -  1)/K 2. (A3) 

The factor 2 is required because either the origin or the destination is in the subregion 
for case I. Without loss of generality, the circuity cost will be formulated for an 
origin in the subregion and a destination outside the subregion. By symmetry, the 
results are identical when the origin and destination are reversed. 

All shipments from the origin in the subregion travel first to the hub. If the 
shipment backtracks to reach the hub, then circuity cost is incurred at a rate of  
fl(1 + a)  per unit distance to the hub. This accounts for local transportation to the 
hub and linehaul transportation from the hub back to the origin. If the 
shipment does not backtrack to the hub, then circuity cost is incurred at a rate of  
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fl(1 - t~) per unit distance to the hub. This accounts for local instead of  linehaul 
transportation to the hub. 

Let the hub be located a distance y from the left edge of  the subregion and 
let w be the distance from the origin to the hub. For w < y, the shipment backtracks 
when the destination is to the left of  the subregion, so the circuity cost can be 
written as 

i - 1 K - i (A4) 
gl(w) = fl(1 + a)w K ~  + f l ( 1 -  tt)w K 1" 

The factor ( i -  1) / (K-  1) in the first term is the probability that the destination is 
located to the left o f  subregion i for case 1 and the factor ( K - i ) / ( K -  1) in the 
second term is the probability that the destination is to the right of  subregion i for 
case 1. For w > y, the circuity cost can be formulated similarly as 

i - 1 K - i (A5) 
gr(w) = fl(1 - a )w K---:'I + fl(1 + tt)w K 1" 

The average circuity cost for case 1 is then 

where 

y l 

G 1 = -~ gl(W)dw+ ~ gr (w)dw' 

0 0 

t = X / K -  y 

(A6) 

is the distance from the hub to the right boundary of  the subregion. Performing the 
integration produces the average circuity cost o f  case 1: 

GI = fly2 - fl 1 + ot K -  Y -K + " (A7) 

Case 2: Origin and destination are both in the subregion. 

The probabiity that an origin and destination are both in subregion i is 

1 
P2 = .-~-- (A8) 

K -  

Because all shipments are assumed to visit at least one hub, the shipment  is 
sent from the origin to the hub and then to the destination. There is no linehaul 
transportation for case 2. The circuity cost for case 2 is determined by analyzing 
three subcases. The first and second are for the situation in which the origin and 
destination are on the same side of  the hub. The third is for the situation in which 
the origin and destination are on opposite sides o f  the hub. 
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Case 2a: Origin and destination are both to the left of the hub. 

The probability of  case 2a is 
y2 

P2, = (X/K)2 .  (A9) 

Let w be the distance from the hub to the nearer of the origin and destination and 
let v be the distance from the hub to the farther of the origin and destination. The 
circuity cost is the cost in excess of the cost for linehaul transportation from the 
origin to the destination. Thus, the average circuity cost for case 2a is 

w + w)d dw 
G2a = 

= f l y ( 1  - o r ~ 3 ) .  (AIO) 

Case 2b: Origin and destination are both to the right of  the hub. 

This ease is analogous to case 2a if y is replaced by t. Thus, the probability 
of case 2b is 

t 2 

P2b = (X/K)2 (Al l )  

and the average circuity cost is 

G2b = fit(1 - a/3). (A12) 

Case 2c: Origin and destination are on opposite sides of  the hub. 

The probability of case 2c is 

P2e = 2yt (X /K)2 .  (A13) 

For case 2c, define w to be the distance from the hub to the demand point (origin 
or destination) to the left of the hub and v to be the distance from the hub to the 
demand point to the right of  the hub. The circuity cost is the cost in excess of  
afl(w + v). The average circuity cost is 

y t 
fl I0 I0 (w + V) (1 - t~) dv  dw 

G2c = 

X 
- a )  

2K" 
(A14) 
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The average circuity cost for case 2 is then 

G2 = P2~G2a + P2bG2b + e2cG2c 

= fl[2y2(XIK) 2-  2y(X/K) + 1 - 0-/3]. (A15) 

The average circuity cost in a subregion of size X/K is the sum of the 
products of the probabilities and average circuity costs for cases 1 and 2: 

qi = P1G1 + P2G2 • (A16) 

The optimal value of y can be found by solving 

d 

for y. The result is 

y , =  X [  
2-- 1 

where 

-~qi = 0  

+ a - a  ~ ] ,  i = 1 , 2  . . . . .  K', 

[K/2 if K is even 
K'  

[ (K + 1)/2, i fKis  odd. 

(A17) 

Because y* is the distance from the hub to the left edge of the subregion, each hub 
is displaced from the center of the subregion toward the center of the service region 
by an amount 

, X ~ K'. Y 2K = ct [1 - (2i - 1)/K], i = 1, 2 . . . . .  (A18) 

Thus, hubs farther from the center of the service region are displaced a greater 
amount than hubs closer to the center of the service region. The optimal hub 
locations for the O L - E A  combination are then 

X , 
x i = ( i - 1 ) ~ - + y  

X 
= 2---K- [a  + (2i - 1) (1 - a /K)] ,  i = 1, 2 . . . . .  K'. (A19) 

The hub locations in the right half of the service region are determined by symmetry. 
Equations (A3), (A7), (A8), (A15), (A16) and (A17) provide the average circuity 
cost in subregion i. Equations (A1) and (A2) then provide the average transportation 
cost for the O L - E A  combination: 

= o t f lX  F2 CM(O,E) 
6 [ 

a 2 3 a ] 

rJ (A20) 
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